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As a possible mechanism for energy storage and transport in proteins, Davydov has proposed
soliton formation and propagation. In this paper me investigate the stability of Davydov solitons
at biological temperatures. From Davydov s original theory evolution equations are derived quan-

tum mechanically without approximations, and their numerical solutions at diFerent temperatures
are presented. Our conclusion is that the Davydov soliton is stable at 310 K.

I. INTRODUCTION

Although in the science of bioenergetics considerable
progress has been made in the past 20 years, the storage
and transport of biological energy in protein structures
is not yet well understood. An answer to this problem
was suggested in 1973 by Davydov, who proposed that
quantum units of peptide vibrational energy (in particu-
lar the amide-E or CO stretching vibration) might be-
come "self-localized" through interactions with lattice
phonons. ' Following his original suggestion, many re-
lated studies have been published by Davydov'and his
colleagues and by others on this "Davydov soliton. "
Davydov's proposal should be considered in the context
of two more general suggestions as to how to store and
transport energy, which appeared at about the same
time. The first of these was the "conformon" proposed
by Green and Ji, on the basis of biochemical data, to ex-
plain energy transformation in the absence of a mem-
brane. The second was the "excimer" proposed by
McClare on the basis of thermodynamic considerations.
The Davydov soliton is a specific biophysical mechanism
that embodies essential features of both the conformon
of Green and Ji and the excimer of McClare.

Thermal stability of a Davydov soliton is an important
consideration in deciding whether it could play a func-
tional role in a living organism. Davydov has investigat-
ed the effect of temperature on soliton properties from a
theoretical perspective. His analytical results led him
to conclude that the soliton size increases with increas-
ing temperature, and its properties come even closer to
those of a nonlocalized ("exciton") state. A similar con-
clusion emerges from the theoretical analysis of Alex-
ander and Krumhansl. *' Putting numbers into the for-
mulas derived by Davydov, one finds that his soliton
should continue to function at physiological tempera-
tures. Recent numerical studies, on the other hand,
claim that the soliton would be completely destroyed by
thermal e8'ects far below 310 K."'

We see two possible explanations for the disagreement
between Davydov and his critics: (i) The numerical stud-

ies"' are essentially classical in the treatment of the
coupling between the quantum system and the thermal
bath and therefore neglect certain stabilizing quantum
effects, and (ii) Davydov's theoretical analysis involves
simplifying approximations which may lead to an er-
roneous conclusion. The first of these possibilities has
been discussed in Refs. 13 and 14. Our aim in this paper
is to consider the second possibility.

Our theoretical analysis follows closely that of
Davydov. Thus we start with his ansatz for the wave
function, which allows for thermal occupation of the
phonon states. With respect to this wave function the
thermal average of the Hamiltonian operator is then cal-
culated. Finally, the time evolution of parameters in the
ansatz is determined from the thermally averaged Ham-
iltonian. The only difference between our development
and that of Davydov is that we make no approximations
(beyond that introduced by the original ansatz for the
wave function), since we present our results in numerical
rather than analytical form.

By its very nature Davydov's ansatz is an approximate
wave function. This point has been discussed in consid-
erable detai1 recently by Brown, Lindenberg, and
West. ' ' It is shown in Refs. 18 and 19„however, that
Davydov's ansatz for the wave function at T =0 K,

~
P), is correct up to a time-dependent phase factor

which would not be seen in the numerical plots of the
probability of excitation (

~ g ~
) that are presented here.

It is difficult to determine from Brown et al. the quanti-
tative disagreement between l3avydov's ansatz and the
true wave function when T&0 K. In any case, the point
of this paper is to calculate the dynamical behavior of
Davydov*s ansatz without making any further approxi-
mations.

The paper is organized in the following manner. The
theoretical analysis, described in Sec. II, leads to dynam-
ical equations for the ansatz parameters which are ap-
propriate for numerical study. In Sec. III we present
numerical results from the study of the these equations.
These results are discussed in Sec. IV. Some details of
the numerical code are included in an appendix.
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I
y„(r)&= gy„A" '„ Io&0„ I

v&, (2.6)

Following Davydov ' ' we consider a one-dimensional
molecular lattice with X sites. The Hamiltonian of that
system will be

(2.1}

where P„ is the probability amplitude for an excitation
in site n,

I
v & is the phonon wave function,

(2.7)

where 8,„ is the unperturbed exciton operator, A~„ is
the unperturbed phonon operator, and 8;„, is an opera-
tor describing the interaction between the intramolecular
excitations and the phonons. Thus,

and 0„(t) is a unitary operator of the displacements

Q„(t)= exp g [P&„(t)b&—P«(t)b ~] (2.8)

A,„= g [.A „'A„—J( A '„A„,+ A '„A„„)], (2.2)

where s is the intramolecular excitation energy (only one
excited state is considered), —J is the dipole-dipole in-
teraction energy, and A „(A„) is the creation (anmhila-
tion) operator for the intramolecular excitations. Furth-
ermore,

g
8'ph ———,

's. g (u„—u„ t)'+ g I' „,
n=1 n=1

(2.3)

S
+X g A „A„(u„—u„,), (2.4)

wlmre g+ (I ) is an anharmonic parameter related to
the coupling between the intramolecular excitation and
the displacement of the following (previous) hydrogen
bond in the chain. Substituting the expression of the
displacement operator in terms of the phonon creation
(annihilation) operators b ~(b~) (Ref. 8) into Eqs. (2.3)
and (2.4) we get

8„=yrO, ,(btb, + ,'), - (2.3')

where ~ is elasticity constant of the lattice, M is the
mass of the molecules, and u„ is the displacement opera-
tor of site n from its equilibrium position. Finally, we
consider a slightly more general expression for 8;„, than
that used by Davydov, ' ' i.e.,

N

8;„,=++ g A „A„(u„+)—u„)

The evolutions of P„(t) and P „(t) are determined from
dynamical equations derived from the thermally aver-
aged Hamiltonian, HT.

HT= XvA,. (2.9)

~here

H„„=(t(„(t)I8 I g.(r)& (2.10)

(v
I

exp( —8ph/kT) I
v&

g (v
I

exp( Hh/kT—)
I

v&
(2.1 1)

=(v~+1) exp[ —
I
caj (v~+1)],

V~ =[ exp(fiQ /kT} 1]—
&vj 0'„(b,+b, )0„

I
v&= (P,„+P'«—),

( I0'„b,'b, O„jv&=(v, + IP,„I'),

(2.12a)

(2.12b)

(2.12c)

(2.12d)

we get, after some tedious calculations, the following ex-
pression for HT,

Hr=g elk. I' J(4:4. ie
""—'+4.'4. +ie """)

k being Boltzmann's constant and T the absolute tem-
perature. Inserting (2.6) and (2.11) into (2.9) and making
use of the equalities,

+exp( —A'0 v /kT)(v
I

exp(a'b )exp( ab )
I
v—&

(2.4')

where AQ is the energy of a phonon with wave number

q, &q =2(s./M )'
I

sin(qa /2) I, a being the distance be-
tween the sites, and

' 1/2

QF(q)A "„A„(b +b )e'~"',

In (2.13),
(2.13)

F(q)=
1/2

[(X+—X )( cosqa —1)

+i(X++X )sinqa] . (2.5)

—( e+ 2 )(
I ~« I

'+
I &;+i I

')] . (2.14)

Davydov has suggested that the corresponding collec-
tive states of the lattice can be described by the ansatz
wave function

This expression (2.13) for the thermally averaged Hamil-
tonian does not include any approximations. From it we
derive dynamical equations for the parameters in the an-
satz wave function (2.6):
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BHT
1/2

8 fl — l1 +=eP„J—(g„,e "" '+P„+,e """) g [F(q)e'q"'(pq„+p* q„)]

+p„g [fiQ (v +
I p „ I )], (2.15a)

dP „dH si' = = J'I$ P ie
"" [(v +1)Pq i (vq+cf12)Pq ]+/*+i/ e " "fvqPq +i —(vq+Ti)Pq ]

fV„„ fV„
+p„'p„+,e ""+'[(v,+1)p,„+,—(vq+-,')pq„]+/„*,p„e " '"[v,p,„,—(v, +-,')p „]]

(2.15b)

It can easily be shown that Eq. (2.15a) conserves the
nol m~ 1.e.s

(2.16)

This property has been used as a test of the numerical
results, which will be presented in Sec. III. The average
displacement of the lattice at site n is calculated as

u„(r)=—(g,,(t)
I
u„ I f„(t))

shall also present results obtained when setting X =0
(asymmetric interaction Hamiltonian) (Sec. III 8).

Two types of initial conditions are used,

14'24(0) I

'=
I 425(0)

I

'=o 5
two sites

I p

(3.1a)

(3.1b)

(3.2b)

I
P„(0)

I

=0.56sech [0.64(n —38)], (3.2a)
sech pulse

I

2

1/2

I'&""'«q +p', ) . A. Davydov's interaction Hamiltonian (J+=g =g)

(2. 17)

III. NUMKRICAI. RKSUI.TS

In order to carry out a numerical integration of (2.15),
it is necessary to select the parameters appearing in the
original Hamiltonian operator (2.1). Since we are look-
ing for the effects of raising the temperature from 0 to
310 K, the precise values of these parameters are not too
important, but it is appropriate to use the same values as
in previous numerical studies. They are listed in Table I.
These values are close to those used in the numerical
studies of Refs. 11 and 12. %'e do not list the in-
tramolecular excitation energy ( e —1660 cm '

) because
it is removed from the numerical calculations through a
gauge transformation (see Appendix). The values of the
anharmonic parameters 7+ and 7 and of the tempera-
ture T are indicated for specific numerical computations.

Davydov has consldcrcd g =J, ' ' thc case wc
shall present first (Sec. III A). However, as has already
been discussed„quantum-mechanical calculations show
that X is negligible when compared with g+. Thus, we

TABLE I. Physical parameters.

Symbol

Dipole interaction energy
Molecular mass
Elasticity constant

Value

7.8 cm
114m

13 N/m

Figure 1 shows the typical dynamical behavior in the
molecular excitation observed in this case. Figure 1(a),
where 7=0.17&10 ' N, shows a case in which the ini-
tial excitation is completely dispersed after 10 psec;
indeed, only dispersive waves form, which travel at
about —,

' the maximum speed of sound in the chain
[(a/M)' a —3.7X 10 m/sec] and are not accompanied
by any molecular displacement. They are therefore exci-
tons. Excitons are generated which travel in opposite
directions in the chain and interfere with each other 10
psec afterwards. This interference is an artificial
phenomenon due to the periodic boundary conditions
(see Appendix). Figure 1(b), where +=0.21&& 10 ' N,
shows another situation in which part of the initial exci-
tation is not dispersed and remains pinned in the same
bonds where it was initially located. Finally, in Fig. 1(c),
where 7=0.23&10 ' N, most of the initial excitation
is not dispersed but remains localized where it was put
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initially. %e emphasize that whenever the term soliton
has been used in the preceding and following discussions,
we have checked that the pulse of molecular excitation is
accompanied by corresponding distortion in the sound
system. Explicit examples are shown below in Figs. 4
and 6. The continuous transition from dispersion [Fig.
l(a)] to a localized state [Fig. 1(c}]of the initial excita-
tion is observed not only at biological temperatures, but
also at lowel temperatures, as summarized in Fig. 2. In
this case, the consequence of increasing temperature is
similar to that of increasing the nonlinearity. We see
that as temperature increases, the threshold for localizo
tion of the initial excitation decreases. This is because
the exponents W„„+& [Eq. (2.14}] are negative and in-

crease in absolute value as temperature increases. In-
creasing the temperature thus produces a decrease in the
effective dispersion, as was pointed out by Davydov.

Localized

/

Dispersed

0.0
0 100

I I l

200 300 IOO

T(K)
FIG. 2. Survey of the dynamics for the Davydov interaction

Hamiltonian in the case of two initially excited sites. Cl, local-
ized behavior; V', dispersed behavior.
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B. Asymmetrical interaction Hamiltonian (7 =0)

The dependence of the dynamical behavior on the
remaining nonlinearity parameter X+ and temperature is
given in Fig. 3. One distinction between the latter re-
sults and those shown in Fig. 2 is that the threshold of
X+, below which there is dispersion, is not strongly
dependent on the temperature. On the other hand, and
as in Fig. 2, the threshold of g+ for localization decreases
as temperature increases. The latter effect is explained
by the decrease in efkctive dispersion, as was discussed
above. However, the effective dispersion in Fig. 3 is now
somewhat 1ess dependent on the temperature than that
of Fig. 2. Furthermore, the effective dispersion becomes
less dependent on temperature as Y+ decreases. A
second, very important feature in Fig. 3 is that the tran-

50LITO&
C)

I

p
&C

~~ Localized
/

g

0.0- 0.0

W w W

V g V ~V

D)sp&rs&d y'
f

I I 1

0 100 200 300 400
T(K)

FK1. 1. Evolution of the probability of an excitation,
~ P„~

'
in site n (n =0, . . . , 50}. Temperature T =310 K. Initial con-
dition: two sites [Eq. (3.1)]. (a) X =0.17X 10 '0 N, (b)
7=0.21&10 ' N, and (c) +=0.23X10 ' N.

FIG. 3. Survey of the dynamics for the asymmetrical in-

teraction Hamiltonian in the case of two initially excited sites.
H, localized behavior; 0, propagating soliton; V, dispersed be-
havior. The dashed lines locate parameter values for Fig. 4.
Parameter values for Fig. 5 are also indicated.
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sition from dispersion to a localized state is not immedi-
ate; instead, there exists a window of X+ within which
there is soliton propagation. The window decreases as
the temperature increases and, at very high tempera-
tures, the results correspond to those obtained for the
Davydov interaction Hamiltonian. Figure 4 shows typi-
cal dynamical behaviors for a value of 7+ 6xed in the
soliton propagation region, as temperature increases. It
shows that, although part of the initial excitation is
dispersed, the remaining part is built into a traveling sol-
iton. As temperature increases, two main elects arise:
(1) The amount of the initial excitation which is
dispersed increases, and therefore the eHective energy
transported by the soliton decreases, and (2) the velocity
of the soliton decreases. The molecular displacement ac-
companying the soliton at biological temperature,
T =310 K, 18 shown ln Ftg. 4(e). Ftgure 5, on the other
hand, shows typical dynamical behaviors, in the propa-

gation region, for biological temperatures. Solitons form
above X+-0.27X10 ' N, as shown in Fig. 5(a), and
become more pronounced as X+ increases (with a conse-
quent decrease of the amount of energy that is
dispersed). Also, the velocity of the soliton decreases as
X+ increases and, for X+ «0.2SX10 ' N, there is no
propagation, the energy is trapped and can hop around
the initially excited bonds [see Fig. 5(d)]. Although Fig.
5 seems to indicate a poor energy efftciency of the soliton
at biological temperatures, this efficiency depends
strongly on the initial conditions. Figure 6, for example,
shows a case where most of the initial excitation is de-
posited in a traveling soliton at 310 K.

IV. DISCUSSION

In the present paper we begin with the assumptions
implied by Davydov's ansatz [Eq. (2.6)] and derive Eqs.

SOLITON SOLITON

Q7- 0.7-

0.0-
5

20

CV
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SGLITGNS SOLI TONS

Q7-
0 7-'

C
20

00"
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Q,Q17"

-Q.Q05-
5

20

FIG. 4. Evolution of the probability of an excitation in site n, ! P„! (n =0, . . . , 50). The nonlinearity parameter
7+=0.23X10 ' N and the initial conditions are two sites [Eq. (3.1)j. (a) T =10 K; (b) T=100 K; (c) T =200 K; (d) T=310 K;
and (e) the molecular displacement, —(u„—u„,) in A, for the conditions of 4d).
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20

0.0-
5

20 20

0.0.
5

FIG. 5. Evolution of the probability of an excitation in site n, ~(()„~' (n =0, . . . , 50). (a) I+=0.18)&10 '0 N, (b)
7+=0.21X10 ' N, (c}7+=0.24&10 ' N, and (d) 1+=0.28X10 ' N.

(2.15) without any further approximations. In this
manner Davydov s approximations, criticized by a num-
ber of authors, are avoided. It is thus interesting to
compare our results with Davydov's predictions. A
first observation is that, when temperature effects are in-

cluded, the Davydov interaction Hamiltonian predicts
results qualitatively diferent from the asymmetrical in-
teraction Hamiltonian, and a proposed equivalence be-
tween the two by setting X+ =X =—,'g (Ref. 21) is not

0.3

ool
50

C
I

0 000

—0 004
5o

valid. However, concentrating on the results obtained
with the asymmetrical Hamiltonian, Davydov's predic-
tions of the thermal e8ects on soliton propagation are
confirmed, i.e., an increase in the effective mass of the
soliton, corresponding to a decrease in soliton velocity,
as temperature increases, is observed in Fig. 4. Also, as
temperature increases, see Fig. 4, the "soliton" becomes
more "excitonlike. " Because Davydov's approximate
equations were not valid for soliton velocities around the
sound velocity, Davydov could not predict whether the
transition from the soliton to the exciton state would be
continuous or discontinuous. Our derivation is not lim-
ited in this way, and our conclusion is that the transition
from a soliton to an exciton state is continuous. This
happens both as g decreases (Fig. 5) and as temperature
increases (Fig. 4).

Figures 2 and 3 give a detailed picture of thermal
effects. Both for Davydov's interaction Hamiltonian and
the asymmetrical interaction Hamiltonian the threshold
of the nonlinearity parameters above which there is soli-
ton formation (either localized or traveling) is
0.17X10 ' N. Since theoretically determined values of
X+ are (0.265-0.364) X10 ' N, ' and an experimen-
tally determined value is 0.62&10 ' N, our basic con-
clusion is that an analysis based on Davydov's assump-
tions does indeed imply that his soliton is robust at phy-
siological temperatures (310 K).
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APPENDIX: DETAILS OF THK NUMERICAL METHOD

The system to be integrated is

d fV„„ QF(q)e""'(p,„+p',„)+p„gv, ~ p,„~ ',
q

(Al)

l 4 8'„+1
,e ""-'[(v,+1)p,„,—(v, +-,')p,„]+y„'+,y„e "+'"[v,p,„+,—(v, +-,')p,„]

+((:({'.+ie """[(vq+1»q.+i —(vq+-,')pq. ]+0: i0.e " '"[vqpq 1—{v,+ ,')pq.-]I

' 1/2

F'(q)e 'q"'+
[ (()„~ 'AQ p „,2 1

which is obtained from (2.15) after making the gauge
transformation

Po(t) =Pn+, (t),
pqo(t) =pqtt+, (t) .

(A5)

(()„~({)„exp[i/A'{ e+ g fiQ v )t] .

%e then set

p„(t)=p"„(t)+ip'„(t),

p,„(t)=p;„(t)+ip,'„(t), (A4) (u„(t))™

The code divas tested by verifying that two properties
of the system (Al), (A2) held throughout the integration,
i.e., (1) the imaginary part of the average atomic dis-
placement (u„(t)),

2M% Qm q

g (P"„A"„+Pq„Aq„)=0,

where p'„(t), (()'„(t), p"„(t), and p'„{t) are real quantities.
Substituting (A3) and (A4) into (Al) and (A2) we get a
system of equations with real variables, which we in-
tegrated using International Mathematical and Statisti-
cal Library (IMSL) routine DVERK, a Runge-Kutta-
Verner fifth- and sixth-order method. The number N of
sites was 51, and thus the number of equations in the
real variables was 5304. Periodic boundary conditions
were used, i.e., where

[P,'„(t) P',„(t)-]=0,

(A7)

(AS)

W„„
qn qn qn 0n0n —1 [ q+ )pqq —i {vq+ 2 )pq„]+/„+(pze [vqpq„+i —(vq+ & )pq„]

+4.'4. i
"""[(-,+1»,. ~-(-, +-,')p,„]+(().', ({).e "-'"[ ,p,„, { , + -,')p,„].---(A9)

Equalities (A7) and (AS) were true with a very high precision.
Finally, the integration itself was tested by the conservation of the total probability of excitation [Eq. (2.16)], which

was observed with a precision of, typically, 1%o.
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