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By solving a self-consistent integral equation numerically, we have obtained the equations-of-

state and thermodynamic properties of equilibrium supercooled liquids with soft-sphere potentials

plus the Kac potential {generalized van der %aals model). The equations of state obtained deviate

from those of molecular-dynamics simulations below the liquid-glass transition predicted. The

static pair structures differ significantly along two branches, i.e., molecular-dynamics glasses and

equilibrium supercooled liquids. From entropy curves obtained from the solutions of integral

equations, we indicate the stability limit of the equilibrium supercooled liquid for the softness pa-

rameter n =4, 6, 9, 12, and ao. %e also discuss the effect of the softness on the thermodynamic

properties of supercooled liquids.

I. INTRODUCTION

The equations of state of high-density or low-
temperature liquids can be obtained through either in-
tegral equations based on the theory of liquids or com-
puter simulations. Analytical or numerical solutions of
integral equations usually must be accompanied by some
approximations, without which the equations are impos-
sible to solve. ' On the other hand, computer simula-
tions, either Monte Carlo or molecular-dynamics (MD)
simulations, yield numerically exact solutions. This is,
however, not the case in the metastable or glassy states,
in which the relaxation time to attain an equilibrium
state is much longer than the time scale of computer
simulations. ' With computer simulations of rapid
quenching of liquids, one may prepare samples which
are structurally arrested and which are far from equilib-
rium. Therefore, the resultant properties (structures,
and so on) depend on the rate of quenching and the
routes of it. On the other hand, the integral equation as-
suming homogeneity and equilibrium of the system
yields the solutions of the most stable state which can
exist in a supercooled regime. Such a state may be real-
ized in laboratory experiments when the liquid is
quenched as infinitely slowly as possible so that the
liquid can always keep its equilibrium. Therefore, two
approaches, namely, the integral equations and comput-
er simulations, correspond to different limit cases, name-
ly, in6nitely slow quenching for the former and extreme-
ly fast quenching for the latter.

It is well known that the classical Percus-Yevick (PY)
and hypernetted-chain (HNC) equations sufFer from
internal thermodynamic inconsistency, which can be
overcome by a number of improveinent schemes.
One of the most successful is the interpolation scheme of
Rogers and Young (RY), which has the merit of being
easily generalized to the ease of mixtures. ' Bernu
et a/. have found that the equation of state obtained by

the RY integral equation for binary soft-sphere mixtures
agrees very well with the molecular-dynamics data at
temperatures above the liquid-glass transition. The
solutions of the thermodynamically self-consistent RY
integral equation yield convincing theoretical evidence
for the simultaneous existence of quenched amorphous
(molecular dynamics) and fully relaxed equilibrium
"Auid" states.

In this paper we present the solutions of the RY in-
tegral equation for one-component soft-sphere super-
cooled liquids interacting through inverse power poten-
tials, U(r)=e(o/r)", where the softness parameter n is
varied as n =4, 6, 9, 12, and 00. We discuss n-dependent
properties of thermodynamic functions, pair structure,
and so on, in the supercooled liquid regime. In order to
take into account attractions between atoms, we use the
Kac potential. Thus our total potential between atoms
is composed of the soft-sphere potential plus the Kac po-
tential, which we called a generalized van der Waals
model in our previous papers. ' " This model works
very well for liquefied inert gases (n= 15), liquid alkali
metals (n=4), and some more complex liquids. Liquids
are classi6ed into groups, within this model, each of
which takes a different n.

The solutions of the RY integral equation for our
model yield a very simple equation of state which holds
over the entire region of the supercooled liquids. Includ-
ing an effect of the attractions by the Kac potential, we
have calculated various thermodynamic functions, such
as specific volume, compressibilities, enthalpies, entro-
pies, and so on, as a function of temperatures at a con-
stant pressure P, which we took I'=0 for simplicity.

The equation of state for the crystalline state is easily
obtained by using the Madelung constant and assuming
an approximation of harmonic vibrations of atoms
which hold exactly at low temperatures. Thus we can
compare the thermodynamic functions of equilibrium su-
percooled liquids with those of crystalline states, at the
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same temperature and pressure for each n. The resul-
tant entropy curves show a cross point for all n which
we investigated, indicating the stability limit of super-
cooled liquids, because the entropy of liquids must be
larger than that of a crystalline solid at the same temper-
ature and pressure. Such a stability limit of supercooled
liquids is found to be located at a much lower tempera-
ture than a liquid-glass transition T predicted by
molecular-dynamics simulations.

The pair structures obtained from the RY integral
equations difFer signi6cantly from MD simulations in the
glassy states. The former yields no splitting of the
second peak, while the latter shows a clear splitting of
the second peak below the glass transition. %'e will then
investigate the temperature dependence of the ratio of
the 6rst maximum and the 6rst minimum of the pair dis-
tribution function, which is called the Wendt-Abraham
ratio, and of the half width at half maximum (HWHM)
of the pair distribution function. VA'th these analyses,
we show that a characteristic property at the stability
limit of the supercooled liquid is that the H%'HM of the
pair distribution function takes nearly a universal con-
stant at the stability limit point, independent of the soft-
ness of the potentials.

II. THE MODEL

CTu(r)=s
r

(2.1)

where n ( & 3) is the softness parameter of the potential.
The case n = Do corresponds to a hard-sphere potential
with core diameter 0. In our calculations, the integral
equation was solved for the softness parameter n=4, 6,
9, 12, and 00. The advantage of simple inverse power
potentials is their scaling property. According to this
property, all reduced equilibrium properties in excess of
their ideal-gas counterparts depend only on one coupling
parameter, not on the temperature and the number den-
sity separately. %'e take the following expression for
this coupling parameter

' —3/n
k~T

I =po
E

(2.2)

where p is the number density, k& is the Boltzmann con-
stant, and T is the temperature. For a hard sphere, I is
reduced to po, but we use another parameter p,

P=po /&2, (2.3)

i.e.„ the ratio of p and the fcc close-packing number den-
sity. The freezing points of inverse power potentials
with n=4, 6, 9, 12, and Oc are calculated by Hoover
et aI. with Monte Carlo simulations, and found to be
I =5.54, 2.18, 1.33, 1.15, and p=0.667 for n=4, 6, 9,
12, and m, respectively. "-"

The inverse po~er potentia1 works very well for high-
density liquids in which short-range repulsive force is

We consider a simple model liquid in which the atoms
interact with pairwise additive purely repulsive inverse
power pair potentials,

'n

dominant, but the pure repulsive potential leads to an
unphysically high pressure. In order to investigate ther-
modynamic and structural properties at a more realistic
condition, we have taken into account the efFect of at-
tractive interactions within the standard van der %aa1s
mean-field approximation. ' This approximation be-
comes exact in the limit of in6nitely weak and long-
range attractive potentials of the Kac form, '

m(r)= —ay exp( —yr), (2.4)

where y ~0; the Helmholtz free energy can be obtained
by adding a correction term to the free energy of inverse
power potentials, '

(2.5)

where Fo is the free energy for a=0. From this equa-
tion, all zero-pressure thermodynamic and structural
quantities can be calculated as functions of temperature.
The freezing points for a+0 slightly shift from that of
the pure repulsive potential (a=0), but we may ignore
such a small correction for the location of the freezing
point.

Equation (2.5) is useful because in this model the
repulsive force and attractive force can be treated sepa-
rately. This model has been found to work for various
liquids by choosing a suitable softness of inverse power
potentials; for example, the case n=15 corresponds to
liquefied inert gases and the case n=4 corresponds to
liquid alkali metals. ' From Eq. (2.5), once we know the
thermodynamic properties for a=o, we can obtain those
for a&0. Note that the Kac potential, Eq. (2.4), gives
no influence on the properties of the structures (both
static and dynamic).

III. ROGERS- YOUNG INTEGRAL
EQUATION

A. Integral equation

pp =1 ,'mPp f g(r)r ——dr,3 du (r)
p dr

pk~TXT I+4np I [g(r) ———l]r dr,

where g (r) is the pair distribution function and N the to-
tal number of atoms.

Equilibrium distribution functions allow a complete
but compact description of microscopic structure of
liquids, as well as provide a quantitative measure of the
correlations between the positions of diferent particles.
Furthermore, knowledge of the lowest-order distribution
function is generally suScient to calculate most equilib-
rium properties of the system. In particular, if the mole-
cules of the system interact with pairwise additive cen-
tral force, knowledge of the pair distribution function al-
lows the calculation of the excess internal energy U'",
equation of state Pp/p, and the compressibility Xr, '

Ucx
=2' g rU rrdr,
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Integral equations of the equilibrium theory of liquids
have been used to calculate the pair distribution func-
tion. ' These integral equations result from the combina-
tion of two relations. The Srst one, which is exact, is the
Grnstein-Zernike relation between the pair correlation
function h (r)=g(r) —1 and the direct correlation func-
tion c (r),

6 (r) —c (r)"=p f h (r')c (
I
r —r'

I
)dr (3.4)

The second one is an approximation closure between
these functions, examples of which are given by the
Percus-Yevick and hypernetted-chain closures, respec-
tively,

g (r) =exp[ —Pu (r)][1+y(r)],

g (r) =exp[ —Pu (r)+7'(r)],

(3.5)

(3.6)

g (r) =exp[ —Pu (r)] 1+ f (r)
(3.7)

where f (r) is the "mixing function" (0&f & 1). In gen-
eral, the mixing function must contain two parameters
to achieve thermodynamical consistency, but for the
simple soft-sphere model only oae parameter is required
because the equations of state which are calculated from
Eqs. (3.1) and (3.2) are identical. So the mixing function
is conveniently taken in the form'

where y(r)=h(r) —c(r) is the sum of the nodal dia-
grams. The classic integral equation, hke the PY and
HNC equations, suffers from internal thermodynamical
inconsistency. T'he "thermodynamical consistency"
means the consistency for the equations of state obtained
from three difFerent results, i.e., Eqs. (3.1), (3.2), and
(3.3}. For pure repulsive potentials, the PY and HNC
equations of state bracket the "exact" computer simula-
tion results. This suggests that some interpolation of
the two equations would overcome the inconsistency,
and a number of improvement schemes were investigat-
ed. The integral equation introduced by Rogers and
Young, which has been used here, is one of the most
successful schemes, and its thermodynamic and structur-
al results for the inverse power potential well agree with
the computer simulation results in a liquid regime. In
this integral equation, PY and HNC closures are inter-
polated by a function which depends on the interparticle
distance,

c(k) is calculated and using Ornstein-Zernike relation,
Eq. (3.4), the Fourier transform of P{k) is determined.

y (r) then follows from an inverse Fourier transformation
and c'"'(r) is obtained from RY closure, Eq. (3.7). The
superscripts in and out mean the input and output func-
tions, respectively. Using the output functions thus ob-
tained as the next input function, a number of iterations
were made so that the self-consistent measure 6 is mini-
mized,

(3.9)

It took about 100 iterations at a large coupling constant
I to obtain a self-consistent measure 5 less than
5g 10 ', which is small enough to ensure the validity of
the solutions.

The mixing parameter a used in the above calculation
as a trial was tested as follows. There are two methods
to adjust it. First, the inverse compressibility P/(pgr)
obtained from Eq. (3.3) is integrated step by step from
I"= I'0 to I"= I' and the resulting pressure is compared
with the virial pressure calculated from Eq. (3.2} at
I"= I'. Second, virial pressure is numerically
diNerentiated at a given I and compared with the
P/(pXr ) by Eq. (3.3). ' We have used the second method
for our starting low coupling state {I"=I0), and in suc-
cessive calculations for higher coupling states the first
method was used. Thermodynamic consistency was en-
sured within 0.01% in our calculations. The parameter
a thus determined is listed in Table I at the freezing
point. Our values are very close to the value calculated
by Rogers and Young. Rogers and Young stressed that
the mixing parameter does not depend on the coupling
constant in the liquid region. Our results show that this
is almost valid, but in the supercooled regime o, sys-
tematically decreases, as plotted in Fig. 1.

To solve the integral equation, we used a dimension-
less length x =r/l, where I =p '~ for soft spheres and
l =0 for hard spheres. The grid points and step size
were chosen as 2048 points and Ax=0.01, respectively,
and the fast-Fourier-transform routine was used in itera-
tions.

S. Solution

The solution of the RY integral equation yields the
pair distribution function, equation of state, and iso-
thermal compressibility. Figure 2 plots the pair distribu-

f (r) =1—exp( ar), — (3.8)

where o. g0 is a mixing parameter. Note that in this
scheme the integral equation is reduced to PY closure at
r=0 and HNC closure at r = ao. Equations (3.4), (3.7),
and (3.8) together make it possible to achieve thermo-
dynamic consistency.

%ith the exception of the PY approximation for the
hard sphere, it is possible to solve the integral equation
only numerically. The method for solving the RY in-
tegral equation used here is some modification of itera-
tive procedure given by Ng. ' In it, the direct correla-
tion function is chosen to input and output fuactions.
For a given input function c'"(r), the Fourier transform

TABLE I. The value of the mixing parameter a in the RY
integral equation at the freezing point for various softness n's.
The values in parentheses are the results by Rogers and Young
(Ref. 7).

1.585 (1.794)
1.192 (1.209)
0.792 (0.804)
0.593 (0.603)
0.279 (0.251)
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FIG. 1. Coupling dependence of the consistency parameter
0. for various softness (n=4, 6, 9, 12, and 00 ).

FIG. 3. Equation of state by RY solutions.
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tion functions g(x), structure factors S(k*) (k'=kl),
and the Fourier transform of direct correlation functions
c(k') at the freezing point and stability-limit point
which will be discussed in greater detail in Sec. IV;
Compar1son of the RY patr dlstributlon funct1ons with
those of the computer simulations for n =12 reveals that
both results are in an excellent agreement for I less than
about 1.5, at which the computer simulated samples are
transformed into a glassy state; the RY pair distribution
function does not show a splitting of the second peak for
all I"s, unlike the computer simulated samples which do
for 1 &1.5. 's' We note the RY g(x) is a pair distribu-
tion function of equilibrium supercooled states which are
din'erent from the computer generated states obtained by
a fast quenching, i.e., structurally arrested glasses.

The equations of state of the inverse power systems
are plotted in Fig. 3. In Fig. 4 the molecular-dynamics
results for n=12 are compared with the RY solutions.
The linear behavior of the equation of state versus I is
easily understood from a simple model of harmonic vi-
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FIG. 2. Structural properties of inverse power systems at
the freezing point (dashed curves) and the stability limit (solid
curves}. (a) Pair distribution function g (x) and structure factor
S(k ). (b) Fourier transform of the direct correlation function
e(k ).

FICr. 4. Equation of state for n=12 and ao. Solid curves
are the present RY solutions, dotted curves represent the crys-
talline solid state. For the 12th inverse power system, the
molecular-dynamics results are shown by the dashed curve
wIth open cj.rcles.
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brations of atoms of high-density or low-temperature
solid states. %'ith this model we calculated the equation
of state of a crystalline solid. The excess internal energy
can be written in the following form:

=be(po )"/ + ,'k—sT+0(T~), (3.10)

where b is a Madelung constant which determines the
zero-pressure lattice energy. The corresponding equa-
tion of state leads to

P
1 + gall/3 (3.11)

p 2 3

For the fcc lattice structure, b=7 981,. 3.613, 2.208, and
1.516 for n=4, 6, 9, and 12, respectively. The equa-
tion of state of the supercooled liquid and glassy states is
very well fitted by Eq. (3.11) with a larger b than that of
a crystalhne solid (see Table II). Figure 4 also shows
that for the 12th-inverse power potential the RY solu-
tion and molecularMynamics results show an excellent
agreement in the supercooled liquid range up to 1 -1.5.
Beyond that coupling constant a clear bifurcation is ob-
served; the RY results drop progressively below the MD
data as I" increases. A similar behavior has been report-
ed for soft-sphere mixtures. This trend could be attri-
buted to a gradual breakdown of the RY closure under
very-strongwoupling conditions, but this does not seem
to be very likely since diFerent implementations of the
thermodynamic selfwonsistency requirement lead to
nearly identical results, as shown in Ref. 8. We believe
that the diferent pressures correspond to two physically
difFerent branches of the equation of state. The upper
branch obtained by molecular dynamics may be associat-
ed with typical glassy states, i.e., a quenched nonequili-
brium state which we were unable to relax within the
duration of the sim'ulation, since the structural relaxa-
tion times increase by many orders of magnitude beyond
the glass transition ("structural arrest"). This branch is
of course not unique and may depend, among other fac-
tors, on the cooling rate during the preparation of the
initial conSguration of the samples. Also, the point
beyond which bifurcation occurs may depend on the ini-
tial preparation. The lower branch, the solution of the
RY integral equation, however, corresponds to an ideal
metastable disordered state of the lowest free energy,
since the integral equation assumes a translationally in-
variant equilibrium which would be reached after a
sunlciently long structural relaxation process. True ther-
modynamic equilibrium can only be reached by transla-
tional symmetry-breaking nucleation into the crystal

phase which is characterized by significantly lower pres-
sures, as shown in Fig. 4. For the hard-sphere model,
the above simple model for the crystalline solid state
makes no sense. Then, the equation of state of hard
spheres in the solid phase is calculated from free-volume
theory,

PRP 1+(——1/3
1 )

—1

P
(3.12)

Equation (3.12) is plotted in Fig. 4 together with RY re-
sults.

IV. GENERALIZED van der WAALS MODEL

Pe(1 ) 4~1 (Z e )
—{n —3)/e

p
(4.1)

where Po (I ) is the equation of state for the inverse
power potential. Hereafter, the 0 index is attached to
the system of the inverse power potentials. The condi-
tion of zero pressure yields then the following simple re-
lation between the coupling constant I' and temperature

A. The stability 1imit

The bifurcation of the equation of state and the ensu-
ing difFerence in slopes beyond the glass transition are
reminiscent of the distinct "kinks" in a number of ther-
modynamic properties with temperatures at constant
pressure observed in many simulations of a one-
component system, '9' 26 The inverse power potential
under investigation leads to unphysically high pressure
due to its purely repulsive nature of interaction forces.
In order to investigate thermodynamic properties at zero
pressure, we have taken into account the eN'ect of attrac-
tive interactions within the standard van der Waals
mean-field approximation. This approximation becomes
exact in the limit of infinitely weak and long-range at-
tractive potentials of the Kac form given by Eq. (2.4).
In the following we make a simplifying assumption that
a =so, where s is the same energy scale as in Eq. (2.1).
Therefore, the resulting equation of state takes a simple
form of the van der Waals type, '0 "

TABLE II. The "Madelung constant" of RY supercooled
liquids and crystalline Solids.

RY supercooled
liquid

8.102
3.689
2.298
1.655

Crysta Bine
solid

7.981
3.613
2.209
1.516

FIG. 5. Softness (n) dependence of various thermodynamic
properties at the freezing point.
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P(') (I )
T (4.2)

With the RY solution of the e uation of state Po(l )

and isothermal compressibility r pX&/P and Eq. (4.2),
all zero-pressure thermodynamic quantities can be calcu-
lated as a function of the reduced temperature T'. For
such quantities we have calculated the reduced volume

per particle (speciSc volume) U', the excess specific heat
c„'" at constant volume, reduced compressibility

Xz ——Xrs/o', the reduced enthalpy per particle h', and

entropy per particle S'.
(Z «)—3/n

p~3 0 O.5 ~.O

c'"/k =— P'(I') ——(P) ' —1
n n

'
n

(X') '=prr T'(P) ' Sm(p—o )

U+PV

(4 4)

(4.5)

(4.6)

FIG. 7. Temperature dependence of entropy per particle in

excess of that at the freezing point for various softness parame-
ters. The symbols are the same as in Fig. 4.

(4.7)

where F is the Helmholtz free energy. These quantities
for n=4, 6, 9, 12, and 00 at the corresponding freezing
point are plotted in Fig. 5. The softness (n) dependence
of the compressibility and enthalpy is significant. The
temperature dependence of specillc volume U' is plotted
in Fig. 6 with molecular-dynamics results for n=12. It
is of interest to note that the RY results present nearly
linear properties for a mde temperature range, which is
in a marked contrast to the MD results at low tempera-
tures.

For each n, the entropy curves of the RY supercooled
liquids and crystalline sohd show a clear cross point (see
Fig. 7). This point indicates the stability hmit of the su-

percooled liquid because the entropy of liquids must be

larger than that of crystalline solids at the same temper-
ature and pressure. The coupling constant at the stabili-

ty limit thus obtained is listed in Table III, being
significantly larger than the liquid-glass transition pre-
dicted by molecular-dynamics simulations. The glass
transition may depend on the quenching rate and the ini-
tial conditions of the sample. It is well known that the
slower the quenching rate, the larger the expected glass
transition. The quenching rate used in MD simulations
is an order of -10' —10' deg/sec, which is much faster
than that of laboratory experiment. Therefore, the glass
transition obtained by MD simulations may be con-
sidered to be an upper limit of the squid-glass transition,
while laboratory experiments using a much slower
quenching rate may yield the liquid-glass transition situ-
ated between the MD glass transition and the stability
limit shown in Table III.

S. Structural properties near the stabiNy limit

For the study of the characteristic structural proper-
ties near the stability limit we have examined the so-
called Wendt-Abraham ratio R (the ratio between the
first maximum and the first minimum of the pair distri-

0.6- ".

TABLE III. The range of the bquid-glass transition of in-

verse power systems. The glass transition couplings of the 12th
inverse power system and hard-sphere model are taken from
Ref. 8 and 21, respectively.

fs t6 gp t~

0 05

FIG. 6. Temperature dependence of the speci6c volume for
various softness parameters. f„ indicates the freezing point for
the softness parameter n. The symbols are the same as in Fig.

Freezing
point

r=5.54
2.18
1.33
1.15

p =0.667

Glass
transltlon

1.56
0.806

Stability
limit

15.01
4.46
2.30
1.72
0.870
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bution function), half width at half maximum of the
pair distribution function, and the coordination number
Sc,

¹ =4mp I g (r)r dr, (4.8)

where r is the position of the first minimum of the pair
distribution function.

It has been pointed out that the empirical %'endt-

Abraham ratio is refiected by a quenching rate; for the
12-6 Lennard-Jones (LJ) system the ratio is 0.14 by
Monte Carlo simulation and 0.09 by molecular-dynamics
simulation at the hquid-glass transition {the quench rate
in the Monte Carlo method is presumably much larger
than that in the molecular-dynamics method). For
the 12th-inverse power system, R is 0.08 at the liquid-

glass transition. %e have calculated the %endt-
Abraham ratio at the stability limit of inverse po~er su-

percooled liquids obtained by the RY integral equation
[see Fig. 8(b)]. It is found that for the softness n=12,
near the glass transition, the RY solution shows a
significantly smaller R than the molecular-dynamics re-
sult.

It is evident that the RY solution is a characteristic of
fully relaxed disordered structures corresponding to an
infinitely slow quenching rate. The temperature depen-
dence of R was obtained so as to be linear, as that of the
specific volume shown in Fig. 6.

In Fig. 8(a), the WHwHM/r ~
at the freezing point and

stability limit is shown (where r, is the position of the
first peak of the pair distribution function). In solid
states the H%HM gives an order of magnitude of the

15

0
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1Q.

Q. 0

0,15

+01.e
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0
0

00

X

& o

12 9

FIG. 8. Softness (n) dependence of (a) 8'H~HM/~I of g(I'),
(b) %endt-Abraham ratio R, and (c) coordination number X,
at the freezing point () and stability limit (o ). Points marked

by X, 4, and A are those obtained from Monte Carlo simula-
tion for the Lennard-Jones system„molecular-dynamics sirnula-

tion for the LJ system and for the inverse power system with
n=12, respectively, at the liquid-glass transition (Refs. 27, 25,
and 28).

root-mean-square displacement of atoms. It is seen in
this figure that WHw„M/r, =0. 1 —0.15 at the melting
point, while WHwHM/r, =0.08 at the stability limit.
The softness dependence of the H%HM at the stability
limit is very weak, indicating that the WHwHM/r, at the
stability limit is an almost universal constant, indepen-
dent of the type of pair interactions.

The coordination number calculated from Eq. (4.8),
i.e., the population of the first shell (near-neighbor atoms
surrounding an atom), is plotted in Fig. 8(c). The tem-
perature dependence is weak below the freezing point.
All these values are between 12 and 13, and are compa-
rable to those of computer glasses. Therefore, the
packing order is quite similar for all states below the
freezing point.

V. DISCUSSION

%e have studied the thermodynamic properties and
pair distribution functions of the generalized van der
%aals supercooled liquids based on the Rogers-Young
integral equation of Quid theory. The RY solution yields
the same equation of state as the molecular-dynamics re-
sult up to the coupling constant F', less than the glass
transition I predicted by the molecular-dynamics simu-
lations. Below Tg the equation of state obtained from
the RY equation deviates from that of MD simulations.
Glasses are nonequilibrium states in nature, and the
structural relaxation time of glasses is many orders of
magnitude larger than that of equilibrium liquids. The
equation of state in glasses may depend on the quench-
ing rate, the route of it, and initial configurations. The
solution of the thermodynamically self-consistent RY in-
tegral equation yields the equation of state for fully re-
laxed "fiuid" states, which may be obtained by quench-
ing a liquid at an infinitely slow cooling rate. Therefore,
the present results yield convincing theoretical evidence
for the simultaneous existence of quenched amorphous
and fully relaxed Quid states. The Quid branch plays a
physically important role as an underlying limit state for
the glassy state obtained by molecular-dynamics simula-
tions or by laboratory experiments (relatively large cool-
ing rates).

The second point of the present results is the n (soft-
ness) dependence of the thermodynamic and structural
properties of the supercooled liquid. Among them, it
has been found that the H%'HM predicts an almost
universal constant at the stability-limit point, irrespec-
tive of the value of n, except the hard-sphere potential
(n = oo ). The HWHM is a measure of a root-mean-
square displacement of atoms in solid states. Therefore,
the above result gives an empirical law for the order of
magnitudes of the vibrations of atoms at the stability-
limit point of supercooled liquids.
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