
VOI UME 37, NUMBER 3 FEBRUARY l, l988

Microwave response of DNA in solution: Theory
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Recent studies by Edwards, Davis, Swicord, and Safer have indicated resonant absorption of
microwave radiation by DNA in solution. Previous theoretical calculations had indicated that

such resonances should be overdarnped. %e present a more realistic model that provides a param-

etrization for the overcoming of the overdamping. The refinements include the electrically active

nature of the solvent and the binding of the 6rst hydration layer. Our results show that the hydra-

tion layer binding is the single most important aspect of the phenomenon. The parametrization

indicates that the ability of bound layers to transmit shear must be greatly reduced. This is a be-

havior that can be qualitatively explained in terms of bond orientation by the structured water and

reduced bond density for the DNA-water interface as opposed to corresponding surface in pure

water. Conclusive results, however, await a discrete molecular modeling of the hydration layer

binding.

I. INTRODUCTION

Acoustic organ pipe modes have been observed in
deoxyribonucleic acid (DNA} fibers and films by Maret,
Oldenberg, Winterhng, Dransfeld, and Rupprecht' as
well as Lindsay and Powell. In these dry forms the reso-
nances are expected, there being no strong damping
mechanism. The theoretical work of Dorfman and Van-
Zandt indicates, though, that for dissolved DNA these
acoustic modes are overdamped by the hydrodynamic
coupling. To the contrary, however, has come the re-
cent work of Edwards, Davis, Swicord, and Saffer.
Their still controversial results show a series of reso-
nances in the microwave frequency range for a solution
of DNA of fixed length. The resonance pattern appears
be a series of geometric resonances corresponding to in-
teger half-wavelengths on the entire length of polymer.
That is, given the allowed wavelength for the normal
modes on the molecule and the frequencies of the reso-
nances, one calculates the speed of sound for a compres-
sional mode in DNA comparable to that measured by
Hakim, Lindsay, and Powell.

The Dorfman-VanZandt model assumed an electrical-
ly neutral solvent and the typical hydrodynamic no-slip
boundary condition at the surface of the molecule. This
model predicts the overdamping of the acoustic vibra-
t10Ilal I110dcs as a collscqllcIlcc of tllc large wa'tcr vlscos1-
ty. The perfect stick condition must go almost to per-
fect slip to reduce the damping by the two orders of
magnitude separating the theory from the experimental
results.

The refinement we present includes realistically model-
ing the counterions and the primary hydration layer. In
our initial investigations we included only the coun-
terions as sources to affect the electric 6elds and drive
the solvent. %'ith ions present the oppositely charged
ion cloud around the molecule produces a sigoificant
shear force in the solvent. Thus in the perfect slip solu-
tion a careful balance of large forces is necessary to

match the polymer motion to the solvent. A small
mismatch in forces can produce large changes in the
motion of the DNA and in its power absorption. So
with decoupling of the solvent and ion motions a reso-
nant feature can appear in the power absorption. A very
simple model of the hydration layer developed by
VanZandt provides for just such a slipping by changing
the phase of the coupling between the water and the
molecule converting the behavior from damped to elas-
tic.

In this paper we explore the parametrization of this
binding upon resonance formation as well as the effects
of salt concentration and temperature. Our parametriza-
tion indicates the primary hydration layer must have
properties significantly different from bulk water for res-
onances to appear. The variations of salt concentration
and temperature are shown to have small efFects, except
to the extent that they may change the binding of the
hydration layer.

It seems that the hydration shell binding is the most
important factor in the possibility of resonant absorp-
tion. Although the parametrization provides. some in-
sight to the mechanism, we are left with unanswered
questions which must be pursued in further work. It is
almost certain that a fuller understanding awaits a
discrete molecular model.

II. MQDKI.

There are 6ve elements to this model, the polymer, the
primary hydration layer, the continuum water, the ions,
and the electromagnetic 6elds. These elements are cou-
pled mechanically as well as electrically. The couplings
oppose the relative motion of the elements with elastic
and damped character, but the electric field drives the
polymer and the counterions in opposite directions. The
charge-density fluctuations and currents act as electrical
sources which modify the driving field. In this section
we examine the elements and their interrelations.
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Prior lattice-dynamic calculations of this research
group provide dispersion relations for relatively dry
DNA. A typical spectrum can be seen in Fig. 1. From
the frequency scale of this diagram we see that in the
frequency range of interest, 1-10GHz„we are almost at
the origin, far from any perceptible dispersion. In this
region the motion of the polymer is equivalent to that of
an elastic rod. The discrete nature of the base pair
structure is averaged out by the long wavelength of these
low-frequency acoustic modes. %e therefore use an elas-
tic rod for our model of the DNA molecule. To provide
the computational advantages of cylindrical symmetry
we take the rod to be a straight smooth cylinder. With
cylindrical symmetry we can also assume that the charge
is spread uniformly over the surface of the polymer.

Dorfman and VanZandt have shown that the grooves
produce only a 5% effec't on the hydrodynamic solution,
so we do not expect this approximation to afFect the
basic nature of the mechanism. As for ignoring the ter-
tiary structure of the DNA, its inclusion would make
the calculation much more diScult without promise of
providing any signi6cant alteration of behavior in the re-
laxed plasmids and straight pieces being studied. Unless
the structure is such that it introduces significant new
interhelical forces this structure will only afFect the
strength of ihe coupling to the various modes.

The normal modes for the molecule are determined by
the behavior of the ends of the molecule, but this is the
only elFect of the ends we consider. We will not consider

end modes on the polymer or din'raction effects for the
electric 6elds. For the field calculations we will assume
translational invariance. %e will discuss the mode cou-
pling in more depth below.

To determine the equations of motion for the molecule
consider a slice as pictured in Fig. 2. The DNA slice of
thickness dz will have mass mrop dz, or A dz, where

p and A are, respectively, the volume and linear mass
densities of DNA. Elastic restoring forces wiB be
transmitted to the slice through the Sat faces, while the
coupling forces of DNA to the hydration layer will be
transmitted through the edge of the slice. In addition
the surface charge and the ions contained in the hydra-
tion layer will respond to the electric field.

Let us consider each of the forces explicitly. Letting
u be the displacement of the slice from equilibrium, we
can write A c2(82u /Bz )dz, for the restoring force,
where c is the speed of sound in the polymer. The
linear charge density A. is pushed by the electric Seld at
the surface of the molecule, E,o giving a force of

E,yk on the slice. It is assumed that the axial elec-
tric Seld will not vary appreciably over the scale of 1 nm
or so. The coupling to the hydration layer is written as
a damped interaction I so this force is given by
I'(ui, —u~)dz. This form is still entirely general as an
elastic term may be represented as the imaginary part of
I.

Adding the forces together gives the equation of
motion,

300
VA'th the compressional waveform of u =u~e' '
and noting that u~ = —iruu we can solve the equation
of motion for the velocity of the molecule,
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FIG. 1. Low-frequency, low-phase-angle portion of the
mode spectrum for relatively dry DNA plotted against the rel-
ative phase shift between neighboring base pair motions. The
lowest branch is mostly torsional in character near 8=0,
changing to bending near the 36' mimmum. The second
branch is mostly compressional in character in the interesting
frequency range. All branches develop complex mixed behav-
ior as frequency and phase angle increase.

FIG. 2. Polymer slice and nearby water. ro is the effective
radius of the dry polymer; r, —ra is the thickness of the hydra-
tion layer, presumably one water molecule thick, hence equal
to 0.31 nm. Continuum water surrounds all.
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For numerical values of the DNA constants, we take

the speci6c gravity of the DNA to be 1.5 and the radius
of the dry molecule ro to be 1.0&(10 m. Since the
mechanical coupling to the water is incorporated explic-
itly while the e6'ects of dielectric screening of the long-
range forces in the polymer are not, neither the hydrated
nor anhydrous DNA velocities are appropriate. Rather,
c is best represented by the speed of sound measured
by Hakim et al. for partially hydrated DNA films, or
1.8 X 10 m/s. The molecule's linear surface charge den-
sity A, corresponds to a charge of one extra electron per
phosphate o'r —9.424X 10 '0 C/m.

8. The primary hydration layer

To determine the equation of motion for the primary
hydration layer consider the washer-shaped slice as pic-
tured in Fig. 2. The hydration washer will have mass
n'(«, —«0)pbdz, or Abdz, where pb and Ab are, respec-
tively, the volume and linear densities of the hydration
layer. Elastic restoring forces will be transmitted to the
washer through the IIat faces, while the coupling forces
of DNA to hydration layer and hydration layer to bulk
water will be transmitted through the inside and outside
edges, respectively. In addition the ions contained in the
layer will respond to the electric field.

Paralleling the development for the molecule we can
write Abc (d ub/Bz )dz for the elastic restoring forces.
As for the electric force, we assume the ions in the hy-
dration layer are locked to the water and directly
transmit the force A,bE,yfz. A, b is the linear charge den-

sity of the ions bound in the first hydration layer, Also,
the molecule pushes on the hydration water with a com-
plimentary force, I (u —ub )dz.

The force exerted across any surface element of a con-
tinuum Quid is described by the stress tensor. In general
the viscous stress tensor V is defined such that the force
transmitted across an area dS=dSR' is V.dS. For Carte-
sian coordinates

Bu; Bu)
VJ =«i'V v5;, +ri

BxJ. Bx]

where q is the coefticient of shear viscosity and q is the
second or dilational coeScient of viscosity, which is re-
lated to g~, the bulk or volume viscosity, by

qz ——q'+ —23'. Being only concerned with the compres-
sional motion of the molecule we want the z component
of the force or z V.dS. For the surface we wish to in-
tegrate over dS= —«, (cos8x+ sin8y)d8dz, so the force
on a surface element is given by

Then converting to cylindrical coordinates, and assum-
ing no 8 dependence of the velocity field, we find the
force on our surface element to be

U

7/«i («i )d8dz
B«

Finally, integration over 8 introduces a factor of 2m.
Thus writing the radial derivative of the axial Quid ve-
locity at the surface as U,'o, we have

2m'«iriu odz

as the force from the continuum Quid.
We utilize the small-amplitude approximation to ex-

press the time rate of change of momentum as
~«z». (a'ub/ar')dz. Gathering all of the terms together
we write Newton's second law for the hydration layer,

BQb Rub
Ab ——Abc +AbE, u+2m«, re,

' +I (u —u„) .
9t Bz

As with the equation of motion for the molecule we
can solve this expression for the velocity of the DNA
after assuming the compressional waveform of
ub —ube and writing the velocities as —i~ times
the displacements,

Ab(co, co ) —A.b 2m«ii)+»b I- Ezo —
I- Uzo ~

where co& ——c k . We will take no slip hydrodynamic
boundary conditions at the bulk-bound water interface,
so Ub

——U,o. This is a second expression for the velocity
of the molecule in terms of the continuum fields.

For lack of anything better, we assume that the hydra-
tion layer has the same mechanical properties as pure
water. That makes the density, pb, 1.00X 10 kg/m and
the speed of sound, c„, 1.5X10 m/s. The radius of the
hydration layer r~ we take to be the radius of' the poly-
mer plus the mean distance between water molecules for
a total of 1.31X10 m. The ions between ro and r,
constitute the charge per unit length Xb. The calcula-
tion of the ion distribution is described below.

We distinguish no other hydration layers because of
their shorter relaxation times. Only the primary hydra-
tion layer has bonds persisting long enough to be con-
sidered on 10 ' sec time scales. The second hydration
layer relaxation times are indistinguishable from bulk
water, so we make no such distinction.

C. The hydration-layer binding

—«, ( V cos8+ V, sin8)d8dz .

Substitution for V yields

(4)
From the analysis of the force transferred across the

hydration layer to continuum water interface, we can see
that if the DNA were just more water the force per unit
length transmitted across the surface at ro would be



2''ro'/go .

How is this altered by the fact that DNA is not water?
To answer that let us consider the nature of water and
vi.scosity. Viscosity results from the transfer of trans-
verse momentum across a surface. This transfer can
happen in two ways. The first and probably more com-
mon conception is that fast molecules move from the
passing lane and pull the slower traf6c along, while slow
molecules intermittently jump into the passing lane caus-
ing a pileup in the fast lane. This mechanism can only
work on time scales large compared to the time a water
molecule has for moving around.

A second, and in this case more appropriate, mecha-
nism can transfer momentum even on shorter times.
The second mechanism requires a closer look at what
water is and is not. It is not just a dense ideal gas. The
water molecule on short time scales can be pictured as
osctlla'tll1g about RII cquthbrium posIt10II just Rs Rll RtolII
in an elastic solid does. The only difference is that inter-
mittently bonds become broken, the molecules in a given
area rearrange, and a new equilibrium is established.
This viewpoint is referred to as the V-Structure in the
literature (see, for example, Eisenberg and Kauzman' ).
Without the movement of the water atoms the transport
of transverse momentum is accomphshed by this binding
structure. Bonds stretch, break, and reform exerting
forces on their neighbors in the process.

There is a characteristic time I I associated with this
process. For times shorter than this characteristic time
the water behaves more as an elastic solid. For longer
times the liquid behaves as a viscous fiuid. This model-
ing of the transition by a single relaxation time is called
tllc Maxwell modc1 Tllc vtscosIty Is cxprcss1blc Rs

I)/(1 icIrI). —For bulk water the characteristic time is
of the order of 10 ' sec, two orders of magnitude small-
er than the microwave titne scales of interest. Thus bulk
water is almost purely viscous. At the molecule, howev-
er, the relaxation times for the first two hydration layers
have been measured by Tao, Lindsay, and Rupprecht'2
and found to be significantly diFerent from bulk water.

In addition to this viscoelastic change the geometrical
orientation of the bonds across the surface will not be
identical to those of a surface in bulk water. The bond
orientations enter because bonds normal to the interface
are stretched less by shearing motion than those more
oblique. The viscous force must include an averaging
over bond orientations. It is reasonable to believe that
bonds across the water-DNA interface will exhibit a
di8'erent average. The water to polymer bonds are also
less numerous than in bulk, so we introduce a further
factor G to model these efFects,

2mroGg
(Ub —u ) .

(r I
—r 0)(1 i—corI )

(12)

Comparison with the term in Eq. (1) shows that the fac-
tor in large parentheses is I .

At this point let us examine our expectations for G.
First consider the number of bonds that might cross the
water-DNA surface as opposed to a water-water surface.
In one turn of the double helix there are 20 phosphate
groups providing at most 80 oxygen atoms for hydrogen
bonding. Kopka, Fratin, Drew, and Dickerson' have
shown that the esterized oxygens do not participate
strongly in hydrogen bonds, which leaves only 40 oxygen
atoms. A similar cylindrical shell of water atoms would
hold 300 oxygen atoms. As a result, we would expect a
factor of 0.13 to be part of G.

As for the orientational efFects, in Fig. 3 we show the
CN'ect of a translational movement of the layers on a
given bond. For small displacements the effective
translational force constant f, is given by f, sin 8
+fs cos 8, where f, and fs are the stretch and bending
force constants, respectively. If these are two water lay-
ers we expect all orientations to be equally possible. In
this case the average force transmitted by a bond be-
tween water-water layers is —,'f, + ',fs. For—a water-
DNA interface, on the other hand, the bonds may be
constrained more nearly perpendicular to the polymer
axis. Then the motion is entirely bending and the aver-
age force constant is just the bending force constant.
With the stretch force constant being roughly ten times
the bending force constant for hydrogen bonds this
would introduce another factor of 0.25 into G.

Thus with only two very simple considerations a value
of 0.03 for G is reasonable. With further considerations,
for example, the dependence of hydrogen bond strength

This is the general form we use for the coupling.
As we are dealing with discrete layers, the molecule

and the first hydration layer, the radial derivative be-
comes 5U, /5r or (Ub —U )/(r, ro), so we can write the-
force as

FIG. 3. Hydrogen bond stretching as a result of a relative
translation of the participating oxygen atoms. The translation
M results in a combination of stretch hs, and angle bend I.LN

dependent on the bond orientation g.
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upon separation' or the disruption of hydrogen bonds
by the large counterion concentration, this factor could
be still smaller. As we shall see, a value of 0.02 produces
a good 6t to the Edwards, Davis, Safkr, and Swicord
(EDSS) data.

D. The ions

Commonly DNA samples consist of DNA molecules
in NaC1 solutions. We model our ions accordingly as
two species with opposite monovalent charges. For sim-
plicity we choose identical masses as well as identical
water coupling constants for the two species. The use of
identical masses for the ions introduces only a very small
approximation, since in the region where the ion eN'ects

are important, i.e., close to the molecule, only the posi-
tive ions are actually present in significant quantities. So
the mass m is taken as that of a Na+ ion. The use of
identical damping constants results in zero solvent veloc-
ity in the far bulk liquid.

The behavior of the ions, as well as the electric fields,
can be divided into two parts according to the frequency
response. The zero frequency or "static" describes the
equilibrium distribution of the ions and electric fields
when no microwave iHumination is present. The mi-
crowave frequency or "dynamic" part describes the
response to gHz radiation. The dynamic response is a
small perturbation on the static system.

In the static case we determine a radially varying
number density of each of the species. We can consider
this as a continuous number density in the face of the
atomic dimensions of the problem because of the dispari-
ty between the time scale of the thermal oscillations and
that of the microwave excitations. The average time be-
tween thermal collisions is of the order of 10 '3 sec,
while for microwaves the period is of the order 10 sec.
On this time scale the discrete nature becomes a blur
and the time-averaged number density is the physically
important behavior.

In equilibrium, the ions distribute themselves to bal-
ance the electrostatic force with the "pressure" of the
concentration gradient. This balance is approximately
described by the Poisson-Boltzmann equation, which has
been shown by Fixman' to be a good approximation for
small bulk salt concentrations. The basic equation arises
from combining Poisson's equation for the electrostatic
potential P,

with the assumption that the number densities have a
Boltzmann dependence on electric potential,

+ etIIilka T
n n e

where ed, is the dc permittivity of the solvent, n~ are
the positive and negative ion number densities, n „ is the
bulk ion number density, k~ is the Boltzmann constant,
and T is the temperature. These expressions are then
numerically integrated to obtain n+ and n for use in
the dynamic calculation.

The dynamic case describes the coupling of this equi-
librium distribution to the electromagnetic Selds and the

solvent motion. The force on the ions from the elec-
tromagnetic fields would in general have two terms, E
and v X8, but the v&8 term is of second order in the
disturbance. So, in keeping with the harmonic approxi-
mation assumed for the molecule, we neglect this term
and consider the ions to be only driven by the electric
field. As for the coupling of the solvent and the ions,
the force between them is assumed proportional to the
relative velocity with a proportionality constant ~ chosen
to produce the proper dc resistance. Typical values for v

are of the order 10 ' sec, indicating that the ions are
very strongly locked to the motion of the liquid as far as
our micrawave time scales are concerned. %'ith the
forces well in hand and neglecting the nonlinear term
rnvz(Bn+/Br), we can now write out Newton's second
law for the ion densities

Bvg 7g g Etl

n+m =kn+eE+ (v —vz),
Bt

where v+ are the velocities of the positive and negative
ions and v is the velocity of the Auid.

FinaBy, an e ' ' time dependence allows us to express
the ion velocities in terms of the electric fields and the
solvent velocity,

k(er/m )E+vVy=
1 —/NT

This expression will enable us to replace the ion veloci-
ties in the calculation.

As stated previously the ions are modeled as primarily
Na+ ions. The monovalent ionic charge e is
+1.602&10 ' C while'3. 8)&10 kg is used for the
mass m. The dc permittivity of water is 7.08&10
C/Jm. FinaHy, the damping constant is chosen to
match the dc conductivity. We obtain this relation by
solving for the steady state of the equation of motion for
the ions. For a homogeneous salt solution our choice of
identical masses and coupling constants for the ions
species results in zero net force on the solvent, resulting
in no net solvent velocity. In this case Newton's second
law for the ions reduces to two terms: the electric driv-
ing term and the damping term. Solving for the current
density we 6pd the conductivity as the coeScient of the
electric field cr =2e n „~/m. We use a value of
1.0X10 mho/m for a 5-mM salt solution. So, the
value of ~ is 2.48/ 10 ' sec. This indicates the ions are
strongly glued to the solvent on microwave time scales.
The value of the conductivity for a 5-mM NaCl solution
should be 5.0&10 mho/m, which would lock the ions
even more tightly to the solvent. The value of ~ we use
does not impact signifiicantly on the dynamics for we
shall see that they depend solely upon (1 ico7). This is-
effeetively unity at gHz frequencies. The only noticeable
change using the correct value for ~ is a factor of 2
reduction in the smaB constant ion absorption.

K. The solvent

The solvent surrounding the DNA molecule and hy-
dration layer is modeled as a viscous inertial continuum,
as done by Dorfman and VanZandt. The inclusion of
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the ions, however, introduces a driving force internal to
the fluid in addition to the solvent-molecule boundary
force of the Dorman-VsnZandt model. As with the ions
the disparity between thermal colbsion times and the
time scale of interest allows the continuum representa-
tion to be used on s system of molecular dimensions.
Nonlinear behavior is neglected because of the small am-
plitude of the oscillstions in consideration. The max-
imum velocities found in our calculations are —10
m/sec, which corresponds to a Mach number of —10
This approximation is also consistent with the harmonic
approximation used for the molecule itself.

The equation of motion for a viscous inertial continu-
um is the Navier-Stokes equation, Newton's second law

applied to a classical continuum,

F. The electric Selds

V'x E= BB
Bt

(21)

The driving agent for this system is the rf electric
field. The microwave electric fields produce currents
and charge densities that in turn modify the fields them-
selves. This behavior is described by Maxwell's equa-
tions with no approximations. The counterion density
Auctuations and velocities comprise the field sources in
the solvent. Similarly, the compressionsl fluctuations in
the polymer and hydration layer sct as sources which
determine the fields at the hydrated molecule-continuum
interface.

I.et us consider Maxwell's equations in the Quid

D(p„v)
rioV(V v) —riVX V Xv+F VP =-

at (17) Po

1 8
V X8=e(n+ v+ nv—)+e

t

As used previously, v is the velocity field of the Quid.
The new fields F snd I' are, respectively, the force densi-
ty exerted on the water by the ions and the pressure.
The other constants characterize the water with p„being
the mass density of the water and ri being the viscosities.
FoBowing the naming convention found in the American
Institute of Physics Handbook, ri is the shear viscosity
coeScient and qz is the bulk or volume viscosity
coeScient. q0 is a local contraction for g times the
viscosity number or rid +—", rt.

As we stated above we ignore the second-order terms
arising in the total time derivative because of the small
amplitudes involved. Specifically the terms p (v V)v
and v(Bp„/Bt) are dropped. The pressure term is ex-
pressed in terms of the velocity of the water through the
equation of state,

where c is the speed of sound in the mater. The force
term P results from the coupling between the ions and
the water. Therefore, it must be equal and opposite to
the force of the liquid on the ions,

NlF=[n+(v+ v}+n (v ——v)]—.
T

So, assuming s time dependence of e ™,we can elimi-
nate F and I' from the Navier-Stokes equation to obtain

e„V.E=e(bn+ bn ),—
V 8=0.

(23)

(24)

Assuming a time behavior of e ' ' we csn eliminate 8
by combining the Ampere and Faraday laws,

V x V x E=ico}uo[e(n+ v+ nv—) iree—E] . (25)

Gauss's law on the electric fields just defines the charge
conservation formula that is expected for the charge-
density Auctuations, V n + ———Bb,n + /Bt. To put it
another way, substitution of this form into Gauss's law
yields the divergence of the Ampere-Faraday law,

0=V.[e(n+ v+ nv+ ) i t—oe„E]—. (26)

So if we satisfy the Ampere- arsdsy law then Gauss's
law will automatically follow. Gauss's law for the mag-
netic fields is also automatic. This results from the e
time dependence and the lack of a monopole term in
Faraday's law, for in this case 8 is proportional to the
curl of E. The divergence of a curl always being zero,
Gauss's lsw for the magnetic fields is guaranteed.

Just as the equations of motion became boundary con-
ditions for the fields in the continuum solvent, Maxwell's
equations applied to the polymer and its shell will relate
the motion of the DNA to the surrounding fields.
Ampere's law for the hydrated molecule is more con-
venient in its integrated form, but Gauss s laws still fol-
low from the Ampere's and Faraday's laws. Ampere's
lsw over a cross section of the molecule states

rt V(V v) —rtVXVXv+[n (v v)+n (v —v}]——
i cop„v, (20—}

where rt, =rto (c„p /it@)—
The numerical values for the solvent are taken to be

typical values for distilled water. The speed of sound c„
is taken to be 1.5& 10 m/s. The viscosities are obtained
from Eisenberg and Ksuzman' who give them as 0.01
Poise for the shear viscosity g and 3q for the volume
viscosity gs. The density p„ is 1.0X 10 kg/m .

2m 2m' 1f +e&)dt)=~~U~ +AbUb —I CO f f. eE~P dr dg .
P0 0 0 0

(27)

The integrations are straightforward. Cylindrical syrn-
metry s11ows us to integrate over 8. Then, as we as-
sumed when writing out the equations of motion for the
hydrated molecule, we take the axial electric fie1d to be
constant over the cross section of the molecule. This al-
lows us to also do the radial integration, noting the
change in dielectric constant at r0. Finally we solve for
Um~
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—Ab Us +/co'll'[e~ ro +e~(r i
—ro )]E~o

(28)

latter situation, we expand the electric field in a Fourier
series

4EO ~ ( —1)"cos(k„z )

I „0 k„

Thus we have s third expression tying the DNA motion
to the continuum fields.

For the permittivity of the polymer e we use a con-
stant 4.427X10 " C /Jm independent of frequency.
On the other hand, because of the large dielectric ab-
sorption of microwaves by water snd the availability of
data, E, the water permittivity, is given by

4AEO( —1)"—m co u„=—mc k„u„+ +

]ldll'u„

n

The culmination of this process is

(35)

The displacement u is similarly expanded with unknown
coeScients. The linear independence of the cosk„z func-
tions requires the equation of motion to hold term by
term,

&dc —&~
+E

1 —/67TD
4u, k, ~ ( —1)"cos(k„z )

(36)

G. The modes

The most uncertain step of our calculation is the prop-
er connection of the millimeter wavelength driving field
to the micrometer wavelength disturbances on the mole-
cule. The microwave illumination is efkctively uniform
over the region of the molecule, while the acoustic waves
on the molecule and the response waves have wave-
lengths on the order of the molecule size.

To address the special complexities of this diliculty
first let us exannne a case where the connection is sim-
ple. Let us consider a charged elastic rod driven directly
by a uniform electric field Eoe '"'. The equation of
motion is

Bu 28u l'APtm =mc +XEoe ' '—y
dt Bz dt

The general steady-state solution is of the form

u = [u, +a'cos(k, z )+b sin(k, z)]e

where k~=(co icy/m )/—c and u, =RE/(mao +iuy ).
The coeScients a and b are determined by the boundary
conditions at the end of the rod.

In the case of fixed ends at z = —I, /2 and z =I./2 the
solution is

cos(k, z )
Q =Q~ —1

cos(k, L /2)

Decomposing this into a Fourier series in the normal
modes of the rod, we obtain the series

4u, k,2 ( —1)"cos(k„z )
(33)

where k„=(2n+1)ir/L.
Compare this result with one obtained by assuming an

infinite rod driven by a stepped electric field. In this

From Eisenberg and Kauzmsn' we obtain the values of
the dc and optic dielectric constants and the dielectric
relaxation time. These translate to 7.08X10 ' C /Jm
for ed„8.85X10 " C /Jm for e„, and 1.0X10 " sec
for va.

which is an extremely comparable result.
In the case of free ends the molecule moves as a rigid

whole and both a and b are zero. The motion is now
identical to an infinite rod in a constant field. For the
more realistic case though, where the rod's ends are
somewhere between free and fixed, it can be shown that
the solution is comparable to a constant field plus a
stepped field. The amplitude of the driving field for each
mode on the infinite rod is a measure of the coupling of
the driving field to that mode. In addition to the end
conditions the real geometry of the molecule aFects the
coupling. Bending will reduce the coupling to the lower
harmonics, and allow coupling to the even and higher
harmonics. So we have found one of the nontrivial
diSculties in our system.

The problem we are faced with has an additional com-
plication: The electric field is not simply uniform. The
transit through the finite length ion cloud and the acous-
tic wavelength charge perturbations produce short-
wavelength adjustments to the electric 6eld. The expan-
sion of the electric fields in terms of the normal modes of
the molecule looks like a promising alternative. The
second problem, ho~ever, is that by introducing the e' '
dependence we change the radial dependence of the
asymptotic electric 6elds as well.

If we had an infinite length molecule in an infinite
length 6eld we would just have a scattering problem
where we would decompose the electromagnetic plane
wave as

(37)

where q is 2m/k;„, „„,. The only field that is nonzero
at the small radius of the molecule is the I =0 wave.
The Bessel functions of the first kind, JI, behave asymp-
totically as (1/&r ) sin(qx). This is the form of a cylin-
drical standing wave or a sum of incoming and outgoing
waves. These outgoing and incoming waves are the
Hankel functions a,'" and a,"'.

As we will show when we derive the asymptotic solu-
tions for the fields, however, the radial dependence of
the electric fields with e'"' axial behavior is not Jo(qr)
but Jo(q'r), where q' is actually much closer to k than to
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q. The plane-wave expansion does not work with these
J&(q'r) basis functions. We should expect this because
an exact decomposition would require accounting for
di8'raction elects at the ends of the molecule. It is still
meaningful to say that the relative amp1itudes are mea-
sures of the coupling to that mode.

So we can assign relative amplitudes to each of the
modes as seems appropriate for the geometry. We still
need a relation from these relative amplitudes to the am-
plitude being produced by the microwave source. To
provide a relationship we calculate the power absorbed
in a solution without DNA using the same modes
and driving amplitudes. This should sum to

,'E, [0—+R( iree—„)]mr~,„, where E, is the source field

amplitude. Thus we obtain our field calibration.

III. STATIC CALCULATION AND RESULTS

at a temperature of 298 K. The inset on Fig. 4 shows a
close up of this distribution near the hydration-
layer —bulk-water interface. Individual points show the
graininess of the mesh.

The ion distributions depend only upon the tempera-
ture and the bulk salt concentration. With increasing
temperature the ion distribution shifts outward, decreas-
ing the salt concentration close to the molecule. The be-
havior with respect to bulk salt concentration is best un-
derstood in terms of the Manning condensation model as
examined by LeBret and Zimm. ' There is a radius at
which the fractional amount of charge neutralization of
the DNA by the counterion cloud is independent of bulk
salt concentration. Outside this radius the neutralizing
charge moves outward with decreasing bulk salt, while
inside it a decrease in bulk salt causes the neutralizing
charge to constrict about the molecule.

The calculation of the equilibrium distribution of the
ions not only provides the distributions needed by the
calculation of the dynamic problem, but also sets the
mesh in the radial direction. Starting from the molecule
the calculation steps outward using an Euler predictor
corrector algorithm. ' The size of the radial steps is
chosen by the algorithm to change the value of n+ by
about 0.5'~/o of its original value per step as the integra-
tion proceeds from the molecule. With this procedure
the step size increases with radius. For the dynamic cal-
culation there must be a cap put on this progression.
The program achieves this by fixing the step size once it
has grown large enough to fill out the rest of the array
and just reach the desired maximum radius. The max-
imum radius is chosen to produce a system that is 0.1%
DNA by volume.

In Fig. 4 we present a typical positive-ion distribution.
This distribution is for a 5X10 molar NaC1 solution

IV. DYNAMIC CALCULATION

Our model for the DNA-ionic solvent system
mathematically involves a set of linear differential equa-
tions that describe the interrelations of the solvent veloc-
ity field, the ion velocity fields, and the electric fields.
This system of equations is supplemented by the bound-
ary conditions, which at infinity represent the illuminat-
ing microwave field and at the molecule surface
represent the motion of the hydrated polymer as it cou-
ples to these ficlds.

We integrate the fields inward from their asymptotic
forms and match the boundary conditions at the surface.
This requires adjusting the amplitudes of the asymptotic
forms until ail of the boundary conditions are met.
Then once the dynamics of the system are known, we
can easily calculate the power that is being drawn from
the electric fields by all of the system as —,'% I(E'J)dr.
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A. Combining equations

V)&V&K—~ pot„1+
iv.e X+ E= icopoeN v . (39)

NNl 6

In this section we reduce the vector equations to sca-
lar equations. Substituting v+ from Eq. (16) into the
Ampere-Faraday law and the Navier-Stokes equation,
wc obtain two coupled vector differential equations in
the solvent velocity and the electric fields,

rl, V(V v) rlV XV.)&v—+ice(p„+mN+ )v= eN E, —

(38)

0.5

1

4 5
RodlUS ( A fll )

In these expressions we have defined N~ = (n+
+n ) /(1 —icow).

From cylindrical symmetry we know the longitudinal
waveforms for the electric and velocity fields to be

E=[E,(rg+E, (r)z]e' '

FIG. 4. Positive-ion number density vs radial distance from
the DNA axis for a 5-mm bulk salt solution at 298 K. Inset
shows closeup of the mesh just outside of the primary hydra-
tion layer.

and

v=[u„(rP+u, (r)z]e'"' .

Substitution into the Navier-Stokes equation yields
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d uz
r +(icoM r—i,k )u,

r dr dr

1 d(ru, )
=ik ( ri —rii )— eN—E, (42)'r dr

differential equations reduce to Bessel's equation with
complex argumeIlts,

for the z component, while the r component is

1 d(ru„)
+(icoM —gk )u,'dr r dr

dU~
=ik (ri ri, )— eN —E„, (43)

Ug + Ug +
ice& —k g,

U, =rk 1— 1
U + U

(46)

(47)

(48)
where M=—p +mN+. Similarly we can write the corn-
ponent equations of the Ampere-Faraday equation. The
z component becomes

E, 1 d(rE, )
r +E E, =ik — —ingot U, ,r dr cd dr

For brevity we have de6ned

2mn „M„=p

and the r component

dE,
(E —k )E, =ik icopueN—u, ,r

(44)
as well as ~, —=j: —k .

The equation for the electric fields becomes a single
equation in the axial electric field, which has two in-
dependent solutions. So the asymptotic expression for
the electric field is the sum of the incoming driving fieM
and the outgoing response Seld or

where E,(asym) =a iH&" (K,r )+EuHu" ( v, r ), —(49)
1'

E8 f'N+
poe 1+

PT APE~

Equation (45) can now be utilized to eliminate E„ from
the system of equations without increasing the order of
the equations. Thus we obtain a system of three coupled
scalar second-order difFerential equations for the solvent
velocity and the axial electric Seld.

where the 00 represents Hankel functions of the first
kind. [Note that HIi" ( —z}=HIi '(z).]

The component equations from the Navier-Stokes
equation become two Bessel's equations coupled by an
inhomogeneous term in the other component. The form
of the solution can be anticipated when one notes the re-
currence relations

Ho(x}=—Hi(x),
B. The asymptotic solutions H', (x)+ H, =Ho(x) —.1

(51)
The boundary conditions at large distances from the

molecule are quite simple conceptually. The Quid veloci-
ty must vanish at large distances. In the uniform salt
solution the force from the positive-ion motion cancels
the force from the negative-ion motion leaving no net
driving force on the water. At large distances the elec-
tric field does not vanish but must represent the mi-
crowave Blumination.

The asymptotic solutions represent incoming and out-
going waves. So we satisfy the 6rst condition by requir-
ing that asymptotically the Quid velocity be an outgoing
wave. The electric field, on the other hand, has both an
incoming and outgoing wave just as we discussed previ-
ously. The incoming wave has a fixed amplitude
representing the microwave illumination coupling to this
mode. The outgoing wave is the illumination modified
by scattering.

To integrate these equations in from large distances
we must know ihe asymptotic forms of the solutions. To
this end we note that the electric fields and the velocity
fields couple through differences in the ion concentra-
tions. This difFerence vanishes at large distances faster
than exponentially. As a result at large distances the

The homogeneous equations have for U, a Bessel func-
tion of order 1 and for U, a Bessel function of order 0.
The inhomogeneous terms couple to this reducing the
first order to zeroth and the zeroth order to erst. Substi-
tution of the forms b, HO(a, r } and b„H, (a, r ) for u, and.
U„respectively, yields the expressions

i cd —gk —a.„= ik ——1 a.
„,b, , (52)

i coM „—g)k
b,

7l

—KU =1k 1—91
'9

(53)

imM „ —k (55)

For each of these x's a speci6c ratio of the amplitudes is

There are two values of ~, that satisfy these equations.
They correspond to compression and shear waves

iruM „"—k
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required. For the x„I solution

&r& «vtb„k (56)

The time-averaged rate of work density done by the har-
monic electric Selds is A(E'.J)/2, where J(r) is the net
current density at r. Thus the power absorbed in the
DNA molecule per unit length is

while for the x,z solution PDiiA ——R[(A. U in)e —E,o)E 0]/2 .

Similarly that absorbed in the hydration layer is

(61)

Since a11 of the velocity 5elds must vanish at inanity me

keep only the outwardly decaying modes. The general
asymptotic solution is then

Pi,„d
——%[(A&u~ icos—„E,O)E, (ro)]/2 . (62)

In the continuum we must integrate radially. The ion
currents absorb

U, (asym) =b„H(')"(x„r)+b, iH(')" (~„~r), (58)
r

P;,„=I A[e(n+ v+ —n v ) E']mr dr
1OA

(63)

bzilKU1
( i) ~z2

U, (asym) = H, (s„,r )+ H, (a„2r ),
I, K~2

(59) per unit length while the dielectric absorption of the sol-
vent is

E,(asym) =a, HO' '(a, r )+ECHO '( a, r—) . (60)

%ith these forms elucidated a choice for the three un-
known amphtudes determines the fields and derivatives
at a given radius. This is all of the information neces-
sary to prime the Euler predictor corrector algorithm for
the second-order equations. So, given the three complex
amplitudes, the fields can be integrated to the molecule.
The boundary conditions at the molecule determine the
correct amplitudes.

%'ith the dynamics of the system determined me can
calculate the power absorbed from the electric Selds.

C. The boundary conditions

At the surface of the hydrated molecule we need three
boundary conditions to determine the continuum fields.
Requiring that the solvent not penetrate the molecule is
the most straightforward of these. This is accomplished
by requiring the radial component of the solvent velocity
to vanish at the outer surface of the hydrated polymer.
The small molecule radius relative to the acoustic wave-
lengths indicates that the radial velocity would not be
significant at r„even if the molecule were not present.
The choice of perfect radial rigidity simpli6es the equa-
tions for the hydrated molecule without seriously depart-
ing from its actual space-611ing behavior.

The other two conditions, on the other hand, are con-
sistency conditions. They arise from matching the three
distinct mechanisms tying the motion of the molecule to
the velocity and electric fields in the solvent. We express
this by requiring the equation of motion for the mole-
cule, Eq. (2), the equation of motion for the hydration
layer, Eq. (9), and Ampere's law around the hydration
layer, Eq. (28), to all consistently predict the velocity of
the molecule. So we have three nonlinear functions of
the three asymptotic amplitudes: U„at r, and two in-

dependent di8'erences between the three DNA velocity
predictions. The simultaneous root of these functions is
the physical solution for the 6elds. A Newton-Raphson
technique' utilizing a numerical partial derivative is
used to Snd the simultaneous root of this system.

r~»
I'

~

—— —inc BE*m.r r. (64)

Addition of these individual parts yields the power ab-
sorption for the given frequency and mode that has been
calculated. Finally, summation over the modes yields
the power absorption at a given frequency and repetition
at frequency intervals yields a power spectrum. %'e then
subtract a background of the form a%(icos )+b, where
a is chosen to match P~~ o8 resonance and b to match

P;,„oiTresonance.
The diSculty nom, as me mentioned in the section on

modes, is relating the mode amplitudes to the magnitude
of the source Seld. To provide such a connection we cal-
culate the power absorbed in the same geometry but in
the absence of DNA. With no DNA present the ion
concentrations are homogeneous and the asymptotic
solutions are exact everywhere. In this situation the
condition that the 5elds be Snite at r =0 requires

E, = g EO„JO(ir,„r), (65)

E„= g Eo„a„J,(~,„r), (66)

where
—

& n~en

2' e p

The power per unit length mould then be found analyti-
cally. We equate this with assuming there is just a uni-
form 5eld E, defined such that

P„»,———,'E, [o +J7( i toe„)]err ~,„. — (68)

Through this me estimate that for all of the absorptions
me quote in this paper the source electric field E, is
6.5X10 V/m. Because of the linearity of the equations
all of the results scale with this number. The 6elds scale
linearly and the powers quadratically.

Although me quote powers as power absorbed per unit
length of polymer this can be converted to absorbed
power densities as needed. The maximum radius r,„ is

chosen to make the DNA volume O. I% of the total
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volume, r,„=1000ro. This allows for a conversion to
average power densities in this 0.1% volume DNA solu-
tion by dividing the power per unit length values by
n.r,„or 3.14&(10 ' I .

3.2
I.6—

0.0

G =0.2

V. DYNAMIC RESULTS

To study the parametrization of the hydration layer
we concentrate on modeling a solution 0.1% volume
DNA and 5-mm NaC1 at 298 K. Since our model ap-
plies most accurately to straight molecules we include
odd modes from 1 to 17 on a 2700-bp molecule 918 nm
long. 1.0X10 V/m is used for the incoming axial elec-
tric field amplitude Eo for each mode and the boundary
conditions are required to be met to less than 0.01%.

Using the Tao and I.indsay' room temperature value
of 3.9&10 " sec for ~&, we calculate the power spectra
for various values of G. In Fig. 5 we present the total
power minus background absorbed per meter of DNA
for a range of values of G. The damping causes a
broadening and a shifting of the resonances. We see that
with decreasing damping the resonances arise 6rst at the
high-frequency end of our range and shift progressively
toward their undamped locations. At the same time
they decrease in width.

Tao and I.indsay present some indications that the re-
laxation time may be larger. So we generate similar
graphs that can be generated for various values of ~& at
room temperature. Figures 6 and 7 show the shift of the
resonances for r, of 1.83&(10 ' sec and 1.00&(10
sec.

As one would expect there are two ways to decrease
the coupling given two parameters: decreasing 6 and in-
creasing ~&. The two methods are not identical. A de-
crease in G decreases both the damping and the
stiffening of the molecule while an increase in r, shifts
the damping to stifFening. So it is both the width and
positions of the resonances which determine 6 and ~, ,

O
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FIG. 6. Background subtracted power absorption spectra
for various 6 values at ~& ——0. 183 ns.

while the resonance heights determine the amplitudes for
each mode. Choices of 6 and r, that keep 6 le, roughly
constant produce similar positions, but the line widths
get smaller with increasing 6 and ~&. It is important to
note at this point that although there is a large range of
spectra that can be fit with this many parameters the
field is not limitless. The positions and widths of all the
resonances are set by the choice of G and r, and this pa-
rametrization always implies that the lowest resonances
will be pulled upward in frequency more than the higher
ones. This compression of the lowest modes is a major
feature of the model.

I.et us examine in more detail a particular combina-
tion of G and ~& that compares well with the results
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for various 6 values at w&
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FIG. 7. Background subtracted power absorption spectra

for various 6 values at ~&
——1.000 ns.
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quoted by Edwards, Davis, Swicord, and Safer. Of the
runs we have shown, 6 =0.02 and r, =0. 183 ns com-

pares "best" to the resonance positions, so we choose it
to disect. (Note that due to the interrelated nature of 6
and v& described above, other combinations, e.g.,
6=0.004 and r, =0.04 ns, would also compare well. )

In Figs. 8 and 9 we show the total absorption and how
that absorption is distributed between the pieces of the
model. A few interesting features can be seen in these
figures. First note that the peak absorptions in the
DNA molecule begin to fall away for higher modes even

though these modes are driven with the same amplitude.
In contrast, the resonant absorption by the continuum
water seems to increase with the higher modes. Ap-
parently the DNA works harder as a source for the
higher modes, feeding more energy back into the reradi-
ated 6elds.

The hydration layer absorption also shows interesting
features. The dip in the power absorption below the first
resonance results from the coupling to the molecule still
being strong at this frequency. This allows the resonant
motion of the DNA molecule to draw the hydration lay-
er along with it causing the ions in the hydration layer
to radiate more energy to the electric 6elds than it ab-
sorbs. Another interesting point can be seen by compar-
ing the DNA and hydration layer absorptions. There is
a shift between the lowest resonances in the hydration
layer and the molecule itself. This corresponds to the
diferent speed of sound in the hydration layer. This
does not contribute to a significant broadening, however,
because of the much smaller magnitude of the hydration
layer absorption.

Some representative views of the tields themselves for
the "best" parametrization are shown in Figs. 10-12 for
n =1 at 1 GHz, n =17 at 1 6Hz, and n =1 on reso-
nance, respectively, where n is the number of half-
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FIG. 9. Power absorption as it is distributed throughout the
system. From top to bottom the spectra are for the continuum
water, the DNA, the ions, and the hydration layer. Note the
progression of scales.

wavelengths on the 918-nm DNA molecule. The ri =1
plots show the axial electric field dominated by the
efFectively constant driving field. The odd seeming in-
crease in the n =17 axial electric 6eld and all of the ra-
dial electric fields with radius is just the result of the loss
to the solvent as the driving 6eld propagates inward and
the response field propagates outward. In a lossless
medium the incoming and outgoing Selds would cancel,
and the radial electric field would vanish at large dis-
tances. It is notable also that the velocity and electric
6eld disturbances remain significant for large distances
away from the molecule.

The relative motion of the hydration layer and the
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FIG. 8. Total power absorption per meter of DNA in a
0.1% volume DNA 5-mm NaCI solution.

FIG. 10. Continuum fields vs radial distance from the DNA
axis for the n =1 mode at 1 GHz. The solid and dashed lines
are, respectively, the real and imaginary parts of each field.
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FIG. 13. Comparison of hydration layer {upper) and DNA
(lower) velocities for the n = 1 mode as a function of frequency.
The solid and dashed lines are, respectively, the real and imagi-
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molecule for the n =1 mode are diagramed in Fig. 13.
The large diff'erence between the motion of the hydration
layer snd the molecule is not surprising. As we observed
in our previous paper, the no-slip condition requires the
balancing of the damping force and the driving force,
both of which must be large compared to the inertia and
stiffness of the molecule. A small mismatch of these two
forces csn lead to very strongly decoupled motion. The
small amplitudes of these motions, though, keeps this
decoupling from disrupting the concept of a hydration
layer, or our small amplitude approximations.

Taking this parametrization we are investigating the
variations in the absorption with respect to salt concen-

tration snd temperature, These results will appear else-
where.

VI. CGNCI. USIONS

This work is certainly not the final word on the sub-

ject of microwave absorption by DNA, since it only pro-
vides a framework for understanding where the anoma-
lous behavior must be if the EDSS results are correct.
Obviously, given free reign with the parameter 6, it is
easy to produce a power spectrum with resonances for
any value of ~&. One need only decrease 6 to eliminate
enough damping to allow the molecule to move and
leave enough to provide a loss mechanism. To get the
proper positions and widths, however, requires a unique
combination of G and ~& and the characteristic spacing
of this psrametrization.

Our results indicate that the EDSS results require a
very strong orientational effect weakening the hydration
layer's ability to transmit shearing forces to the mole-
cule. A couple of simple considerations of such a situa-
tion takes us within a factor of 5 of the parameters need-
ed to produce the EDSS results. This factor could show
itself as s larger than measured relaxation time and/or a
further reduction in G. As we mentioned, additional
considerations, such as the length dependence of hydro-
gen bond strength and bond disruptions by the large
counterion densities near the polymer, could easily close
this gap. %hatever the case, it is this hydration layer
that is of importance in this phenomenon. All other ma-
terial properties play a role only inasmuch as they affect
the hydration layer binding. Further study of the hydra-
tion layer on a molecular basis will be necessary to
answer these questions and put our pararnetrization on a
firmer theoretical footing.
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