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The cubic Schrédinger equation (CSE) (iu, +u,,+2 | u | u =0) is a generic model equation used
in the study of modulational problems in one spatial dimension. The CSE is exactly solvable using
inverse-scattering techniques. Periodic solutions of the focusing CSE (““ + > sign in the above
equation) are also well known to be subject to modulational instabilities. This unique mixture of
solvability and instability allows the development of a complete and explicit analytical theory for
the long-time behavior of the instabilities. Among the results to be discussed are (i) a method for
calculating the growth rates of instabilities around (spatially nonuniform) initial states, (ii) a dis-
cussion of recurrence phenomena for systems with finite spatial period, and (iii) a method for cal-

culating the recurrence time.

I. INTRODUCTION

An important class of problems in nonlinear physics
concerns the propagation of disturbances in a nonlinear
medium. Examples include Langmuir waves in strongly
turbulent plasmas, nonlinear optics, and the theory of
ocean waves. Of particular physical importance in such
cases is the question of stability: Is a given wave train
stable under perturbations, or will it evolve into some-
thing very different from its initial form? A common
process in nonlinear wave propagation is self-
modulation. This occurs when the wave is large enough
to ‘‘distort” the medium it is propagating through.
Self-modulation can, in some cases, lead to instability so
an understanding of its effects is important.

Unfortunately, in almost all the situations of interest
in physics, the mathematical equations which describe
the nonlinear evolution of the wave are intractable
analytically, and not generally amenable to numerical
study because they are fully three dimensional and in-
volve a wide range of space and time scales.

One common method of attack in such situations,
which is the approach we follow here, is to study model
systems which are simplified idealizations but which still
correctly capture the behavior of the physical system of
interest. The model we use to study self-modulation is
the focusing cubic Schrodinger equation (CSE),

iu,+u +2|u|?u=0. (1

This nonlinear PDE arises in a wide variety of fields,
such as nonlinear optics,"? the theory of deep water
waves,? and plasma physics.*

In these contexts, as in most of the others where the
CSE has arisen, the solution of Eq. (1), u (x,t), describes
the slow space-time evolution of the envelope of a fast
oscillation. For example, suppose A4 (x,?) is the ampli-
tude of a surface wave on deep water and also that
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A (x,t) is nearly a plane wave with some slow modula-
tion. We expand 4 (x,?) in an asymptotic series which
has as its leading term

A(x,t)=u(x,t)e** @ Lcc.

(where c.c. means complex conjugate). Here we are re-
stricting attention to one spatial dimension. This expres-
sion is inserted back into the evolution equation for
A (x,t) (in this case the Stokes formulation of the
water-wave problem) and this evolution equation is aver-
aged over the fast space-time oscillations. What is left is
the evolution equation for the wave envelope.

Equation (1) and its relevance to water waves was ex-
amined in a series of numerical and laboratory experi-
ments by Yuen and Lake.> They found excellent agree-
ment between the numerical predictions of Eq. (1) and
wave-tank data in the case where the wave propagation
was essentially one dimensional (i.e., a long thin wave
tank). The higher-dimensional generalization of Eq. (1)
has proved to be far less useful for describing higher-
dimensional processes.

The CSE appeared also in the work of Zakharov* on
Langmuir turbulence in plasmas. In this case, because
of the complex array of physical processes taking place
in plasmas it is not clear that the CSE has direct applica-
tion, but it has been used to gain qualitative insight into
the energetics of Langmuir turbulence.®’

The CSE also appears in nonlinear optics'® where, for
example, it describes the envelope of an electromagnetic
wave propagating in an optical fiber. This is essentially
a one-dimensional problem and here again the one-
dimensional CSE [Eq. (1)] gives excellent quantitative
predictions when compared with laboratory experi-
ments.’

By now it should be clear that the CSE has general
applicability to problems in self-modulation. In fact, us-
ing heuristic arguments, it can be shown that the CSE
will describe the nonlinear self-modulation of wave
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trains under very general assumptions about the nature
of the nonlinear and dispersive properties of the medi-
um. 1011

Without a doubt, the two most important physical
predictions of Eq. (1) are (i) the existence of solitons
when the wave profile is spatially localized ( |u | —0 as
x —>t o) and (ii) modulational instability for periodic
boundary conditions [u (x +d)=u (x) for some d].

The existence of soliton solutions of the CSE was
demonstrated by Zakharov and Shabat.'> They showed
that the CSE could be solved exactly by using a
modification of a method developed by Gardner, Greene,
Kruskal, and Miura!® to solve the Korteweg—de Vries
equation

u,+6uu, +u,, =0.

(This method, now called the inverse-scattering method,
is described in the Appendix.)

The most important physical property of solitons is
that they are localized wave packets which survive col-
lisions with one another. This has been observed experi-
mentally in water waves.® In optical fibers “breathers”
have been observed. (A breather is a bound state of
several solitons traveling at the same speed. They have a
very distinctive envelope oscillation. See Ref. 9 for the
comparison of numerical predictions and experimental
data.)

Solitons, however, are modulationally stable. When
periodic boundary conditions are enforced the possibility
of instability arises. By instability we mean the follow-
ing. Suppose we start with a solution of Eq. (1). Call it
u(x,t). At t=0 add a small perturbation to it,

#(x,0)=u(x,0)+e€d(x) .

Now we ask, do # and u stay “‘close” to one another
in some appropriate sense, or does @ diverge from u as
time progresses? If # and u initially grow apart exponen-
tially fast in time, the perturbation is unstable.

The standard way to analyze this problem is to linear-
ize Eq. (1) about the solution u (x,t) and solve a linear
eigenvalue problem. This gives us the various unstable
perturbations ¢(x) and the growth rates for these pertur-
bations. Let us look at a concrete example. Suppose
our initial solution to the CSE is the envelope of an ex-
act plane wave in one dimension. Such an envelope
solution would look constant in x. It is easy to show
that u (x,?) will then have the form

vu(x,t)=ae2""2‘

where the parameter a is real. Let us perturb this,
fi(x,t)=u [1+6( A |¢+ A2¢*)] »

where €, A,, and A4, are real numbers (€ <<1), and
¢=-explikx —iQt). Here k is real, but Q may be com-
plex. This ansatz is plugged into Eq. (1) which is then
linearized. This leads to

[(2a24+Q—k?)p+2a4*14,
+[(2a2—Q* —k?)¢* +2a%$]4,=0.

The complex conjugate of this must also hold,

[(2a24+Q* —k?)p* +2a%p]A4,
+[(2a*—Q—k?)p+2a%¢*]4,=0.

For there to be nontrivial solutions of this pair of linear
equations for A, and A, the determinant of the
coefficients must be zero. This gives our dispersion rela-
tion

Q=+k(k?—4a?)/? . 2)

For long wavelengths, |k | <2|a |, the modulation is
unstable; ¥ and # diverge exponentially fast in time.

For more general initial conditions [e.g., if u(x,0) is
not constant in x] the general procedure is the same,
however this now results in a nontrivial eigenvalue prob-
lem which is difficult to solve analytically. In fact this
calculation has up to now only been carried out for the
traveling wave (or “cnoidal” wave) solution of the CSE.
These traveling wave solutions are constructed by as-
suming u (x,t)= A (x —vt)e'¥*", Here 4 is a real am-
plitude function and ¢ is a phase. This ansatz is plugged
into Eq. (1) and ordinary differential equations generated
for A and ¢¥. Such solutions have elliptic functions as
envelopes (hence the term cnoidal). The stability of such
solutions was studied by Walstead.'*

While linearizing to study stability is an enormously
useful technique, the drawbacks of such an approach are
sizeable. (i) As the complexity of the initial state in-
creases the linearized problem rapidly becomes difficult
to analyze (without resorting to numerics), and this
prevents any generic understanding of the stability prop-
erties of nontrivial solutions. (ii) Even if problem (i)
could be overcome by diligence and hard work the solu-
tion gives us information about the instability only for
short times (i.e., only as long as the linearization is ap-
proximately correct). It tells us nothing about the long-
time behavior, which is of course what we really want to
understand; the linear analysis is merely a first step 1n
the right direction.

These points, while obvious to most readers, are
brought up to emphasize that for Eq. (1) we can do
much better. Using the inverse-scattering technique to
solve the CSE with periodic boundary conditions has
proven to be more difficult than the soliton problem but
it is now possible to generate a very large class of spa-
tially periodic solutions to the CSE.!""!>1¢ While there is
still no claim to be able to solve the initial-value problem
in general there is excellent evidence (which we discuss
in the body of the paper) to support the argument that
the class of solutions that can be constructed contain all
of the periodic solutions which are physically important.

The techniques described below allow the construction
of approximate solutions which are uniformly valid in z.
This allows one to follow the instability until it saturates
and well beyond. The errors associated with these ap-
proximations are unimportant in a structural sense. To
clarify this, Ercolani, Forest, and McLaughlin—in stud-
ies of the periodic sine-Gordon equation'’—have shown
that linear instabilities of soliton systems have a pro-
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found geometric interpretation. Solutions which are
linearly unstable to perturbations of initial conditions are
structurally unstable geometrically. A small change in
initial conditions produces a finite change in the underly-
ing topology of the function space associated with these
solutions. ‘

The solutions of the CSE developed below include
these new degrees of freedom. If all possible instabilities
have been taken into account this new solution will be
structurally stable to any further perturbations.

The solutions we deal with here are called N-phase
wave trains since they can be represented by hyperellip-
tic functions which have N different phases. The theory
of hyperelliptic functions is mostly unknown to physi-
cists, and we will not delve more deeply into it than is
needed to explain our results.

The existence of these exact solutions gives us a
powerful new tool for the analysis of the modulational
instability. This combination of dynamical instability
with exact solvability is rare in mathematical physics.
Such a combination occurs for those soliton systems
which are related to scattering problems which are not
self-adjoint. The sine-Gordon equation'’ is another im-
portant example. Such opportunities for complete
analysis should be exploited to the fullest extent possible.
With this new tool we can construct exact solutions
which initially start as close as we please to a plane wave
(for example). By examining the limiting (¢ —0) of the
exact solution it is possible to recover all of the results of
the linear analysis: the existence of instabilities and
their initial growth rates.'® The new approach, however,
gives more. Since the exact solution is known we can
follow the instability into the nonlinear stage with ease
and explicitly follow the long-time behavior.

The same approach can be used to study perturbations
around arbitrary initial states. As in the linear analysis
the mathematics rapidly becomes difficult, but for com-
parable amounts of numerical work the new approach
gives much more information about the long-time behav-
ior of the system.

For example, the present method helps to explain the
recurrence phenomena seen in numerical studies of the
CSE.> By showing that the perturbed solution can be
well approximated by a finite-dimensional hyperelliptic
function (see Secs. Il and III) this immediately implies
recurrence, since such functions are quasiperiodic. But
it also gives us a method for computing the recurrence
time.

The emphasis in this paper is on the physical aspects
of the theory. Many of the basic mathematical details
have been treated elsewhere'"!>1¢ 5o they will simply be
summarized in the Appendix. The application of these
mathematical techniques to the study of the modulation-
al instability of the CSE has been reported only briefly
elsewhere!® so the details are given here.

Conclusions similar to those reported here were ar-
rived at independently by Ercolani, Forest, and
McLaughlin'” in their studies of the periodic sine-
Gordon equation. The approach reported here, howev-
er, is different from that in Ref. 17; here we examine the
limiting behavior of an exact solution while in Ref. 17

the emphasis is on the use of “squared eigenfunctions”
as a basis for the linearized stability analysis. Ercolani,
Forest, and McLaughlin also paid strict attention to the
geometric aspects of the problem.

The approach used here leads not only to the charac-
terization of which parts of the degenerate spectra are
unstable to perturbation, but also leads to a method for
predicting the recurrence time.

II. MODULATION INSTABILITIES: PLANE WAVES

As promised in the Introduction, we are now going to
apply the results stated in the Appendix to the study of
modulational instabilities. The reader who is unfamiliar
with the inverse-scattering method may wish to glance
at the Appendix before proceeding.

The simplest case to study is that of a perturbed
plane-wave solution of the CSE. By ‘“plane-wave solu-
tion” we mean that the CSE solution is the envelope of a
plane wave. The standard linear analysis of this case
was discussed in Sec. I where we derived Eq. (2), the
linear dispersion relation for the perturbing sinusoidal
disturbance, [Eq. (2)]

Q=-+k(k2—4a®)!? .

Let us set a=1 without loss of generality. Now our ini-
tial plane-wave solution of the CSE is

u(x,t)=e?" .

We imagine this placed in a box of length d (d < ).

Our approach to the study of the stability of solutions
to the CSE is as follows. We are starting with an exact
N-band solution to the CSE (we shall see that the plane
wave is what is called an N=0 solution). We can find
the main spectrum associated with this solution. Since it
is an N-band wave only a finite number (2N + 2) of the
main spectrum eigenvalues will be nondegenerate. We
consider all of the degenerate eigenvalue pairs to be po-
tential degrees of freedom which have been “frozen out”
by the special initial conditions. Under perturbation of
the initial conditions the degeneracies will be broken and
new degrees of freedom will appear. We study the sta-
bility of these new degrees of freedom by constructing
the new exact solution of the CSE which includes many
of the new modes (in general, of course, there would be
an infinite number but, as we shall see, it is possible to
neglect the majority of them).

A. The main spectrum (unperturbed)

Our first step, therefore, is to find all of the main spec-
trum associated with u (x,t)=e?’. We do this as fol-
lows. Plug u(x,0) into L (u) (see the Appendix) and
solve L®dP=Ad subject to the initial conditions
®(0;1)=1 (where 1 is the 2 X2 identity matrix),

tiax 1

O=AP, P(0,A)=

—1 —ia 0 1

X

It is straightforward to check that
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>\1
X i
F
2 -3
)\R
[ ]
X -i
FIG. 1. Unperturbed spectrum of the plane wave

u (x,t)=exp(2it). The nondegenerate main spectrum is shown
at A==i. The degenerate main spectra are the other crosses,
while the auxiliary variables are shown as circles.

—-A 1
1 A

Here k2=1+A%

coskx 0
0 coskx

. sinkx

P(x;A)= +i X

is the fundamental solution matrix.
The monodromy matrix is

M\)=®(d;A)

and the discriminant A(A) is given by the trace of the
monodromy matrix,

A(A)=2cos[d (1+A%)!/2] .

Recall that the spectrum splits into regions of stability
or instability depending on the behavior of A(A). In this
case A(A) is real when (1+2A2%)!/2 is either real or purely
imaginary. This occurs for A either real or purely imagi-
nary. Along these two lines we have —2 <A(A)<?2 for
all real A and for A=ia(—1<a<1). These are the
bands of stable eigenvalues. The main spectrum consists
of those A where A(A)==2. This happens when

172

—1 (3)

d2

From this formula we can glean some important infor-
mation. For all n£0 (n =£1,%2,...) the eigenvalues
are doubly degenerate (see the Appendix). So long as d
is finite it is clear from Eq. (3) that only a finite number
of degenerate pairs will appear on the imaginary axis.
This will turn out to be very important. At n=0 we
have Ag==i. These two eigenvalues are nondegenerate.
One interesting way to see this is to show that only one
Bloch eigenfunction exists at A=2i. Consider the fun-
damental solution matrix,

10
01

) +1 i
O(x;A==xi)= +x |, T

Notice the linear behavior in x. The Bloch eigenfunc-
tion must be constructed by a linear combination of the
column vectors of ®. Only one such linear combination
is periodic; If we add column 1 to (+i) times column 2

we get

1
+i

Any other independent solution at A==i must contain
the x dependence, which is aperiodic. Therefore the ei-
genvalues A==/ are nondegenerate.

This means that what we shall call the zeroth-order
spectrum—namely, the spectrum of the initial solution
without any perturbations—is like that shown in Fig. 1.
If we now perturb the initial conditions we will, in gen-
eral, break all of the degeneracies.

B. The main spectrum (perturbed)

We assume that under the perturbation
u(x,0)—u(x,0)+ed(x)

all of the spectrum moves O (€). We now wish to con-
struct a typical solution to the CSE which has a spec-
trum of the type shown in Fig. 2. The numbering is
chosen for ease in the later computation. For
imaginary-axis modes ¢€; is assumed real [Fig. 2(b)] while
for real-axis modes €; is assumed to be imaginary [Fig.
2(c)].

The first assumption concerning the imaginary-axis
modes is made in order to simplify the analysis. The
only symmetry required of the main spectra is that they

- —
o 0 0 R
=Ny .
)‘2= —>\I/I/')( -i
0 (O) o
xi\ >\k+ekx
(o} XO )3 -€ X (o}
Nim€i | A+ KRN,
(b) (c)

FIG. 2. (a) Typical spectrum after perturbation. No auxili-
ary variables are shown. The dots represent the numbers AD.
(b) A typical imaginary-axis mode. (c) A typical real-axis
mode.



37 NONLINEAR SELF-MODULATION: AN EXACTLY SOLVABLE MODEL ... 819

appear in complex-conjugate pairs. Extending the
analysis to the more general case where €; is not purely
real is straightforward. The only change occurs in the
phases of the theta function [see Eq. (A32) in the Appen-
dix and the discussion which follows it].

When the degeneracy of real-axis modes is broken,
however, they become a complex-conjugate pair of spec-
tra, so the assumption that €; is imaginary for real-axis
modes is always valid. Notice also that the numbering is
chosen so that the imaginary-axis modes appear first,
and then the real-axis modes.

Before constructing the desired solution we must close
back up all but a finite number of these nearly degen-
erate double points. We can include as many as we want
in the analysis, as long as we keep only a finite number.
We shall see at the end of the computation that this is
acceptable on physical grounds since we shall show that
the degrees of freedom corresponding to double points at
asymptotically large |A| (for real A) will always be
stable and therefore neglectable. In this particular case
(plane waves) all of the real axis modes are neglectable if
we are concerned only with questions of stability.

C. Construction of exact solutions
which start “near” a given plane wave

To construct such a solution of the CSE we must
proceed with care since the degenerate limit (where we
“pinch down” a pair of eigenvalues) is a singular limit
for the theta functions. We need to take the limit in
such a way that we still get usable results at the end.

In what follows we construct these solutions in a
step-by-step manner. Given the general structure of the
main spectrum, do the following.

(i) Choose appropriate holomorphic differentials and
loop cycles.

(ii) Compute the matrix of a periods.

(iii) Compute the matrix of b periods.

(iv) Compute the 7 matrix. In the plane-wave case
this is trivial since, using the choice of basis described
below, the B matrix becomes the T matrix as e —0.

(v) Construct the Abel map and from it find the wave
numbers and frequencies.

(vi) Construct the theta function, and thereby the solu-
tion of the CSE.

The key is to choose the correct basis for the holo-
morphic differentials and the correct a and b cycles.
The appropriate bases simplify the calculation tremen-
dously. We will call the new basis of holomorphic
differentials the “modulation basis” since it is also cen-
tral to the general modulation problem. The modulation
basis is a linear combination of the old “‘standard” basis,

I1 (A—A2)dA
— 1 0y271/2.m ()
dUJ—Zm,[H-(Aj)]

R(A) ’
j=12,...,N

N
RM)=(14+A)"2 T [(A—AL —€ (A —A% +€,)]'2
k=1

FIG. 3. Positions of the branch cuts and choices for the a
and b cycles. The reader should imagine superimposing Fig.
2(a) on this diagram. Cycles a, and a, lie near the imaginary A
axis, a; and a, near the real A axis. Note: A dashed curve im-
plies the path is on the lower sheet of the Riemann surface.

The reason for this choice of basis becomes obvious
when we take the limit as e—0 (here and in the rest of
this paper the symbol lim,_,, is used to symbolize the
limit as all of the €, ’s are taken to zero simultaneously),

dA
(A—AN(1 4212

1 __1_ 04y2711/2
fm 40 = 3 1+ 037

Thus, in this limit, each differential “sees’ only a pole at
one double point and the branch points at +i.

The appropriate a and b cycles are shown in Fig. 3.
This figure looks complicated, but it will simplify when
we take the small-e limit.

Since the loop a; surrounds /\j—’ we have

lim 4, =l du, = limdU, =6, .
sl—r-% ki el—llr(l) f“j k f“, Elvl"l’%) k ki

(This is true because if a; does not enclose a pole we can
shrink the contour down to zero.)

Now the advantage of using these bases for the
differentials and loop cycles becomes apparent. As
€—0, matrix A4 automatically goes over to the identity
matrix [to O(€)] so the differentials approach the nor-
malized differentials [to O (€)]. This also means that

P_I.I})Bj" =7 +0(€) .
However, this limit is singular so we must be careful.

The off-diagonal terms of B, are well behaved and can
be integrated analytically,
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lim B, = fbj lim Uy, j#k
dA

__1 0427172
T = g T fbj (A—AQ)142%)172 rote.

As mentioned earlier, the integrand does not contain any
information about the poles anywhere else but at AJ.
The situation is essentially that of Fig. 4. We have indi-
cated two generic possibilities. In Fig. 4(a) the b cycle
does not encounter the pole (i.e., if we deform the con-
tour so that the paths on the top and bottom sheets lie
over one another we do not “hit” the pole). In this case
the b integral immediately reduces to an elementary in-
tegral.

In Fig. 4(b) the b cycle encounters the pole if we at-
tempt to deform it as in 4(a). This is fixed by deforming
the contour as shown so that it passes through the
branch cut above + i instead of below —i. Now this
can be reduced to an elementary integral. For double
points and poles on the real axis the approach can be
generalized in an obvious way.

An important point to note is that the off-diagonal ele-
ments depend only on the positions of the original dou-
ble points [to O (€)]. These in turn are determined only
by d, the length of the box. Thus the off-diagonal terms
of the 7 matrix contain no information about the initial
perturbation. As we will now see, only the diagonal
terms are affected by the initial perturbation.

The diagonal terms of the 7 matrix are singular when
€=0. To find how they behave near e=0 consider

1
Tkk="2—1r‘lf[1+()\-2 )12

dA
X Ol(e) .
f”k §[(A—k2)2—ei](1+k2)}‘/2+ €

Suppose k2 is on the imaginary axis. By considering
Fig. 5 we can see
[1+(?»2 2112 A9
Tk = l2 ]

[ +51,

1

2mi

dA
X O(
(A P—e a7z 7ot

1 [1+(A2)2]l/2
2 i

)»2 dr
X Ofe) .
f,,- (A P—el 1+ Al 12 O

The integral in the second term is elliptic, but we can
make use of the asymptotic form near €, =0,

Tk = —;’T—ln{ekl+0(1)+0(e),

NI'—

where O(1) is the contribution from the nonsingular part
of the integral. For singularities on the imaginary axis
this O(1) contribution is purely imaginary. For A on

lim
€~0
—_—

QY

°

o
)\kO

=

>o

-
o
Y0

(a) (b)

FIG. 4. Evaluation of a typical off-diagonal element of 7;.

the real axis we can write the integral as

0
kk

S

!

(where the second integral is along the real axis). In the
first integral we can take €, =0 (unless A} =0, which is
not true in general; if A2 =0 the analysis needs to be
modified, but in fairly obvious ways).

The first integral can be done easily. The second in-
tegral is purely real (recall that for real A} we have ¢,
purely imaginary). Putting this all together we have

ek = —;’T—ln|ekr+i0(1)+0(ek)

N |

(for AY imaginary) ,
Tkkz——}r-ln L€ | +i0(1)+0(e;)
(for AY real)
Ty =10(1), j+#k .
As €—0 the 7 matrix becomes logarithmically singu-

lar along the diagonal.
What about the arguments of the theta function W;?

Xok
f — 2/ + |/2f
bk - a,

FIG. 5. Evaluation of a typical diagonal element 7.
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We have

N fy(x,)
Wix,t)= ;
0= 3 fpo du,

(A—=A2,)dA
@D N e ,,,E,.) "

2wi K1Y Po

R(A)

A calculation similar to the one leading to Eq. (A18) in
the Appendix shows

dWJ' —1 0)211/2
= [1+@R)TF7,
kj=—2[1+(A9)°]'"?, )
dw;,  =2[1+)°]V2 [ W

= 1 A, — A%,
dt ™ 2k§l y m(z;éj) !

for j=1,...,N. (The first sum does not involve the
branch points at +i which have canceled out.) As e—0
almost all of the terms in the two summations cancel one
another and we are left with

dw;
dt
Q;=—4AJ[1+ (A7) 2+ 0(e) .
This leads to
Q;=xk;(k}—4)'*+0(e), j=1,...,N. (6)

= =201+ 40
(s)

Thus, reassuringly, we get that (as e—0) the wave num-
ber and frequency arguments of the theta function are
related to one another through the linear dispersion rela-
tion [Eq. (2)].

The perturbations (there are N of them) separate into
two distinct types. Using Eq. (5) we see that the real-
axis degeneracies have (}; real, while the imaginary-axis
degeneracies have (}; imaginary. Notice these corre-

spond precisely to thé linearly stable and linearly unsta-
ble wave numbers, respectively. As we shall see in Sec.
III, this is a general result. The degeneracies on the real
axis are linearly stable, while those off the real axis are
linearly unstable.

With all of the necessary calculations done, it is now
possible to write down a solution of the CSE which, at
t=0, looks like a slightly perturbed plane wave. Using
Eq. (A31) from the Appendix we see

2 OW ™ | 7)
ow- |1’
Wi=(1/2m)k;x +Q;t +87) .

u(x,t)=e
(7

Here (see Appendix) the external phase exp(ikyx —iwgyt)
has simplified to give us our zeroth-order plane wave
exp(2it) and

w0t

“00 U +OE).

T _
8j=—mr;j+m+2m fu
We now wish to show that 8,-i is real. As mentioned ear-
lier and in the Appendix the initial points u;(0,0) must
satisfy a constraint. The general form of the constraint
is given in Refs. 11 and 19. In the present situation we

know that for u (x,0) to be nearly a plane wave we must
have

This is because at €; =0 this degree of freedom is frozen
out. The position of u;(0,0) within the band can be
found as follows. The initial conditions u;(0,0) and
| 4(0,0)| must be chosen so that the function

fM)=V'P +gh

is a finite polynomial in A (see the Appendix for the
definitions of P, g, and h and Refs. 11 and 19 for proof
that this constraint is necessary and sufficient). Consider
the case where two conjugate imaginary-axis modulation
bands are present and they are completely degenerate.
The generalization to real-axis bands and more degrees
of freedom is straightforward. In this situation the poly-
nomials P, g, and h take the form

P(AM)=(1+AA—ADX A+,
g=i(A=ADA+1D),
h =i A—=ANA+A9) .

Here we have put |u(0,0)|=1 and u,(0,0)=AS,
1,(0,0)=A3= —A9Y; therefore,

fFM)=VP +gh =cMA—=ADA+AY) (o==1).

Such initial conditions and spectra have u j(x,t)=)»? and
| u(x,2)| =1 for all x and ¢t. By breaking the degenera-
cy in the roots of P(A) while still keeping the roots of
f (1) fixed we force the u;(0,0) to move away from }»?.
By computing their new position as a perturbation series
in €; we find

1#;(0,0)=A7£[1+(A9)’]'%; +O(€}) .

A similar result is obtained for real-axis bands. The
modifications due to more bands being present are
O(€?). For small but finite €; the spatial evolution of
such p; is a simple oscillation between the nearby
branch points with a wave number determined by k? (see
Ref. 11). Because u j(0,0) lies near )»? we can write

0

wt }\j to
00 4Ui= fuj(o’o)deﬁ— fk? au; .

For u;(0,0) lying on the line between k? and )L?—{—ej or
7\?——@ the first integral on the right is real. In fact, the
first integral on the right is simply a fraction of the cycle
a;.
JThe second integral is, up to a real constant of O(1),
equal to 37;;. This can be seen by taking the path of in-
tegration to be the real (imaginary) axis for )»? real
(imaginary). The choice of sheet is fixed so that the
singular part of the integral cancels the similar term in
8;. Therefore 8; are 2N real constants of O(1). In what
follows we do not need the explicit form for Sf but shall

only need the property of reality.
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D. Examination of the behavior of the exact solution

Let us look more closely at Eq. (7). Expanding the
theta functions using the representation given in Eq.
(A19) in the Appendix we see

owW*|r)

my=—ow

explifi -kx +im -Qt +im -8 *
+im-T-m) . (8)

Where do the dominant terms come from in the theta
series? If we take the magnitude of any individual term
in the summation we find

exp(2mifi - W = +mimii -1-7)
|
=exp[ -7 -(ImQ)t —7 -(Imz)-m], (9)

where (Imr) is the imaginary part of the = matrix (which
is positive definite). At t=0 we have

| exp(2mifi - W * 4mim -7 ) | =exp[ —mm -(Imz)-m ] .

For small € we get

N N
mm -(Img)-m = mym Imzy ~— 3 miin|e; | .
k=1 =
Therefore (at 1=0)
774 N 2In | ¢,
| expQmim -W * +mim-zm)| ~ 3 Qi ’
j=1

which is O (€) or smaller unless all of the m ;s are zero.
Thus

OW*|7)=140/e)

at t=0. We can find the first-order (in each ¢;) contri-
bution to the theta series easily. It comes from those
terms in the expansion [Eq. (8)] which have one of the
m;’s equal to £1 while all of the others are zero. Col-
lecting this together we have

N
BOF*[1=1+2 3 |¢;|coslkyx +d[)+0(e])
=

where d ji is a set of phases. This gives us (still at t=0)

6w~ |7)
(x,0)=
= w1

N
=1+2 3 |¢; |cos(k;x +a;)+0 (€,
j=1

where a ; are constants. This shows that, at =0, the ex-
act solution we have constructed looks like a uniform
solution (u=1) plus a collection of sinusoidal perturba-
tions of O (e).

As time moves forward, this situation changes. If
there are imaginary-axis modes present, then the vector
ImQ will have the following form:

Imﬁ:(YI’_YIYYP_YD s
+0(e),

)?/n 7—7”,0,0, .. ,0)

where the y’s represent imaginary-axis modes and the
zeros represent real-axis modes. We have purposely
numbered the basis differentials so the imaginary-axis
modes would appear first. Let us go back to Eq. (9) but
now allow ts£0. The magnitudes of the various terms in
the theta series are determined by

¢(m)=m -(ImQ)t +7m -(Imz)-7 .

The larger this term is (in a positive sense) the smaller
is the contribution to the theta sum. Where is it a
minimum? Let us treat M as a vector of continuous
variables and find ming(m ),

d

om;

¢(m)=0 (for each m;) .
This implies

N
(ImQ;)t +27 3 Im7y;m;=0.
j=1

Therefore ¢(7 ) has a minimum at

Fiolt) = — = (Imz)~ (Im@)r . (10)
2T
Since ¢(7 ) is a quadratic form its level sets (in 7 space)
are (N —1)-dimensional ellipsoids whose principle axes
and radii are determined by the eigenvalues and eigen-
vectors of the matrix (Imr). For small enough e this
matrix is nearly diagonal with diagonal elements,

(Im‘r)kk_—%ln|ek | +0(1).

Therefore

(Im7)j '~ —m(1/In | € | )8
and

mo;(t)~1[(ImQ;)/In|¢; | ]z .

This shows that in the stable subspace (Im(};=0) the
dominant term always comes from m;=0. This means
that the contributions to the theta series from the stable
subspace are always O (€) or smaller.

With this comment in mind we can now perform a
further truncation in the theta-function representation of
u (x,t). Since the real-axis modes do not make a contri-
bution greater than O (e) we will neglect any contribu-
tion they make to the theta series.

To examine the recurrence properties of such solu-
tions it is best at this point to examine a simple case in
some detail. Let us assume there is only one pair of un-
stable modes present. The theta function in this case
looks like

© 0

owWE|in= 3 >

my=—oc my=—c

exp(ifi -kx +im -Qt +im -8+

+mim-Tm) . (11)
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The vectors k and Q look like

1
-1

J, Q=iy
with
y=|k(k?*—4)"?| for k <2 .

The (2X2) matrix 7 takes the form

11 i
—+— |1 0
2-+-7T|ne|
T= .
= 1 i
0 —+—1
2+vjne|

+i0(1),

where here O(1) represents a real positive definite sym-
metric matrix with entries of order unity. The function
¢(m ), which determines the magnitude of the various
terms in the theta series, is given by

¢ )~ -(ImQ)t 477 -(Img)-77 ,
d(m)=yt(m;—my)+ |Ine|(m?+m?).

This has a minimum at

The level sets of ¢(77 ) in this case are approximately cir-
cles centered at #1,(¢). This point moves along the diag-
onal line indicated in Fig. 6. As shown earlier, at t=0
the point 7iy(¢) is at the origin and the only important
term in the theta series comes from /7 =0.

There are two sets of important times as 7, traces
out its path: (1) when m,(¢) is at a lattice point

A m,
,,,,, ™~
V’ \\\
7 N
S
/
/ (00) - ==+ 4,0 \ m,
vé - ~ N -
/ X N \
/ 4 \ \
/ =< \ \
! / — N \ \
] ! ' M, |\ \ \
| | ! ol [ |
1 \ L { ] I
\ V(0,1 -0 g
‘\ \ S ,’, I’
\
\\ \\\ » '/
\\ ",
N -~ S/
N
N s,
~ rd
-~
\\\ —’/

FIG. 6. Diagram of the path followed by 7,(¢) in lattice
space. The terms in the theta series come from the integer lat-
tice. iy(¢) [the minimum point of ¢(77 )] is the large dot. It
moves along the line shown as time varies. The approximate
level sets of ¢(7 ) are shown as dotted circles.
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(t =2n | In€| /y) and (2) when 7i(¢) is midway between
two lattice points [t =(2n +1) | In€e| /¥ ].
When m(t) reaches the first lattice point we have

—1
ﬁo(t])= 1

Going back to Eq. (10) we see that at ¢t =¢,,

iyt )= —(Imz)~(Im@)r, ,

2
which implies
ImQt, = —27(Imz)Ai = — 271 o+ 2m(Rer)m,, .

Using

Rer=

1
210 1
we see that ImQt, =2777 ,—7#,. Therefore

W (x,t,)=W *(x,0)+1m,— L7,
and

O(W=(x,t,) | T)=0(W *(x,0)+Tmy—imq | 7) ,
and using a slight generalization of Eq. (A21) we find

O(WE(x,t)) | T)=¢T(x)0(W*(x,0)—Lm, | T) ,
where

¢E(x)=exp[ —ifi g (kx +8 5)+miffig1-7,] .
The solution of the CSE at ¢t =¢, is [using Eq. (7)]

", )=e2itle—im0~(8‘—8*)

(W~ (x,0)—1mq | 7)

X .
(W *(x,0)—1my | 1)

Since & © has real entries both terms out front are simply
phases. The arguments of the theta functions are shifted
by a real vector. If we ask what the dominant terms are
we find, once again, that only the term 7 ‘=0 [see dis-
cussion preceding Eq. (A21)] is O(1), all others are O (€)
or smaller. The system has returned (with a phase shift)
to the initial plane-wave state. Thus even though indi-
vidually the theta functions have exponential growth in
time, because of their special quasiperiod properties and
the fact that the solution u (x,t) is a ratio of theta func-
tions, the initial state will recur.

At t =2t the arguments of the theta functions will be
shifted by an integer in each argument so, using Eq.
(A20), the theta functions have exactly returned to their
values at ¢r=0. The external phase of u(x,?) has
changed, but the modulus, |u(x,?)|, has returned to its
initial value,

[u(x,2t))| =|u(x,0)]| .
Thus the modulus is periodic with period,

T =2t,=(4w/y)Im(r;,—7,)~4|In€e| /vy .
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Now consider the case when 7iy(t) is midway between
two lattice points. For instance, suppose #i,(t) has
moved from m=0 to the middle of the first adjacent
square. Then, since the level sets of ¢(7 ) are nearly cir-
cles, and since ¢(0)=0 we have that each corner of this
first square must have ¢(#)~0. Thus all four terms
from these lattice points in 7 space have unit magnitude
in the theta series. This is the time when the instability
“saturates.” This time is

t=Im(r) —7,)/y~|In€e| /v ,

which is just ¢, /2. This agrees with an estimate of the
saturation time of an instability given by purely linear
arguments. For example, suppose a(¢) is the amplitude
of an exponentially unstable mode. Assume it starts
with amplitude € and has a growth rate of y. Now ask,
how much time will it take for a (¢) to reach order uni-
ty? We have

a(t)=ee’",

a(t)~1—t,~|Ine|/y ,

which agrees with the result given above.

Since we can always shift our origin in 7 space we
choose to do it in such a way that the point #,(¢) is al-
ways inside the square formed by the origin and the
three points,

1
K

This we call the “unit cell” and, from the arguments we
have already presented, we can see that only those terms
in the theta series which come from the corners of the
unit cell need be evaluated. All of the other contribu-
tions are always of O (€) or smaller. A plot of this solu-
tion, using the theta-function representation, is shown in
Fig. 7.

m, 1

0

0
1

m,

FIG. 7. Typical solution of the CSE with two unstable
modes present. The characteristic times, ¢, and t,, are defined
in the text.

FIG. 8. Typical solution of the CSE with ten unstable
modes present. Notice the recurrence property which is gener-
ic, as discussed in the text.

It should be fairly clear by now how to generalize the
approach to more general cases, for example, where
many unstable modes are present. It is always possible
to shift the origin in lattice space so that iy(¢) lies in-
side the higher-dimensional unit cell. The important
terms in the theta series come from the corners of this
hypercube. The point 7iy(¢) draws out a line in lattice
space but now not along a simple diagonal since its
‘“speeds” along the various axes are, in general, irration-
ally related. Thus it will not strike another lattice point
once it leaves the origin at t=0. This means that the
solution u (x,¢) will no longer have a modulus which is
periodic in time, but it will be quasiperiodic.

It is possible to estimate the recurrence time by as-
suming, for € small enough, that the diagonal terms in
the r matrix dominate the off-diagonal terms. The
periods of the individual modes are then given by their
periods without the other modes present,

_ | Ing; |
I ijl

The recurrence time is the smallest T which is (approxi-
mately) an integer multiple of each of the individual
periods,

T=n}-Tj, n;integer, j=1,...,N .

A more accurate calculation of the recurrence time can
be gotten by using Eq. (10) and asking when (1)
passes close to a lattice point.

As long as there are only a finite number of modes in-
volved u(x,t) will exhibit this recurrence property.
From Eq. (3), for a box of finite size there will only be a
finite number of unstable modes present (recall these
originate from degeneracies on the imaginary axis).
Since the real-axis modes remain of O(e) the system
recurs, and the recurrence time can be calculated.

A solution with ten unstable modes present is shown
in Fig. 8. We will now discuss the general analysis of
the modulational stability.
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III. MODULATIONAL INSTABILITIES:
THE GENERAL CASE

The analysis of the general case proceeds along the
same path as that of the simpler plane wave, but the for-
mulas are, necessarily, more complicated. An added
difficulty here is the fact that finding the degenerate part
of the spectrum once we know the nondegenerate part is
not trivial, as in the plane-wave case. In that simpler
case we could write explicit formulas for the degenerate
main spectrum [see Eq. (3)] while in the more general
case the degenerate spectrum is found by forcing condi-
tions on a complicated integral expression (called
Hochstadt’s formula, see the following discussion). An
outline of the logic of the approach may help here.

(1) Start with an arbitrary N-band solution [called
u%x,t)] which corresponds to an arbitrary main spec-
trum with a finite number of nondegenerate spectra.

(2) Find the degenerate spectrum.

(3) Perturb the initial conditions [u (x,0)=u%x,0)
+ e€d(x)]. This breaks the degeneracies.

(4) Study the behavior of the new degrees of freedom
which have been introduced.

Step (1) has been discussed in the Appendix. In this sec-
tion we perform steps (2) and (3) at the same time. This
is done by examining what occurs if we open a slightly
nondegenerate spectral pair at an arbitrary point on the
complex plane, and showing that in general this would
not represent a small perturbation. This is true because
in general the k value corresponding to this degree of
freedom would be complex and therefore not represent a
simple oscillation. By requiring the k value associated
with the new degree of freedom to be (1) real and (2)
commensurate with the other k values of the system, so
it is a periodic perturbation, we arrive at the following
result: it is possible to find the degenerate spectra start-
ing only with knowledge of the nondegenerate spectra.
This is a well-known result in the theory of Hill’s equa-
tion due to Hochstadt.”%2! The stability of the degrees
of freedom associated with the degenerate spectra is
studied by then examining the time behavior associated
with them [step (4)].

A. The zeroth-order N-band solution

Here, as in the simpler plane-wave case, the key is to
pick the correct bases for the holomorphic differentials
and period cycles. Let us suppose we start with an arbi-
trary N-band solution of the CSE. Call this the zeroth-
order solution. Since it is an N-band solution it can be
represented by

u%x, 1) =e*0" —iogt W0 | 7°) .
WO+ | %)
The spectrum associated with u%x,t) is the ‘“zeroth-
order spectrum” and generically will look something like
Fig. 9. Degeneracies are shown as crossed circles. It
should be kept in mind that u%x,?) is completely deter-
mined by the nondegenerate spectrum. There are N + 1
conjugate pairs (2N 42 A;’s in all).

X

o

- SO N
x— BT By
>

X
O B s SV

FIG. 9. Typical zeroth-order spectrum. The crosses mark
nondegenerate main spectra, the dotted lines indicate spines
(see discussion in the Appendix). Degenerate main spectra
must appear either on the real axis or a spine. The degenerate
main spectra and trapped auxiliary variables are indicated by
crossed circles.

As in the plane-wave case when we perturb the initial
conditions

u%x,0)—>u%x,0)+ed(x)

the spectrum will shift by O(e). The degeneracies will
be broken and new degrees of freedom injected into the
system. Once again we will keep all of the complex de-
generacies (which lie off the real axis) and many of the
real degeneracies and show that the degrees of freedom
associated with the complex degeneracies are unstable
while the real ones are stable.

For the zeroth-order spectrum branch cuts are made
between conjugate pairs. The @ and b cycles are as
shown in Fig. 10. The zeroth-order basis for the holo-
morphic differentials we choose to be the standard one,

j—1
})zi‘Tﬂ, =12,...,N
R°A)
2N +2
RM= [T A—a)2.
k=1

FIG. 10. Zeroth-order branch Cuts and basis curves. The
zeroth-order branch cuts avoid any of the degenerate points.
The a cycles are chosen so as not to encircle any of the degen-
eracies. The b cycles are required to avoid degeneracies, but
need not pass around them in any particular manner.
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The zeroth-order A and B matrices are
0 _ 0 0 _ 0
i = [, 4V}, Bi= [, U},

leading to
g():(AO)—l’ TO:__QOBO .

Keep in mind that these are N X N matrices. From ma-
trix C it is possible to find the wave numbers and fre-
quencies of this N-band solution of the CSE [see Egs.
(A16)-(A18)].

B. Adding new degrees of freedom

When the modulational bands are opened the a and b
cycles become complicated. We have indicated in Fig.
11 what they should be. (Branch cuts are placed be-
tween nearly degenerate band pairs.) The important re-
quirement is that a; orbit the kth pair which is slightly
nondegenerate and that b, pass through the kth branch
cut.

Now assume that there are M degenerate band pairs
that are going to open up. Number these so that the
complex degeneracies appear first and the real degenera-
cies last (assume there are M, and M, of these, respec-
tively, so M =M ;+M,). Each of these nearly degen-
erate pairs is centered about a point A%, j =1,2,...,M.
Each of the slightly nondegenerate band edges is mea-
sured from these points,

)\.21_1=}&?~‘€],)\.21°—‘}\.IO+EJ .

The basis for the holomorphic differentials is

FIG. 11. Typical a and b cycles for a slightly nondegenerate
spectral pair. The new branch cut is placed between the pair.
The cycle a; orbits nearby. The b, cycle must pass through
this branch cut without intersecting any other a or b cycles.

M
IT (A—2A%)dA

.:kj_1k=l i=1,2,...
dUl R(}\.) s ] ly ,N
M
IT (A—A%)dr
k=1
v BOD ey
J 2mi R(A) ’
j=N+1,N+2,...,N+M
2AM +N+1)
RM= JI A=r)"
k=1
2AM +N +1)
=R°A)  JI (A—=r'2.
k=2N+3
As €—0 these become
. AMldA o
lim dU,; = T =dU}, j=1,2,...,N
RO(A?)
lim dU; = J di ,
e—0 2mi (A—ARO(1)

j=N+1L,N+2,...,N+M .

Therefore [recall 4 and B are now (N +M)X(N +M)
matrices]

A%, 1<j,k<N
m A . — 0, 1<j<N, N+1<k<N+M
e—0 1Sy, N+1<j<N+M, 1<k<N

8 N+1<jk<N+M.

S is an M XN matrix of “singular periods” since these
are the a periods of the singular differentials dU;
(N+1<j<N+M). The matrix 4 schematically has
the form

A((N+M)><(N+M))

[All of these results are of O(e) which is not indicated
for the sake of brevity.] Since matrix 4 has the form
given, matrix C (4 ~!) must take the form

C((N+M)><(N+M))._
= —|LC

- lM><M

where [ is an M XN matrix which is equal to
L=-5cC° Using this full C matrix we can construct
the N +M normalized differentials and then Wj, which
will be the argument in the new theta function,

o (X, 1)
sz 2 2 Cjk fp dUk’ j=12,...,N+M .
0
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First we find kj =27 de /dx,

1 N+M 0/10
mkz%HR (ARICi S, (k) |
where
N+M M
E #ﬁ._l H (/‘n'—k(r)n)
S, (k)=-"=1 m=l k=1,...,N
1( ) H (“n“/“r)
r (s£n)
M
m=1
N+M
(m#k)
S,(k)= —, k=N+1,...,N+M .
2( ) n§1 n (f“’n_,J“r) + +
r (#n)

Using the same trick as earlier, convert both sums to
contour integrals,

M
T (A—22%)da

-1 [ jk-1m=l
Sik)=5 = [ ke

r=1

=8k,N’ k=1,2,...,N

M
I (A—2%)dA
m=1
1 (m#k)
Sz(k)=5;r7 ¢ NiM

r=1

0, N>1
=11, N=0 (plane wave) .

Therefore we get

IOt S RUAAYIC,S
dx INT i k=N 1 k 7 jkZN,0

Using the results for the C matrix we can write this as

—2iCly, j=1,...,N
dw; -
dx = —ZiFj_NVN—;R (A'?)SN,O’

j=N+1,...,N+M

(with the understanding that when N=0 both C° and T
vanish). All of this leads to

—4miCjy(=k)), j=1,...,N
—47Tirj-N,N_2R0(A'?)8N,O ,

j=N+1,...,N+M .

(12)

kj=

Notice that when N=0 we recover our plane-wave result
since, in that case, ROA)=[1+(A9)’]'%. Let us as-
sume N340 for now and examine kj, for j > N, in more
detail. The jth normalized holomorphic differential is
given by

N+M

k=1

As €—0 this becomes (for j > N)
) N+M
fimdy, = 3 im Cudt
N R%1%) dA
=3 T, _ndUl+ - :
2, Lokl 0 (A—2A)R(1)

(13)

This differential has a pole at A? with unit residue (+ 1
on the top sheet, —1 on the bottom sheet). The
differentials dU? are the standard holomorphic
differentials and involve only the zeroth-order spectrum.
The complex numbers I'; _y , are chosen to “normalize”
the singular differential d¢; so that it has zero a periods
when integrated around the zeroth-order a cycles. The
differential dy; is called a normalized differential of the
third kind.?»** The wave number of the modulation, &,
is determined by I'; _y 5 which in turn is determined
only by the zeroth-order spectrum (A;, k =1,...,2N)
and the position of the pole A). None of the other
modulational modes appear, so at this stage in the calcu-
lation we can proceed as though only one modulational
mode had been opened up.

C. Conditions for real k and periodic perturbations

If we, for the moment, consider k? to be a free param-
eter then we can ask, what value do we want to choose
for 7\.? to generate the type of solution to the CSE that
we are interested in (namely, one which starts close to
our zeroth-order N-band solution)? It is obvious that the
first requirement is that the k; generated by k? is real.
Otherwise the new theta functions would not be spatially
stable and the modulation would not be small every-
where in x. The other requirement is that the wave-
length of the modulation be some rational multiple of
the original period of the zeroth-order wave so that we
still have a periodic solution. This implies k; is an in-
tegral multiple of 27 /d, where d is the size of our box
(the original N-band wave could, in principle, have many
oscillations inside the box). This result—that given the
nondegenerate spectrum we can construct the degenerate
spectrum —is called Hochstadt’s theorem.

A few general statements about the I' j_N,k()»?) are
possible. The most important is that if k}) is real
| k(k?) is pure imaginary, which in turn implies that
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k; is real (as we expect). This can be shown by noticing
that R°(A) contains conjugate pairs of roots and that the
zeroth-order a cycles have an “anti-”’ conjugate symme-
try (for a more detailed argument see Ref. 24). This
means that any l? on the real axis would generate a
modulation with real k;. Only a discrete subset of this
line will generate modulations with spatial periods which
are commensurate with the original period.

There is also the possibility that k; is real on “spines”
in the complex plane. In fact, as mentioned briefly in
the Appendix, each of the original points in the main
spectrum which generates the zeroth-order N-band wave
must be the end point of a spine. In the plane-wave
case, discussed earlier, the imaginary axis between *i is
a spine. We saw in that case that modulational modes
could exist on the spine. In this more general case the
spines will not be so simple, but the basic idea is still the
same. On a spine, kj is real, and at discrete points on
the spine it will take values which are commensurate
with the period of the zeroth-order solution.

D. Discussion of the asymptotic properties of k

Some asymptotic estimates can be made of the behav-
ior of k; with respect to Aﬁ-’. These estimates will allow
us to identify where the degenerate main spectra are lo-
cated which correspond to very short wavelength and
very long wavelength modulations.

For example, as )L? gets very large on the real axis
(] k? | >> | A,, | where A, is any member of the original
zeroth-order nondegenerate spectrum) it is possible to
get estimates of the entries of I" as follows. Consider the
normalized differential

N
d¢j= 2 Fj——N,mdUr?z
m=1

R°(A)) dr
27 (A—ADR%M)

(j>N).

The entries of ' are determined by integration around
the zeroth-order a cycles which, by assumption, are
close to the origin in comparison with A? (see Fig. 12).
Thus we can expand the singular part of the differential
assuming M?! >> | A| and balance term by term with
the first summation,

N
lim dy;= 3 rj_N,,,,dU,‘,’,

|l?|”°° m=1

0 n

)

n=0

_apr

2mi

A

Aj

dA
RO%M\)

N
= 2 I-‘j—N,mdUr(r)l
m=1

= A"d )
AN ="
o 7 RN

_L

2mi

n=

(j>N).

An
X

1
|

(S

U

a %

FIG. 12. Diagram of the situation when |AJ|>> |4, ],
k=1,2,...,2N +2, to justify the expansion used in the exam-
ination of the asymptotic properties of k.

Here we have used

ROAD) = (AN +!
and
1 & (A
A=A "'=—— ==
AL

To insure dy; has zero a cycles we need to balance all of
the large terms (those with }»? to a positive power) which
means

T, _yi=(172a)ADYH1=*r0(1) .
Therefore
kj=—4miT; _yy=—2A0+0(1),

which agrees with the plane-wave result [Eq. (4)] for
large k?. This is to be expected since, at large eigenval-
ues, the spectral problem does not “see” the potential.
Where are the long-wavelength modulations? These
occur when I';_y y—0. Take the pole at kj? and move
it close to one of the zeroth-order band edges. At first it
looks as though we will have to pinch the a cycle be-
tween the pole and branch point but it is possible to slip
the contour past the pole by adding its residue (see Fig.
13). The differential d¢; is now nowhere singular on the
contour. In the last term of di/Jj, however, R°(A?)—>0
when k? approaches one of the band edges. Therefore

fakd'l’j—’o

if I';_y,—0. The long-wavelength modulations arise
from poles which appear close to the zeroth-order band
edges. This will turn out to be an important result since
it will help us prove that any N-band solution of the

CSE is unstable if we go to long enough wavelengths.

N X
o Q

)

FIG. 13. Diagram of the situation when A? approaches a
zeroth-order branch point. To avoid getting a singularity on
the contour, the contour is slipped past the singularity, but ap-
propriate account must be taken of the residue, as shown.
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E. Examination of the temporal behavior

Now consider the time derivative of W;(x,1),

aw; X ,
ar =4 m}ilcj Si(m)
1 N+M OAO
o R C. S, N
+2’Tim=2N+1 (A )C S 2(m)
where
4 0
m— —
S (m) S N L3 1
m)= —_— e
: k§1 IT (e —n) 2i TR
r#k
—1—8 In
NéM M L XU = g
S5(m)= (g —Ay)
k=1 nI=II , H (IJ’k _lu'r)
nsm r#k

[We have used Eq. (A13) to simplify the equations slight-
ly.]

Once again these two sums can be written as contour
integrals with the result

, 2N +2

Sl(m): *—;— 2 }\,] Sm,N—ﬁm’N_l 5
j=1
2N +2

S‘z(m)= —-;‘ 2 }LJ—A(,)', aNyo-aN,x .
j=1

Notice that the summations include only the original
zeroth-order spectrum. The contributions from the
modulation spectra have canceled except where explicit-
ly indicated in S5(m). Putting this all together leads us
to

2N +2
—4i| |3 3 M |Cn+Cin_1 | 1<j<N
k=1
. N 42
aw; =45 2 A |Tiowwv+T_av o
dt k=1

2N +2

+%R°()»?){ ‘—g 3 A =AY |8x0—0n,
k=1

?

N+1<j<N+M .

Notice that as e—0 the first N frequencies go over to
the original frequencies of the unperturbed N-band solu-
tion [see Eq. (A18) and the immediately preceding calcu-
lation]. In the “modulation subspace” (N +1<j<N
+ M) there are two special cases.
(1) When N=0 the plane-wave results are recovered.
(2) When N=1, this is the cnoidal (or traveling-wave)
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solution of the CSE. For this case we have

dw; , &
d[ =—4 7 2 A’k Fj_

2 0,90 .

Using Eq. (12) we get

aw; =_1_
dt T

k; —2R°(A9)

Since k; is real and the A;’s come in conjugate pairs the
first term is real. Any instability comes from an imagi-
nary part in the second term, since

172

4
R°AD)= | TT (A9—A,)
k=1

If A9 is real R%AJ) is real also. Once again, all of the
real-axis modulations are linearly stable. When k? is
complex R )»j—’) will be complex, except for rare special
cases. Thus the growth rate of a modulated cnoidal
wave [modulated at a wave number kj(k?)] is

y=4| ImRO(k?) | .

Leaving aside the discussion of special cases when N >2
we have

2N +2

1

T 2 M
k=1

W, _

1 .
dt —;T— kj—4tFj_N,Nﬁ, N

N+1<j<N+M.

The first term is purely real, so any instability must
come from the second term. This gives us an explicit ex-
pression for the growth rates of any stability,

yj=8m|Rel;_yn_i| .

From our earlier discussion we know that as €—0,
T_y N_l()\?) becomes purely imaginary [to O(e)] for
all A; which appear on the real axis. This means that
any double point which appears on the real A-axis corre-
sponds to a linearly stable modulation.

Also, since T';_y y_, is complex—in general—if AJ
is complex we have that any double point which appears
off the real A axis corresponds (except possibly for rare
special cases) to a linearly unstable modulation.

It was shown earlier that the long-wavelength modula-
tions occur when 7&? is near one of the original branch
points (A, ). It has now been shown that for }\? complex
we have linear instability. This shows that all solutions
of the CSE are linearly unstable if we allow perturba-
tions of arbitrarily long wavelength.

On the other hand, if we fix the maximum allowed
wavelength at a finite value (though large enough to al-
low instabilities) then it is possible to see that only a
finite number of complex double points will appear.
This is because k;(A%) is an analytic function of )»? (ex-

JMh
cept possibly for branch-cut singularities and a pole at
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A.?—»oo ). Therefore along any given spine [lines in the
complex A plane where kj(k?) is real] it will be well
behaved and take a given value only a finite number of
times as long as the spine has finite length. We shall see
in a moment that this result in turn implies that unstable
solutions to the CSE will always recur.

F. Examination of the behavior of the perturbed solution

Consider matrix 7. By a generalization of the argu-
ments presented for the plane wave and our knowledge
of the general structure of matrix C we can see that ma-
trix 7 for a modulated N-band solution takes the follow-
ing form:

° OMlyym

I= 1o [0 +(i/m)|In€; | 8,4 1L prom

Because of our choice of bases for the differentials and
period cycles matrix 7 takes on a fairly simple structure
in the é—0 limit. The original N X N matrix 7 associat-
ed with the unperturbed solution of the CSE appears in
the upper left hand corner. The modulation subspace
appears in the lower right hand corner (notice the famil-
iar logarithmic divergence along the diagonal).

The analysis to ferret out the dominant terms in the

+O0(e).

theta series proceeds in the same manner as for the
plane-wave case. It is more complicated because of the
nonsingular nature of the N X N 7° subspace. For exam-
ple, at t=0 we have

N+M
7 3 Im(7,)m;m

Jk=1

o(m)

N
=7 3 Im(t%)m;m,
k=1
N+M

+ 2

k=N+1

|Ine, | mZ+ &) .

We have grouped the terms as follows.

(1) All of those terms in the sum which involve only
contributions from the original matrix 7° (first sum).

(2) The dominant (diagonal) terms from the modula-
tional subspace (second sum).

(3) Everything else [definition of §( )].

The function @(7) is large and positive (and hence
corresponds to a negligible term in the theta series) if
any m; with N+1<k <N +M is not zero. With all
such m; set to zero, {(77) is also zero. This leaves us
only with the first summation, which is identical to the
sum for the unperturbed N-band solution of the CSE.
This means

6(x,00= 3 S 0 3 expQrmim-W T 4mimi-ron)
mN+M="w mN'-:—C!) m]=—00
= ¥ 3 exp(27im - W 04 wim 1% )+ O (€)
mNz—ao m|=—°°

=6%x,0)+0(€) .

Once again as time progresses new terms in the theta
series will become important. However, it is still true
that, because the modulations corresponding to real k?
have y j=0, all of the terms which the real-axis modes
contribute to the theta series are always O (€) or smaller.
This means, if we are interested solely in the instability,
we can neglect those real-axis modes entirely, just as in
the plane-wave case. Since Cﬁ( is pure imaginary we
know that

ImQ=(0,0,...,0; YV VM 0,0,...,0),

where the first zeros are the N-dimensional zeroth-order
subspace, the y’s are M ,-dimensional unstable subspace,
and the last zeros are the M,-dimensional stable sub-
space. Thus the minimum value of ¢(77 ),

é(m )=m-(ImQ)t +7m -(Imz)-m
comes at 7,(¢) which is given by

Fig(1)= ——Z—I;r—(Imz)_‘(Im(—))t .

This moves linearly in time but only through the un-

stable subspace. Thus the instability will saturate and
demodulate when 7iy(¢) has traveled from the origin
[,(0)=0] to the vicinity of another lattice point in 77
space. The reason for this is the same as for the earlier
plane-wave case. When 7 (zj) is near a lattice point we
can expand the theta function about this new origin and,
using the period properties of the theta function show
that the new theta function looks like an N-band theta
function plus some O (€) contributions from the modula-
tions. It is not the same as the N-band theta function at
t=0 because the original solution to the CSE had N tem-
poral periods itself, which must be taken into account
when discussing recurrence.

Suppose the ‘“‘demodulation” time is fp, and that the
original unperturbed N-band solution of the CSE had a
recurrence time of t3. Then the full system, zeroth-
order and with the modulations added, will recur when
n,tp+n,tg =0 for some integers n, and n,. As long as
the theta functions are finite dimensional recurrence
shall occur. Since we have already shown that only the
complex modulational modes are unstable and that there
will only be a finite number of those (for a system with
finite spatial period) this implies recurrence in general.
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APPENDIX

The inverse-scattering transformation (IST) first ap-
peared in Ref. 13 where it was developed to solve the
Korteweg—de Vries equation. The necessary modifi-
cations for application to the CSE were reported in Ref.
12.

The IST method of solution starts by introducing a
pair of linear operators, called the Lax pair.>>?¢ In this
case,

i, u(x,t)
L=\_yxx,n —ia, |’
i|u|2=2iA2 —u,+2i\u
A= s poiu® —i|u 24202

These two operators act on a two-component wave func-
tion ¢ such that

¢,
23

In order for there to be a solution to these two operator
equations we must have ¢,, =¢,,. A little algebra shows
that this is true if and only if u (x,¢) satisfies the CSE.

The next step is to use the initial conditions for u (x,?)
in the operator L and solve the eigenvalue problem. In
other words, treat the operator equation

Lé=7Ad

as a time-independent scattering problem and find the
spectrum associated with u (x,0). In the present case u
is periodic so u(x +d,0)=u(x,0). Pick a base point
x =x, and introduce the two independent solutions of
Eq. (A1) which take the following values at x =x:

Lé=A¢ and ¢,=(3/3,)p=A, ¢=

(AD

|
¢(XO)= ol ¢(x0)= 1

The solution matrix ®(x,x,;A) is given by
é1(x,x0;1) B y(x,x0;1) ’

Plx,x03h)= By(x,x0; 1) By(x,x0;A)

It satisfies

10

L(I)=)L<I), (D(XO,XO;}»): 0 1

. (A2)

The Wronskian of any two solutions is defined as
W(f,g)=f8,—&.f,- Therefore

W(¢,p)=det(P) .

Using Eq. (A1) it is easy to show 3, W=0 which means
det(d(x))=det(d(x,))=1. Using Eq. (A2) we can find
®(x) for any x. In particular, we can find
P(xy+d,xy;A). This matrix

b (xo+d,xp;A) By(xq+d,x;1)
é

o+ d X M=) (xot+dixgid)

(xg+d,xg,A)
(A3)

is called the monodromy, or transfer, matrix and we will
represent it by

M(xgpM)=d(xy+d,xg;A) .
If we change our base point to x ; the new functions
#(x,xy;A) and @(x,xg;A)

are simple linear combinations of the original ¢ and &.
This means x,—x results in a change of basis and that
M (x4,A) is related to M (xg,A) by a similarity transfor-
mation,

M (x5,A)=SM (xq,A)S " .

The trace .and determinant are preserved under similari-
ty transformations so

[TrM)(xy,A)=[TrM]}(AL)=A(A) ,
detM =1 .

The function A(A), which is independent of x, is called
the discriminant and is central to understanding the
spectral properties of L. We can see this by constructing
the Bloch (or Floquet) solutions of Eq. (A1). The Bloch
functions have the property

Yix +d; ) =ePPp(x ;1) ,

where p (L) is called the Floquet exponent or the “quasi-
momentum.” One important result of Floquet theory?’
is that for every A (we now think of A as a complex pa-
rameter) there exists at least one such solution. Since
such a solution can be expressed as a linear combination
of our standard solutions (¢ and ¢) we have

Y(x;A)=Ad(x;A)+Bd(x;A) .
From Eq. (A2) we know

Y(xg;A) = Ad(x;A)+Bd(xg;A)= B (A4)
We want
PY(xg+d;AM)=m (A)P(xy;A) . (A5)

Using Eqgs. (A4) and (AS5) we find

A

m(A) | g B

=M

’

where M is the monodromy matrix. This implies that
we can construct the Bloch eigenfunctions and find their
related Floquet exponents by finding the eigenvectors
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and eigenvalues of the monodromy matrix. The eigen-
values are given by

det(M —m)=m?—(TrM)m +detM
=m2—AAM)m +1.
Therefore,

A(A)E(AZ—4)172

+ —
m*(A)= >

(A6)

Since the scattering problem [Eq. (A1)] is not self-
adjoint we shall have to study the properties of A(A)
[and hence of m*()A)] on the complex A plane. For de-
tails and proofs of the following assertations see Ref. 27
for an introduction to Floquet theory, Ref. 16 for its ap-
plication to the focusing and defocusing CSE, and Ref.
24 for a related discussion of the scattering problem for
the sine-Gordon equation (which is also non-self-adjoint).

The discriminant, A(A), considered as a function of
the complex variable A is analytic in the finite complex
plane. This means A(A) will be real (i.e., Im[A(A)]=0)
along one-dimensional curves in the complex A plane.
The real A axis is one such curve. Along such curves,
there will be three distinct regions: (I) AXL) <4, (ID)
A%(A)=4, (IID AXA)> 4.

Region (I) is termed the region or band of stability be-
cause when A% <4 the Floquet multiplier m (1) [see Eq.
(A6)] is a complex number whose magnitude is unity.
This means the Bloch eigenfunctions are stable under
translation. The entire real A axis is a band of stability.
Other stable bands on the complex plane are called
spines.

Region (II) consists of discrete points where
A(L)==%2. At these points m(A)==x1 and the Bloch
eigenfunctions are periodic or antiperiodic. This set of
discrete values of A is called the main spectrum and is
symbolized by {A;}.

Region (III) has m(A) real, but |m(A)|s1, which
implies that the Bloch eigenfunctions are unstable to
translations either to the right or the left along the x
axis.

The rest of the complex A plane (where Im[A(A)]540)
is unstable. Since A(A) is real for real A we know

[AM)]*=A(A*)

(where the asterisk means complex conjugation). There-
fore, if A lies in a band of stability or is a point in the
main spectrum, then A* will be also. Thus the spectrum
is symmetric under complex conjugation.

For all of the regions of the complex A plane except
where A=12 the two eigenvalues of the monodromy
matrix M are distinct. This means the eigenvectors will
be independent and there exist two independent Bloch
eigenfunctions

P (x +d)=m YT (x), ¥ (x +d)=m "¢~ (x) .

However, when A(A)=x2 the two eigenvalues are no
longer distinct and it is not true in general that two in-
dependent Bloch eigenfunctions exist.

Definition. If A; is a point in the main spectrum
which has tfwo independent Bloch eigenfunctions, then
A; is said to be a degenerate eigenvalue. If A; is a point
in the main spectrum which has only one Bloch eigen-
function then A; is said to be a nondegenerate eigenvalue.

This distinction is important for understanding the
origin of the instability for the CSE. It is shown in the
main text that the existence and location of degeneracies
in the main spectrum determine whether or not a given
solution is unstable.

The spines of stable A can end only at nondegenerate
eigenvalues. A potential u(x,0) which has no degen-
erate eigenvalues we will call “generic” (following Ref.
28). A spectrum with degeneracies is ‘“‘nongeneric” in
the sense that if we change it by adding a small pertur-
bation [u(x,0)—u(x,0)+€d(x)] then the degeneracy
will be broken in general.

An important consequence of the fact that the CSE is
the compatibility condition for the operators L and A4 is
that if we now let u (x,0) be an initial condition for the
CSE and evolve it forward in time,

CSE
u(x,0) — u(x,t) .

It can be shown'® that the discriminant is invariant.
Thus all of the spectral structure deduced from A(A),
the main spectrum and the stable bands, for example,
are invariant. The eigenvalues {A;] are constants of the
motion for the CSE.

An important class of initial conditions u (x,0) con-
sists of those which generate only a finite number of
nondegenerate eigenvalues A;. These are called finite
band potentials and they are central to our study.

The simplest method for generating solutions starts by
first constructing the ‘“‘squared” eigenfunctions. As we
shall see the squared eigenfunctions depend only on the
nondegenerate part of the spectrum, which simplifies
many of the computations. Later we will study how
these special solutions behave under perturbations and
find that if there are any complex degeneracies in the
spectrum the solution will be unstable to perturbations.
Degeneracies on the real axis will play no role in the in-
stability.

To construct the squared eigenfunctions we start with
our two Bloch eigenfunctions, ¥* and ¢~. If there is
only one Bloch eigenfunction we square that. Define

x50 = =S Wb +93 ),
glx, ;M) =9 Y,
hix,t;M)=—¢fv5 .

From this definition we see
fx +d,t; )=f(x,t;A)

for all . The same is true for g and 2. From Eq. (A1)
and the definition of L [u#] and A, it is easy to show
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fr=u*g—uh,
8x=—2iAg —2uf , (A7)
=2iAh +2u*f ,
fo=—ilut +2iAu*)g +i(—u,+2iAu)h ,
g =2i(|u |?=2A"g +2i (—u, +2iAu)f , (A8)

ho=—2i(|u|?=2A%h —2i(u} +2iAu*)f .

The condition on u (x,0) for there to be only a finite
number of nondegenerate spectra is equivalent to the re-
quirement that f, g, and A be finite-order polynomials in
k}l

N+1

f(x,t;0)= Efxt
N+1

g(x,t;M)= zgjxt)l (A9)
j=0
N+l

h(x,t;A)= Eh X, t)A

The exact form of these conditions are given in Ref.
11. They also are given in Ref. 16. We will not need the
conditions here.

Equations (A7) and (A8) have one immediate integral,

9, (f2—gh)=23,(f*—gh)=0

By using the expansions given in Eq. (A9) in Eq. (A7)
it can be shown'! that both g and h must be of order N
in A. Since g and k& are both of order N in A the
coefficient of A2 +2 in f2—gh is simply f%_.,. This
means fy; is a constant. Without any loss of generali-
ty we can set fy, ;=1 since changing fy, simply re-
sults in multiplying f, g, and h by a constant. The
coefficient of A" in g (using fy_,;=1) is iu(x,t). This
means if we write g as a finite product it takes the form

N
glx,t; M) =iu(x,t) TT [A—p;(x,0)] .
j=1
By similar arguments we find that the coefficient of A" in
h is iu*(x,t). The zeros of h are u;. If we look back to
the original definitions of f, g, and 4 we find that f2—gh
is simply related to the Wronskian of ¢+ and ¢,

fr—gh=—4{WE* ¥ ).

The function f2—gh is a (2N + 2)th-order polynomial in
A with constant coefficients,

2N +2 2N +2
fi-gh=P(M)= 3 PM= [] (A-1)) (A10)
k=0 Jj=1

We know from our earlier discussion that ¥+ and ¢~
are linearly independent except at nondegenerate eigen-
values. This implies that, in fact, the zeros of P(A) are
the nondegenerate eigenvalues. These must appear in
complex conjugate pairs so P(A) has real coefficients.

If we evaluate Eq. (A10) at one of the zeros of g (1,,,
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for example) then we arrive at the identity

omV' Py,

where o, is a sheet index that indicates which sheet of
the Riemann surface associated with V' P(A) the com-
plex p,, lies on. We shall have more to say about this in
a moment.

Using Eq. (A7) we can evaluate g, at one of the zeros
of g to find

fx,t;p,,)= (A11)

—2io,,V P(u,,)
By = £ , m=12,...,N. (Al2)
II(#m"#n)
n#FEm
If we look at the AN term for g, in Eq. (A7) we find
iu,=—2igy_—2ufy .
Using the product expansion of g leads to
N
O dnu =2i | 3 u;+fy
j=1
Now use Eq. (A10) to find fy,
N +2
fv=—7 2 M
k =
Putting this all together we have
IN +2
o, Inu =2i z,uj—- 2 Ay (A13)
j=1

Applying the same approach to g, in Eq. (A8) we can
show

2N +2
pi==2| 3 a1 3 A |y s (A14)
maj k=1
N 42 2
a,lnu =2i 2 }\.J}\.k—'% 2 }\'k
j>k k=
. 2N +2 N
=4 =7 2 M| Dy D Mk
k=1 j=1 j>k
(A15)

If we knew the initial conditions for pu j (0,0) and
| 4(0,0)| we could proceed by integrating Egs. (A12) and
(A14) to find p;(x,) and then integrate Eqs. (A13) and
(A15) to find u(x,t). In fact we do not know the initial
conditions for a simple reason: Eqgs. (A12)-(A15) are
valid only for N-band potentials. How can we construct
such potentials? By solving Egs. (412)-(A15) with ap-
propriate initial conditions. The argument is circular.
We can avoid this by shifting our point of view. First,
take the parameters f{A;|j=1,2,...,2N+2} as
known. Second, choose initial conditions yj(0,0) and
| #(0,0)|. Third, solve Egs. (A12)-(A15). We shall see
that this can be done analytically and results in a
closed-form expression for u (x,1).

How do we accomplish the second step? It is at this
point that a technical difficulty arises. We cannot
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choose these initial conditions freely; they must satisfy a
constraint. This is due to the fact that the system has
N + 1 real degrees of freedom (see Ref. 11, Chap. 4)
while the N complex ;Lj(0,0)’s and |u(0,0)| constitute
2N + 1 real parameters. N of these parameters must be
constrained. A solution of this problem is presented in
Refs. 11 and 19. An independent solution of the con-
straint problem using a very different approach was
developed by Previato.?

A similar constraint problem also appears in the
periodic sine-Gordon equation where it was solved in
different ways by Ercolani and Forest,?® and Ting, Tra-
cy, and Chen.*® The constraint problems for the Liou-
ville and sinh-Poisson equations were solved in Refs. 31
and 32 respectively. The same constraint appears in the
work of Bogolyubov and Prikarpatskii on a discrete
form of the nonlinear Schrodinger equation®* and the
modified nonlinear Schrodinger equation.3*

Consider Eq. (A10). Suppose we choose arbitrary ini-
tial conditions p;(0,0) and | u(0,0)| and from these con-
struct the polynomials g and 4. Now construct

Y(M=VP 1gh .

A moment’s reflection shows that, for most choices of
zeros for g and A, the function Y (A) will not be a finite-
order polynomial in A. This is the constraint needed.
The initial conditions 1£;(0,0) and |u(0,0)] must be
chosen in such a way to insure that Y (A) is a finite-order
polynomial in A. 'V

Therefore, using the approach outlined above, choose
an appropriate set of initial conditions for the p;(0,0)’s
and |u(0,0)]. Now solve Egs. (A12)-(A15). The crucial
observation, first made by Its, Matveev, and Novikov
(see Ref. 35 and papers cited therein) is that the u;’s
should be treated as points lying on the two-sheeted
Riemann surface associated with

172
=R (A),

2N +2

M (A=A

k=1

VP(A)=

which has branch points at each of the nondegenerate
band edges, A;. For R(A) to be a well-defined function
we must also specify which sheet of the Riemann surface
A is on. This is taken care of by the sheet index o. (For
more details see Ref. 11. For an introduction to
Riemann surfaces and hyperelliptic-function theory see
Refs. 22 and 23.)

On this two-sheeted Riemann surface, which we will
denote by M, it is possible to find N linearly independent
holomorphic (regular) differentials. For the present, we
will choose as our basis the following set:

dUIE}% ,
W= Gy
j—1
de?)\;z(f)k ’
N—-1
dUN‘kR(Aa;A

>

FIG. 14. Riemann surface M for N=1 is topologically
equivalent to a torus. The curves a and b form a basis for
closed curves on M.

These differentials are regular everywhere on M. At
each branch point of R(A) they have an integrable
singularity (as long as no two branch points coincide).
Near A — oo,

AL S T
which is integrable for j <N, as in the present case. On
the surface M there are 2N topologically distinct closed
curves (or cycles). For example, when N=1 the surface
M is topologically equivalent to a torus. A torus has
two distinct closed curves which cannot be continuously
deformed into each other or shrunk to zero, see Fig. 14.
For more general N the surface M can be shown to be
topologically equivalent to a sphere with N handles sewn
onto it. The number N is called the genus of the surface
M. Notice that it equals the number of independent
holomorphic differentials. On this more general surface
the 2N distinct closed curves are split into two classes,
denoted a; cycles and bj cycles (j =2,...,N). Each of
these cycles has a specified direction in which it is to be
traversed (e.g., in Fig. 14 we have attached arrows to the
cycles to indicate that these curves also carry a specified
orientation). The rules for constructing a and b cycles
are as follows.

(1) a; cycles do not cross any other a; cycles; b; cycles
do not cross any other b; cycles.

(2) The cycle a, intersects b; only once and intersects
no other b cycle. The intersection is such that at the
point where they meet, if we imagine deforming them so
they meet in a right angle, the vector tangent to a; maps
into the vector tangent to b, after rotation by 7/2 coun-
terclockwise (see Fig. 15).

This is symbolized as
bob =0,

ajob, =38, .

aoca =0,

Using the a and b cycles we can construct the 4 and
B period matrices,

A= fadek, By= f,,}_dUk,

where dU, are the holomorphic differentials given ear-
lier. It is possible to show?*?3 that the matrices 4 and B
are invertible. We shall only need 4 ~!. Now introduce
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FIG. 15. “Canonical” intersection of an a and b cycle.

the C and 7 matrices defined by
C=A"!, 7=47'B.

The 7 matrix can be shown to be symmetric (7, =7;)
and it has positive definite imaginary part (Imz > 0).

If we change our holomorphic basis of differentials to
the new basis,

N
d’,bJE 2 C]kdUk .
k=1
We find
N N
[ dv;= 3 c, f dUy= 3 Cj Ay =5, .
n k=1 n k=1
Also

fbnd¢j=7jn :

These new differentials and the = matrix will prove cru-
cial to finding the solution of the CSE in closed form.

Using these differentials construct a change of vari-
ables, called an Abel map, from the Riemann surface M
onto C¥ (the space of complex n-tuples of dimension N).
This is done as follows. Choose a base point on M and
call it po. Define the variables W;(x,?) as follows:

N o (x0)
Wjmn= 3 [, 4

N N By }\’m —1 dA
= C. —_— Al6

k§1m2=1 m fpo R() ( )
These variables have the remarkable property that their
x and t dependence is trivial,

d N X B e
a0 2 2 ' R
Using
—2io R ()
Hox = IT (eie—pen)
sk
we find

AN EXACTLY SOLVABLE MODEL . .. 835

N N 1

d

—W.= C. —_—

dx mz—_-l m k§1 (g —Hy)
n+k

=2ipy ~

The summation

m—1

N Ky

k=1 H (e —y)
n#k

can be performed with the help of the following contour
integral:

m—1
Iy=1/2mi [ 2% (A17)

n=1

where the contour C encloses all of the poles p, in a
counterclockwise manner. It is easily seen by the resi-
due theorem that
N m—1
K

= I (e —nen)
nsk

m

The integral [Eq. (A17)] can also be evaluated by a
different route. Consider Fig. 16. If we consider the
complex A plane as a sphere then we see there are two
ways of evaluating I,,. One is to shrink the contour C
around each of the poles at u,. The residue theorem
then leads to the summation of interest. On the other
hand, we can try to shrink the contour around the other
side of the sphere. This leads to an evaluation of the
residue at z = 0. The contour orbits the pole in a clock-
wise manner, but that is taken care of by the minus sign
in the variable transformation,

L_di__dh

! At A

Il

Evaluating the residue at infinity leaves us with

m—1
y 7y

i TT (e =)
n+k

=8m,N .

Z=

“complex Z
sphere”

I,= 2miZRes I.= 27miRes(Z =)

FIG. 16. Two ways to evaluate I,,.
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So
d . 1
EWj(x’t)z_ZICj,NE;kj .
A similar calculation gives
d ) 1 2N +2
";{;Wj(x,t)=—‘4l Cj,N—1+ _2— 2 }\.k Cj,N
k=1
1
=—0.
2r
Therefore
Wﬂx,t)zi(ij +Q;t +d;), (A18)

where d; is a phase which is determined by the initial
n’s. We will discuss this more in a moment. The Abel
map has simplified the u motions. Now, in order to find
u(x,t) (the solution of the CSE) we need to invert the
Abel map. This involves the solution of what is called
Jacobi’s inversion problem. We will not go into details
here but will sketch the broad outlines of the solution.
The interested reader is referred to Refs. 35, 22, 23, 11
and 15. The derivation was first done in Ref. 15.

The inversion is carried out by first introducing a new
function, the Riemann theta function. This function has
as its argument a vector of N complex numbers: Z
(zeC™). Keep in mind that here, and in what follows,
the symbol Z represents an N-dimensional array of com-
plex number not the complex conjugate of z. Recall that
the r matrix is symmetric (7, =7;) and has positive
definite imaginary part (Imr>0). The significance of
these two properties will soon become apparent.

The Riemann theta function is defined as follows:

©

bz|n= S - 3

m1=—oc my=—ow

exp(2mim -Z +mim 7./ ) .

(A19)

Because the £ matrix has positive definite imaginary part
it can be proven that this series representation of 6(z | 7)
converges absolutely for all finite z.23

The 6 function has some useful period properties. For
example, suppose we displace Z by &, where

0
0

K
It

0
where the 1 is in the kth place. Then from the definition
it is obvious that

0(z+e, |T)=0(z|7) . (A20)

Therefore the 0 function has N real periods. It also has
N “quasiperiods.” Let us add the vector 7y =718, to Z.
(Notice that 7, is the kth column of the 7 matrix),

0z +7, | )= 3, exp(2mim -Z +2mim T +mwim -7-m ) .

m
Since the summation goes over all possible entries in 7,
we can shift to a new dummy index 7 '=m +¢,

0z +7 | )= 3 exp[2mi(m '—&, ) Z+2mi(m '—&; ) 7y
-
+mi (A —& )1 —e )] .
Using the fact that 7 is a symmetric matrix we can write

(ﬁ ’—Ek )'I'(m ,—Ek)=m "_‘l_"ﬁ '—Zm ,'?k +Tkk ,

where 7, is the kth diagonal component of the r ma-
trix. Putting this all together we get

Oz +7, | T)=exp( —2miz, —miT )0(z | 7).  (A21)
Now consider the N functions
P .
¥;(p)= fpodaﬁ, j=12,...,N. (A22)

Here dy; is the jth normalized holomorphic differential.
The base point p is a fixed point on the surface M. The
integral is over a contour on the Riemann surface N
connecting the points p, and p (the same contour for
each j). These functions on M are multiple valued be-
cause we can add a closed loop to the path without
changing the end points. Since any closed loop can be
decomposed into a combination of a and b cycles the
functions ¢;(p) are defined modulo the group of @ and b
periods.

Now consider the following function, F(p), defined on
the surface M:

F(p)=0(y(p)—K | 1), (A23)

where 0 is the N-dimensional Riemann theta function as-
sociated with the surface M, ¥(p) is the N-dimensional
array of complex functions ¥;(p), and K is an N-
dimensional array of complex numbers which is indepen-
dent of the point p.

F(p) is an entire function but it is multivalued on M.
If we move the point p continuously around one of the b
cycles and bring it back to the original point the ;s
change by adding elements of the 7 matrix and this
means that the function F(p) will change by an overall
factor given by Eq. (A21).

To make the function single valued the surface M is
cut (dissected) in the canonical fashion.!""?""?2 This leads
to the surface M* which is simply connected. Since
F(p) (now defined on M*) is entire the following in-
tegral is well defined:

1

Io=—

nF(p) .
0= i Jou+ @ I0FP)

The integral is around the boundary of M*. Since this
region is simply connected we can apply Cauchy’s
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theorem. The integral I is the number of zeros of F(p)
on the surface M*. Riemann proved that the number of
zeros is N.

By an appropriate choice of the N complex numbers
K; (j=12,...,N)in Eq. (A23) the n zeros of F(p) can
be chosen to coincide with the N points (u;(x,t),0;).
Recall that the auxiliary variables are points on the sur-
face M* which have coordinates specified by a complex
number (p;) and a sheet index (o;). The appropriate
K;’s are!123.15

N N
Kj=i= 3 [ bt 3 W) (A4
m= m =
[notice that the last summation in Eq. (A24) is W;(x,t)
from Eq. (A16)]. Since the zeros of F(p) now corre-
spond to the auxiliary variables it is possible to evaluate

the summations

N
> Hm(x,0)
m=1

Both of these are needed in Egs. (A13) and (A15). This
is true because

N
and ¥ pl(x,1).
m=1

2

i 2
~Ell'm

m—1

) Hilk =7

j>k

N
2 HBm

m=1

Consider the two integrals

1
L[ a
o 2 faM‘ (

AXp)dIn[F(p)] .

p)In[F(p)],

__1
27 2mi
Here A(p) is the coordinate (complex number) associated
with the point p. It is possible to evaluate these integrals
in two independent ways.
(1) Direct evaluation using the properties of F(p).
This leads to'"?1

N
I,=3 fa Ay, =A,, (A25)
m=1 m

N
L=73 [ Ndy,=4,. (A26)
m=1 m

Using the standard definitions for the a cycles (see Fig.
10) and the fact that the main spectra come in conjugate
pairs it is possible to show that 4, and A4, are real.
They are independent of x and ¢ since they depend only
on the constants {A;}.

(2) I, and I, can also be evaluated via the residue
theorem. This leads to

2 tm+ Res [A(p)d InF(p)]

m=1 A—>o™t

+ Res [A(p)dInF(p)],
gt

—>

L= S ui+ Res [AAp)dInFip)]

m=1 A—oo T

+ Res [AXp)d InF(p)] .
A—>oo ™

There are two “residues at infinity” because A= oo is not
a branch point on M. Therefore there are two points on
M corresponding to A= «, one on the top sheet and one
on the bottom. Let us examine

Res [AM(p)d InF(p)].

Aot

The other three residues are evaluated in a similar way.
Start by writing

AMp)d InF(p)=A 3 —iﬁ—p InF (p)d A
j=1
N N

=A2 32 C

j=1m=1

)\m——l

A pdmF(pdr,
LSV, P

where D; signifies a derivative with respect to the jth ar-
gument of F(p). Expanding the above expression as

A— oot we find

lim A(p)d InF (p)

A—owt

CjmD;InF (p){[A™ ~N !

MMZ

N
=2
+O (MmN =2)]d}p) .

The only residue comes from the first term when m =N.
In that case change variables to

PR
A' b
di__dh
t A7
to get
Res [Ad InF]=— 2 wD;InF(r*—K) .
A—owot j=1
Here r* is the value of ¥(p) when p is the point on M*

where A— o *. Going back to the definition of K; [Eq.
(A24)] and using Eq. (A16) it is possible to show that

N
3,nF(r*—K)=— 3 K, D,InF(r*—K)
j=1

N
=2 3 CiyD;InF(r*—K),
j=1

and therefore

Res (Ad InF)=

+

:z—iaxlnF(r+—K) .

Ao

The analysis for A— o0 ~ is the same except

[P(A)])V2=—[P(A)]'2.
The final result is
F(r——K)
+igm |Er =K)
E,”’ F(r*—K)

which can be written more succinctly as
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with 6  =F(r*—K) .

N ;
Ii=3 .uj‘*';axln

j= "
(A27)
Using the same techniques we find
al 2_ 1 +9— i 6~
Iz=j§1pj—;axln(6 0 )+Za,ln o (A28)

Using Eqgs. (A25)-(A28) we can rewrite Eqgs. (A13) and
(A15),

2N +2

O;lnu =0,InJ +2i4,—i 3 A, , (A29)
m=1

0,Ilnu =9,InJ | +iN(x,t) , (A30)

where

N(x,t)=— éa,ln.ll —24,-182InJ,

2
+ —éaxan1+A,
IN +2 2

-2 2)‘]}%“% 2 }‘j

j>k j=1

2N +2 2N +2
+i| 3 A;|0,InJ; 24, 3 A;

j=1 =1

and J,=61/07, J,=6160". Because Eqgs. (A29) and
(A30) are compatible N (x,t) can only be a function of
time. In fact, Kotljarov and Its show that N is a real
constant. !’

The solution of Egs. (A29) and (A30) can now be writ-
ten as

u(x,t)=u (0,0)¢ X0* ot OW _|7)
oqw | )

where W;=1/2m(k;x +Q;t +8;). The 2N quantities
Wji (j=1,...,N) are not the same as the N W;’s of
Eq. (A18). They are different because the 2N phases, Sj-i,
are determined not just by the initial values of p;(0,0), as
the d;’s of Eq. (A18) are. The general form of these con-
stants is given in Eq. (A32) below. The 8f are simply
the part of rji——K ; which is independent of x and .

The external wave number and frequency, k, and w,,
are given by!'b!

(A31)

2N +2
k0=2A1— 2 }\.j )

j=1
CIJOZN y

where N was given above.

Note: This expression for w, differs from that given in
Ref. 11 by a few constant factors. The expression above
is the correct one.

For our purposes we never need to evaluate this com-
plicated expression for w, since the external phase is ir-
relevant when studying instabilities. There is one special
case, however, when w, is evaluated easily: the plane-

wave case. Suppose there are only two branch points:
A;==i. This case has genus zero so there are no a cy-
cles: A4,=A,=0. The theta functions 6(W ™) and
6(W ~) are completely degenerate (see body of text) so
O(W*)=6(W ~)=1. This leads to

k0=0, 0)0:——"2 y

as required.
The 2N phases Sf are given by

_—1— + ot N [ yj(0,0) _ }
270 = dpy YT 2 fpo dy; f,,k ;d i
—1r. (A32)

The term k =j in the summation is special so separate it
out,

L gr  foet 1 2 1
2 6] - “j(o,o)dwf—*_—z_ fajd(‘d]f)_TTjj
uj(0,0)
-3 au;— [, wdu, | .
kzj) T Po ’ f"k !

The second integral on the right can be evaluated since
the function ¢; changes by unity around the a; cycle,

L[ dWh =11, po)+ 11— 13(po)
J

=¢;(po)+7

-

where we have used ¥/;(py)=0 since p, is the base point
of the integral defining ¢¥;(p).
Thus

1 + Ot:lL
2 8]*: fﬂj(o,o)dlpj - %TJJ +%

du;— J, v | .

1£,,(0,0)

In general this is as far as we can go without numerical-
ly evaluating the remaining integrals. However, we can
go a bit further when dealing with modulational prob-
lems. In this case the last integral can be evaluated by
residues when k is in the modulation subspace [see Eq.
(13)],

[ vdv=v,00)+0(€)
k

)»0
= fpkd¢j+0(ek), N+l<k<N+M.
0

Therefore
#,(0,0)

[, au— [, v

1£,(0,0)

=J,0 dy;+0(e), N+1<k<N+M

k
for k in the modulation subspace. For the initial modu-
lation to be small g, (0,0) must start near A2. Since d ¥,
has no singularity there (for js£k) the integral will be
O(€;). Therefore there is no contribution to the last
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summation in 8;—’ from the modulation subspace [so long
as 1, (0,0)~A%]. For the plane-wave case we have sim-
ply

| w0t
_2;51 = fuj(oyo)d¢j_%7jj+%+0(e) :

By performing the above integral on the lower sheet the
singular behavior at u j(0,0)~7L§-) will cancel with that of
+7;; (consider Fig. 3). This will leave an O(1) contribu-
tion. These constants [the 2(N)8F] are completely deter-

mined by the main spectrum and the initial conditions of
the 1;(0,0)’s. We have seen that these initial conditions
are not arbitrary but must satisfy a constraint. This
translates into the 8% also not being arbitrary. Since we
have satisfied the constraint at the level of the u;’s and
the Abel map is locally one to one, it is also solved at
the level of the 8. Alternatively, one could solve the
reality constraint at the level of the 8 without reference
to the u;’s. This is the approach taken in Ref. 30. The
preferred method depends upon the application one has
in mind.
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