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The thermodynamic geometries of Gibbs, Weinhold, and Gilmore are compared and the bene6ts
of each are painted out along with the structures which must be abandoned in order to reap the
bene5ts. %'hile the measurement of distances is not required {or even meaningful) in a traditional
Gibbsian picture, Reinhold s metric can be used to measure distances in the equation-of-state sur-

face. Using Weinhold's metric for more than a single state of equilibrium necessitates abandoning
a Gibbsian picture of convex surfaces of thermodynamic states, Gilmore s metric, on the other
hand, is compatible with standard Gibbsian thermodynamics. This metric measures distance in

the potential surface of statistical mechanics rather than the equation-of-state surface of equilibri-

um thermodynamics.

I. PROLOGUE II. BACKGROUND

A spirited discussion has taken place in the last few
years concerning possible uses of Weinhold's metric' in
classical thermodynamics. Many authors have used
this metric to measure distances between equilibrium
states of a thermodynamic system. Gilmore has argued
repeatedlyz3 24 that Weinhold's metric cannot be so used.
Rather than proliferate the comment-response format,
the present authors, representing both sides of the con-
troversy, agreed to present the issues in as balanced a
way as possible so that the bene6ts —and dangers —of
adopting one view or the other sre clearly apparent. We
hope that we have succeeded in this task.

Regarding the earlier background of how far one can
go with a geometric representation, Gibbs warned
about the importance of distinguishing "what is essential
and what is arbitrary in a surface. . .." His conclusion,
and that of Tiszs after him, was that the equilibrium
surface had no inherent metric properties. However, in
light of sll the works leading to this paper, ' we can
now see that Tisza's statement, "neither the elementary
nor the Riemannian theory of curvature can be applied
in Gibbs space, in which no physically meaningful
IQetrlc is dcSnsblc did not sntlclpatc thc bcnc6ts of in-
troducing a metric for particular purposes at the expense
of surrendering properties Gibbs emphasized.

In the classical Gibbsian formulation of equilibrium
thermodynamics~~ the set of equilibrium states is
represented by the equation-of-state surface
f(x,x', . . . , x )=0, relating the n independent con-
served extensive variables x ' = U, x = V, x =N I, ...,
x"=N„z with the entropy x =S. This surface is con-
vex and so each of its representations, such as
S=S(U, V, . . . , N„2), U=U(S, V, . . . , X„2),
N„2 N„z(S, U, V, ——. . . , N„3 ) involves a convex (or
concave) function. This means in particular that the ma-
trices of mixed second partial derivatives, or stability
matrices t} S/t)x'Bx'=D S, 8 U/Bx't)x'=D U, . . . , are
negative or positive sernide6nitc. Curvature in this space
is inherited from the ambient space of the
(x,x', . . . , x") in which the surface is embedded.

The stability matrix D U was used by %einhold' in a
bcautlful way as a bookkccplng dcvlcc fo sllmmarizc a
large number of thermodynamic equalities and inequali-
ties. %'einhold used the stability matrix D U as a metric
to introduce sn inner-product structure on the tangent
space of the equation-of-state surface at an equilibrium
point. Once the tangent space was converted to an
inner-product space, the Schwarz and Bessel inequalities
and the Bessel equality were used to derive many of the
standard thermodynamic inequalities. ' The great vir-
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tue of using the stability matrix as metric is that its ma-

trix elements are the standard thermodynamic linear
response functions, such as a, xz, C~, etc.

Three points should be emphasized: (1) Weinhold
worked in the tangent space, (2) Weinhold measured an-

gles but did not compute distances, and (3) Weinhold
showed that his metric formalism for a given state of
thermodynamic equilibrium is precisely equivalent to
Gibbsian thermodynamics. Although %einhold's for-
malism invites a Riemannian generalization of the local
Euclidean metric, it does not demand it.

III. THE MSPUTE

face. The metric used by Ruppeiner was later shown to
be conformally equivalent to Weinhold's metric:
D U = —TD S. ' Since then many authors have
adopted D U or —D S as a metric tensor on the mani-
fold of equilibrium states for a multiplicity of pur-
poses, e.g., calculating correlation volumes, bound-

ing dissipation in rate processes, etc.
In order to introduce a metric structure that is com-

patible with the Gibbsian convex surface representation,
Gilmore introduced a metric on potential surfaces which
exactly reproduced the Gibbsian curvature: D U. In
this construction a thermodynamic potential is intro-
duced,

The crux of the controversy now hinges on the next
step: whether the metric can be used to tie the tangent
spaces at dN'erent points together and thereby define a
global metric structure. Mathematically it is not a ques-
tion of existence but rather of uniqueness which is at is-
sue. Physically the question is whether this particular
metric structure has physical relevance. The con(bet
arises because adopting the metric structure forces us to
abandon a picture based on convex surfaces and to view

the set of equilibrium states as an abstract semi-
Riemannian manifold. We stress that the tao geometri-
cal representations of the set of equilibrium states, one as
a conuex hypersurface and the other as a semi
Riemannian manifold, cannot be used simultaneously
Thus one could think in terms of the "equation-of-state
surface" and interpret the semide6nite character of D U
as expressing the convexity of this surface or one could
think in terms of a semi-Riemannian manifold with D U
as the metric matrix but one cannot haUe both at the
same time.

Gilmore pointed this out ' by inquiring into the
consequences of introducing D U as a metric tensor on
the equation-of-state surface to measure distances, and
requiring that the equation-of-state surface be convex, so
the Gaussian sectional curvature cannot be negative.
Gilmore computed the Gaussian curvature in terms of
the Riemannian metric and curvature tensors, expressed
this result in terms of second and third partial deriva-
tives of the thermodynamic potential (S or U), and
showed that the non-Iiegativity requirement led to a set
of inequalities with physical implications for which there
is no evidence whatsoever.

The dilemma comes from trying to use D U as a
metric on the equation-of-state surface rather than on an
abstract manifold of equilibrium states —that is, by
~anting D U to be too many things. Algebraically, the
second law in either setting requires that the matrix D U
be positive semidefinite. In the Gibbsian framework this
is interpreted geometrically as the convexity of the
equation-of-state surface. In the alternative framework
it represents the semidefiniteness of the metric matrix on
the manifold of equilibrium states. One can still com-
pote curvature' ' on this manifold; in fact such curva-
ture turns out to equal the correlation volume ' and can
have either sign. '

Ruppeiner was the first to use —D S as a metric
tensor to measure distances in the equation-of-state sur-

ll(x', x'o) = U(x') — . (x' —x'o),
Bx 0

where x' is an arbitrary set of extensities, x'0 are equilib-
rium values, and c)U/Bx, =A, '0 are the conjugate intensi-

ties at thermodynamic equilibrium. A Euclidean metric
ds =dU2+g()L, 'Odx') is defined on the ambient space
I"+'=I(U, x)j in which this potential is introduced.
The induced metric is used to define distances in the po-
tential surface. The curvature evaluated at the equilibri-
um (minimum} is the Gibbsian curvature D U. We ein-

phasize that this construction is not applied to the

equation-of-state surface, but rather to the potential sur-
face whose minimum is the only point on this surface
which represents an equilibrium state. This potential
occurs naturally in Gibbs's formulation of statistical
mechanics where it describes the probability distribu-
tion for fluctuations around the thermodynamic equilib-
rium state [p-exp( —0/kT)]. This probability is re-

placed in the Riemannian fluctuation theory~ by a co-
variant path integral formalism which works even for
volumes on the order of one correlation volume.

IV. KMBKDMNGS

A comparable construction cannot be applied to the
equation-of-state surface. That is, it is not possible to
define a Euclidean roetric on the space
I"+'=(x,x', . . . , x") which induces the metric D U
on the equation-of-state surface. The easiest way to see
this is by considering a multiphase region in the
equation-of-state surface. In such a region the stability
matrix D U has at least one "Hat" direction (vanishing
eigenvalue). All distinct states lying on a null line are
nonzero distance apart in the space I"+' but zero dis-
tance apart according to %'einhold's metric.

A Euclidean metric in I"+ cannot induce the

geometry of D U even on single phase regions of the
equation-of-state surface. However, it is possible to
define a nonconstant metric in 1R" + which induces the
reinhold metric D U on restriction to the equation-of-
state surface. Such a metric is not unique. Further-
rnore, the space 8"+' with this metric is non-Euclidean.
This means that one is forced to relinquish the concept
of straight-line segment, in terms of which the Gibbsian
concept of' convexity is defined. These results are prov-
en in the following paper.
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V. DISCUSSION

Gilmore s claim is that it is possible —in fact,
preferable —to formulate classical thermodynamics
without the concept of distance, as done originally by
Gibbs. The important quantity in such a formulation
is the Gibbsian curvature tensor, or stability matrix
D U. A metric formulation is possible on potential sur-
faces. In this formulation the Riemannian curvature
tensor is computed from the induced metric on the po-
tential surface. The Gaussian sectional curvature com-
puted from the Riemannian curvature tensor at the
minimum of the potential 11 is identical with the Gibb-
sian curvature [cf. Ref. 23, Eq. (5.2)]. The metric, and
an analogy with the geodesic equations of motion, has
suggested some possible dynamical properties obeyed by
a system on approach to thermodynamic equilibrium.

Many authors have worked on the implications of in-
traducing the metrics D U or DS t—o measure dis-
tances in the equation-of-state surface. We stress that
the inetric structure on the set of equilibrium states is
only semi-Riemannian as D U is only semide6nite.
Since the directions corresponding to zero eigenvalues of
the stability matrix D U correspond to phase changes, ' a
Riemannian geometry can be associated with any single-
phase region. One can also use the standard construc-
tion of a Riemannian structure from a semi-Riemannian
one by identifying states which can be connected by a
path of zero length. Going to intensive coordinates pro-
vides one way of accomplishing this identiScation.

Many of the consequences of introducing the metrics
U or —g) ~g on the equilibrium surface are now avail-

able. The geometry based on DS, when —restricted to
the states of maximum statistical-mechanical entropy
S,m= —~;lnp;, agrees with the geometry defined by
8 S, tt)p;t)p, =5; /pj, where p, is the probability of
Snding the system in the ith quantum state. %ootters
has shown that this latter geometry gives distances equal
to the quantum-mechanical angle between states.

Lengths of paths thus can be variously interpreted as the
number of states that can be distinguished with a partic-
ular measuring apparatus, as the number of fluctuations
required to traverse the path, and as the square root of'

the minimum dissipation multiphed by the number of re-

laxations in a 6nite-time process. '" The geometry has
been used to extend Auctuation theory down to regions
the size of one correlation length, ' to study dissipation
in Snite-time processes, '" ' to augment renormaliza-
tion-group techniques for the study of critical phenome-
na, ' and to study molecular relaxation phenomena. ' It
has also been extended to irreversible dynamics. ' '7

The metric structure of Weinhold also fits in nicely
with the geometrical picture advanced by Hermann.
In this picture a thermodynamic system is a solution of
the Pfaffian equation dS =g dX in the (2n + 1 )-

dimensional space of variables (X,g,S), where g is the
set of intensive coordinates conjugate to the X. Here
D2$ is the restriction of the two-form gdX; dg; to the
solution surface. A modiffcation of the intrinsic
geometry has been studied by Schlogl which agrees
in6nitesimally, but employs the mixed "distance" func-
tion gbX; hg, for finite displacements.

By comparison, Gilmore's metric structure offers nei-

ther more nor less than Gibbsian thermodynamics. It is
completely compatible with Gibbsian thermodynamics,
and, in particular, the concept of convexity. It preserves
the concepts which must be abandoned if Weinhold's
metric is used to measure distances in the equilibrium
surface. Furthermore, it offers a metric of its own whose
potentialities are still unexplored. These remarks are
summarized in Table I.

VI. EPILGGUE

It is not possible to maintain simultaneously both the
Gibbsian notion of convexity of the equilibrium manifold

and a concept of distance based on Weinhold's metric.

TABLE I. Comparison of the consequences of using the metrices of Gilmore and reinhold to measure distance and determine
curvature.

Metric

Gilmore metric over
potential surfaces

Measure Distance

Asymptotics of relaxation
Geometry Riemannian

Determine Curvature

Compatible with Gibbs's
geometric representation
of thermodynamics

%'einhold metric over
equilibrium manifold

Quantum angle between states
Number of states distinguished

by a measuring apparatus
Fluctuations in a path length
Finite-time processes
Fluctuation-correlation relation
Dissipation
Renormalization groups

and critical phenomena
Molecular relaxation
Irreversible dynamics
PfaSan geometric picture

Geometry semi-Riemannian

Correlation length

Incompatible edith Gibbs's
geometric representation
of thermodynamics
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The takeo are incompatible. If %einhold's metric is used

to measure distances, the Gibbsian picture of thermo-

dynamics must be relinquished. If the Gibbsian picture

is to be preserved, %'einhold's metric cannot be used to
measure distances, but Gilmore's can be. Gilmore's

metric is completely compatible vrith Gibbs's geometric

interpretation of thermodynamics.
Gibbs himself was not above using different geometri-

cal representations. ' Thus it is quite possible that both

representations considered here will continue to remain

of physical interest. It is also possible that there is a

more global perspective from which one could deduce a

synthesis of the taro pictures. Preference of one repre-

sentation over the other must ultimately come from the

physical evidence.
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