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%e show that Reinhold's metric. cannot be induced on the equation-of-state surface from a Eu-
clidean metric in the ambient space of all extensive state variables, whereas it can be induced if the
ambient space is assumed to have only a Riemannian metric. This metric, however, is not unique.

I. INTRODUCTION

In the preceding paper' the relationship between the
thermodynamic geoQMtry of Gibbs ' and Gilmore, ' on
the one hand, and that obtained by using Weinhold's
metric, on the other, has been clarified. %e refer to
that paper for de6nitions, notation, and general refer-
ences. Here we want only to emphasize that Weinhold's
metric is intrinsically defined on the n-dimensional mani-
fold of equilibrium states whereas the geometrical struc-
ture introduced by Gibbs is extrinsically derived from
this manifold, being imbedded as a convex surface in an
(n + 1)-dimensional linear space. Gilmore infused
metric geometrical ideas into the Gibbsian framework by
introducing Euclidean metrics which potential surfaces
should inherit from the ambient space.

This procedure raises two questions: Can %einhold's
metric be induced on the equilibrium surface from a Eu-
clidean metric on the ambient space, and, if not, will a
Riemannian metric on the ambient space satisfy the re-
quirement'? The importance of trying to use a Euclidean
metric derives from the fact that only such metrics will
be compatible with the linear structure of Gibbs.
Theorems 1 and 2 below show that Weinhold's metric
cannot be induced from a Euclidean ambient metric al-
though it can be induced in a Qonunlque fashion from a
Riemannian ambient metric. These results have strong
implications for any attempt to extend geometric con-
cepts of thermodynamics based on reinhold's geometry
to nonequilibrium situations which are represented by
points in R" +' o8' the equilibrium surface.

tent of the following theorem.
Theorem 1. Let

g;i dx dx~

= g (dx') + g (aS/ax')(as/axj)dx'dxj (1)

be the metric induced on the surface
(x =S, x', . . . , x") by a Euclidean metric in I"+' and
let

D S= g (a S/ax'axe)dx'dxj

BS
ax J ax'

—S =0 for all j&t',

which means that

be %einhold's metric. Then for all functions S, we have
that g QD S on any piece —more precisely, open
subset —of the equation-of-state surface.

Proof. We assume that g=D S and work toward a
contradiction. The assumption of equivalence requires
that

S,, +(aS/ax')(aS/axe) =(a'S/ax'axe) .

In the present proof we assume that (as/ax')&0 for all
i. In the Appendix we present a proof of the theorem
for the case when (aS/ax') is allowed to equal zero. We
first consider this equation for i&j and rearrange to

II. INDUCING FROM A KUCI IDEAN METRIC

A Euclidean metric in 8"+ '

= I(x,x', . . . , x")
~
x,x ', . . . , x" are real numbers)

cannot induce %einhold's metric D S on single-phase
regions of the equation-of-state surface. This is the con-

ln(aS/ax') —S=a;,
where a; is a function of x alone. This in turn implies
that
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III. INDUCING FRGM A RIEMANNIAN METRIC

The next theorem shows that it is possible, however,
to define a nonconstant (non-Euchdean} metric in 8"+'
which induces the Weinhold metric DtU on restriction
to the equation-of-state surface. Such a metric is not
unique. Furthermore, the space 8"+' equipped with
this metric is non-Euclidean.

Theorem 2. Let

f = g f;, dx'dx' (10)

be a metric on 8". Then there exists a metric

n+1
h = g h;J dy'dyj

on E"+ ' such that f =4'h, where 4 is the map from
8" to 8"+' de6ned by 4(X)=(X,S(X)) and 4' is the
associated map' sending forms on 8"+' to forms on 8".

Proof. We prove the existence of h by providing a re-

cipe for its construction. First we choose a basis U,. of
tangent vectors in 8"+' along the surface (X, S(X)).
We choose u, =4,(BIBx')=BIBy', i =1, . . . , n, and

u„,=B/By" +'=BIBS. While there are many ways to
extend the basis to all of 8"+', we use the translations

p, (y', . . . ,y",y" +')=(y', . . . ,y",y" +'+t). Then we

let

Xu;(y', . . . ,y",S(y', ,y")) .

(12)

Note that this gives global de6nitions for all n+1
independent u;. Define h(u;, u )=f(BIBx',B/Bxj) for
i,j & n and h (u, , u„+i)=5, „+,. Now note that

where each p; is a function of x ' alone. We next consid-

er i =j in Eq. (3) which then takes the form

1+(BS/Bx') =(B S/Bx' ) .
From Eq. (6) we see that

(BS/Bx')= e—(BP; /Bx'),

(B'S/Bx")=e"(BP,IBx')' —e'(B'P, /Bx "),
and using this in Eq. (7) gives

B'P, /Bx "=—e -'
Since this equation must hold for all i and since each
(B P;/Bx' } can only depend on x', we conclude that S is
constant. But in this case D S=0, while g= gdx' .
Thus there is no function S for which g =DiS. ~

The above theorem showed that the Weinhold
geometry on any piece of the surface of equilibrium
states will never equal a Euclidean geometry induced
from the ambient space,

(C 'h )(B/Bx', B/Bx J)=h(e'BIBx', C 'BIBxJ }

=f(BIBx',BIBxI)

IV. DISCUSSION

Extrinsic metrics h could serve to give extensions of
reinhold's metric ofF the equilibrium surface, thereby
including nonequilibrium states. The statistical-
mechanical metric" already does that, i.e., measures dis-
tance traversed in a process passing through nonequili-
brium states. The question of choosing a particular
metric in 8"+' which agrees with the second derivative
metric on the surface then becomes a search for some-
thing universal about the geometry as equilibrium is ap-
proached. For a preliminary result in this direction, the
reader is referred to Ref. 12 where it is shown that the
addition of a constraint always shifts the equilibrium in
an orthogonal direction.

The theorems show that if we try to extend
Weinhold's metric to the space of (x,x ', . . . , x") sur-

rounding the equation-of-state surface, then this exten-
sion geometry is non-Euclidean. In particular, this
means that one is forced to relinquish the natural linear
structure of this ambient space. This structure provides
the meaning of straight-line segment in terms of which
the Gibbsian concept of convexity is defined. The cor-
responding physical interpretation follows from the fact
that the juxtaposition of two thermodynamic systems
hss a state which, in the coordinates of the extensive
variables, is the sum of the two separated states. Ac-
cordingly, it is unfortunate that such linear structure
does not have a clearer place in the representation of the
equilibrium states as a semi-Riemannian manifold.

In fact, such linearity does play a role in the semi-
Riemannian representation. It is reflected in the fact
that one can use the second derivative of S in the usual
extensive coordinates or in any linear combinations of
these coordinates (which will, of course, again be exten-
sive). In any of these coordinates, one will end up with
the same metric tensor. This is, of course, no longer
the case if one allows nonlinear transformations for
which the second derivative matrix and the metric ma-
trix transform difFerently.
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APPENDIX

In this appendix we show that theorem 1 remains val-
id without the assumption that BS/Bx;+0. Let
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U = IXER"
~
tiS /tix; (X)+0 for i = 1, . . . , n ). If U is

not empty, then the calcu1ations in the proof of theorem
I presented in the text su%ce to reach a contradiction.
Thus U is empty and the manifold of concern is a union
of the n sets A; = IXFR"

~

M/tix, (X)=0I. At least one
of these sets must therefore have a nonempty interior by

the Baire category theorem. If we restrict our attention
to a point in the interior of 2;, we find t) S/t)x;tlx =0
for all j. In particular, this is true for i =j and Eq. (11)
gives us I+(t)S/t)x, )'=0. This provides the desired
contradiction.
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