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Linear canonical transformations of coherent and squeezed states in the signer phase space
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It is shown that classical linear canonical transformations are possible in the %'igner phase

space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-

state harmonic oscillator. It is therefore possible to evaluate the signer functions for coherent

and squeezed states from that for the harmonic oscillator. Since the group of linear canonical
transformations has a subgroup whose algebraic property is the same as that of the (2+1)-
dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using

optical devices. A possible experiment to measure the %'igner rotation angle is discussed.

I. INTRODUCTIGN

Coherent and squeezed states now form the basic
language for quantum optics. ' They preserve the
minimum-uncertainty product in the phase space con-
sisting of phase and intensity. The Wigner phase space,
which was initially formulated in 1932, ' is also becom-
ing the standard scientific language in many branches of
physics, including quantum optics. ' It is therefore of
interest to formulate the coherent and squeezed states
within the framework of the Wigner phase-space repre-
sentation.

The %'igner distribution function for the coherent
states has been discussed in the literature. The Wigner
function for the squeezed states has also been studied re-
cently by Schleich and %'heeler for the deformation
along the "x"or "p" axis caused by real or purely imagi-
nary parameters. However, the deformation in phase
space of squeezed states with complex parameters has
not been systematically studied.

In this paper we shall study the squeezed states with
complex parameters. It will be shown that for a com-
plex value of the squeeze parameter, the deformation is
along the direction of the phase angle of the squeeze pa-
rameter. %'e shall achieve this purpose not by perform-
ing a direct calculation but by studying transformation
properties in phase space.

Classical mechanics can be effectively formulated in
terms of the Poisson brackets and canonical transforma-
tions. Although the Poisson brackets become
Heisenberg's uncertainty relations in quantum mechan-
ics, it is cumbersome to use canonical transformaiions in
quantum mechanics because the translation operators in
phase space, which are x and p, do not commute with
each other. '"

The basic advantage of the Wigner function is that
these operators commute with each other in phase space.
In this paper we study coherent and squeezed states in

the %'igner phase space. We shall show that these states
are canonically transformed states of the ground-state
harmonic oscillator. A subset of these transformations
form a group whose algebraic properties are identical to
that of the (2+ I)-dimensional Lorentz group. It may
therefore be possible to design an optical experiment to
test the properties of the Lorentz group.

In Sec. II we brieAy review the linear canonical trans-
formations in classical mechanics. In Sec. III we discuss
the canonical transformations of the Wigner distribution
function in phase space. The canonical transformation
of the Wigner function is much simpler than the conven-
tional Weyl transformation applicable to the
Schrodinger picture. In Sec. IV the Wigner phase-space
formalism is discussed in detail for the harmonic oscilla-
tors.

In Sec. V we discuss coherent and squeezed states in
terms of canonical transformations in phase space. It is
possible from this formalism to determine the signer
function for the squeezed state with a complex parame-
ter. It is noted in Sec. VI that the algebra of squeezed
and coherent states is the same as that for the (2+ I)-
dimensional Lorentz group. This enables us to discuss a
possible experiment to measure the %'igner rotation an-
gle using optical devices.

II. LINEAR CANONICAL TRANSFQRMATIGNS
IN CLASSICAL MECHANICS

The group of linear canonical transformations consists
of translations, rotations, and squeezes in phase
space. ' '" These operations preserve the area element
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in phase space. %e present in this section a short for-
malism which will be useful for studying coherent and
squeezed states in quantum optics.

In order to define the word "squeeze" in phase space,
let us consider a circle around the origin in the coordi-
nate system of x and p. If we elongate the x axis by
multiplying it by a real number greater than 1 and con-
tract the p axis by dividing it by the same real number,
the circle becomes an ellipse. The area of the ellipse
remains the same as that of the circle. This is precisely
an act of squeeze. If we combine this operation with ro-
tation around the origin, the squeezing can be done in
every possible direction in phase space.

The coordinate transformation representing transla-
tions,

X =X+9, P =P+U

The squeeze matrix can be written as

i/2 0 0

B1—— 0 —i/2 0
0 0 0

In addition, if we introduce the matrix 82 defined as

0 i/2 0

B2 ——i/2 0 0
0 0 1

(10)

can be written as

1 0 u x
p' = 0 1 u p

1 0 0 1 1

The matrix performing the rotation around the origin by
8/2 takes the form

8
cos— —sin —0

2 2

8
R (8)= sin — cos— 0

2 2

0 1

The matrix which squeezes along the x axis is

which generates the squeeze along the direction which
makes 45 with the x axis, then the matrices L, B„and
B2 satisfy the following commutation relations:

[B1,B2]= iL, [—B{,L ]= iB2, [B—2,L ]=iB1 .

(12)

This set of commutation relations is identical to that for
the generators of the (2 + 1)-dimensional Lorentz
group 'Th. e group generated by the above three opera-
tors is known also as the symplectic group Sp(2), ' ' and
its connection with the l.orentz group has been exten-
sively discussed in the literature. '

If we take into account the translation operators, the
commutation relations become

S„(q)= 0
0

0 0
—qj2 0 (4)

0 0 i 0 0 0
0 0 0, N2 ——0 0 i
0 0 0! 0 0 0

The rotation matrix is

0 i/2—
L= i/2 0

0 0

generated by

0

0

The elongation along the x axis is necessarily the con-
traction along the p axis.

Since a canonical transformation foBowed by another
one is a canonical transformation, the most general form
of the transformation matrix is a product of the above
three forms of matrices. We can simplify these
mathematics by using the generators of the transforma-
tion matrices. If we use T(u, u) for the translation ma-
trix given in Eq. (2), it can be written as

—1{u1V{+VN2)Tu, u =e

[Blt N1 1 (i/2)N1 [B1 N2]

[Bg,N1]=(i/2)N~, [B~,N2]=(i/2)N, ,

[N{,L ]=(i/2)Nz, [N{,L ]=(—i /2)N1,

[N{,Nq]=0 .

(13)

These commutators, together with those of Eq. (12),
form the set of closed commutation relations (or Lie
algebra) of the group of canonical transformations. This
group is the inhomogeneous symplectic group in the
two-dimensional space or ISp(2)."

The translations form an Abelian subgroup generated
by X& and X2. Since their commutation, relations with
all the generators result in X&, X2, or 0, the translation
subgroup is an invariant subgroup. 'Fhe translations and
the rotation form the two-dimensional Euclidean group
generated by X„N2, and I., which have closed commu-
tation relations. This group also has been extensively
discussed recently in connection with the internal space-
time symmetries of massless particles.

Indeed, it is of interest to see how the representations
of the Lorentz group can be useful in optical sciences. It
is also of interest to see how the experimental resources
in optical science can be helpful in understanding some
of the "abstract*' mathematical identities in group
theory.
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III. LINEAR CANONICAL TRANSFORMATIONS
IN THE VVIGNER PHASE SPACE X2 ——x,

N& ———i
Bx

E2 ———i
Bp

i 8 8L= ——x —p2 Bp Bx

i 8 8 i 8 8
8& ———x —p, 82 ———x +p

2 ax a~
'

2 ap ax

These operators satisfy the commutation relations given
in Eqs. (12) and (13}. We can therefore derive the alge-
braic relations involving the above dimerential forms us-

ing the matrix representation discussed in Sec. II.
The rotation of the translation operators takes the

form

8 . 8
R (8)X,R( —8)= cos —N, — sin —Nz,

2 2

R (8)%2R ( —8)= sin —iii&+ cos—Nz .8 8
2 ' 2

(16)

Under the same rotation, the squeeze generators become

R (8)B,R ( —8)=(cos8}B,+(sin8)Bz,

R (8)B2R ( —8)= —(sin8)B, +(cos8)Bz .
(17)

Likewise, we can derive all the algebraic relations using
matrix algebra. The important point is that the group of
canonical transformations in the %igner phase space is
identical to that for classical mechanics.

Next, let us consider the above transformations in
terms of operators applicable to the Schrodinger wave
function. From the expression of Eq. (14) it is quite
clear that the operation e '"" on the wave function leads
to a translation along the p axis by U. The operation of
exp[ —u (8/Bx )] on the wave function leads to a transla-
tion of the above distribution function along the x axis
by u.

Likewise, the operation in the %igner phase space of
ix(B/Bp ) and ip(B/Bx ) become x /2 and —,'(8/Bx )z, re-

spectively. Thus, the transformations in phase space can
be generated from the operators applicable to the wave
function. The generators applicable to the wave func-
tion are

If f(x) is a solution of the Schrodinger equation, the
VA'gner distribution function in phase space is defined as

W(xp)=(1/n) J g'(x+y)f(x —y)e '~~dy . (14)

This is a function of x and p which are c numbers. This
function is real but is not necessarily positive everywhere
in phase space. The properties of this function have
been extensively discussed in the literature.

When we make linear canonical transformations of
this function in phase space, the infinitesimal generators
are

a
Bx

2—x

2
x 8 — 1 z8 = —i 82 ———x +
2 ex' Bx

These operators satisfy the commutation relations given
in Eqs. (12) and (13), except the last one. The operators
N, and N2 do not commute with each other, and

[E„N2]= i .—

Therefore, it appears that the operators applicable to the
Schrodinger wave function do not satisfy the same set of
commutation relations as that for classical phase
space. *'

Let us consider the translation along the x axis fol-
lowed by the translation along the p axis, and the opera-
tion in the opposite order. From the Baker-Campbell-
Hausdorff formula for two operators, 'o

(e ')( ')=( ™)( ')(e ') . (20)

The interchange of the above two translations results in
a multiplication of the wave function by a constant fac-
tor of unit modulus.

However, this factor disappears when the %igner
function W is constructed according to the definition of
Eq. (14). Therefore, the translation along the x direction
and the translation along the p direction commute with
each other in the Wigner phase space. This means that
the commutation relation [N „N2 ]=0 in the Wigner
phase space and the Heisenberg relation [N„Nz ]= i-
are perfectly consistent with each other. The basic ad-

vantage of the signer phase-space representation is that
its canonical transformation property is the same as that
of classical mechanics.

%'e now have three sets of operators. The first set
consists of the three-by-three matrices in Eqs. (6), (7),
(10), and (ll), and this set is for classical mechanics.
The difFerential operators in two-dimensional phase
space form the second set, and they are for the signer
function. The third set consists of the differential opera-
tors of Eq. (18}applicable to the Schrodinger wave func-
tion. The 6rst and second sets are the same. %'hile both
the second set of double-variable operators and the third
set of single-variable operators are extensively used in
the literature, "'"' it is interesting to see that the con-
nection between these two sets can be established
through the signer function.

The transformations discussed in this section consti-
tute the basic language for coherent and squeezed states
in quantum optics. The relevance of the translation in
phase space to coherent states has been noted before. '

The word squeeze comes from quantum optics. It has
been also noted that its mathematics is like that of
(2+ 1)-dimensional Lorentz transformations. As was
emphasized in the literature, ' ' combining translations
with Loreniz transformations is not a trivial problem.
%e shaH discuss the problem in Secs. V and VI.
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The one-dimensional harmonic oscillator occupies a
unique place in the physics of phase space. For tb~
Hamiltonian of the form

R (8)S,(g)T(r, 0)W(x, p)
2

g . g, 8=—exp ~ — e " x cos—+p sin ——r' cos-
7r

H= ,'(p —+x ), (21)
8 0+e" x sin ——p cos—
2 2

the Wigner function is a function only of (p +x ), and
is thus invariant under rotations around the origin in
phase space. The %'igner function for the ground-state
harmonic oscillator is '

W'(x, p)= —exp[ —(x +p )] . (22)

This function is localized within the circular region
whose boundary is defined by the equation

x +p =1. (23).

(x r) +p =1 .—

This circle is centered around the point (r, O). We can
rotate the above circle around the origin. Then the re-
sulting VAgner function is

R (8)T(r, 0)W(x,p ) =—exp
I

7T

'2
8x —r cos—
2

8+ p —r sin—
2

2

Therefore, the study of the signer function for the har-
monic oscillator is the same as the study of a circle on
the two-dimensional plane. The canonical transforma-
tion consists of rotations, translations, and area-
preserving elliptic deformations of this circle. These
transformations are straightforward.

Under the translation by r along the x axis, the above
circle becomes

8
''11

sin
2 (28)

This transformation is illustrated in Fig. l. As we shall
see in Sec. V, the translated and deformed %igner func-
tions will be useful for studying coherent and squeezed
states, respectively.

In the meantime, let us observe other useful properties
of the harmonic oscillator. %e noted above that, in or-
der to study the harmonic oscillator, we can start with a
circle in phase space. How does this rotational invari-
ance manifest itself in the Schrodinger picture? The
generator of rotations is

'2

—x = —,'( H) . — (29)

a =( I/&2) x+
X

a =(I/v 2) x—
(30)

If the wave function is a solution of the time-
independent Schrodinger equation with the above Ham-
iltonian, the application of the rotation operator
exp( i 81. ) will —only generate a constant factor of unit
modulus. This is the reason why the Wigner function
for the above Hamiltonian system is invariant under ro-
tations in phase space.

In order to study rotations more carefully in the
Schrodinger picture, let us use a and a, de6ned in this
case as

(25)

where T(r, O) and R(8) are the translation and rotation
operators. Because the circle of Eq. (23) is invariant un-
der rotations around the point where x =r and p =0, the
above Wigner function is the same as the translated
%igner function,

T r cos , r sin —8'(x,p)=R(—8)T(r,O)W(x, p) . (26)
8 . 8

Let us next elongate the translated circle of Eq. (24)
along the x direction. The circle will be deformed into

e "(x r')~+e "p =1, —
where

r'=re "~

If we rotate this ellipse, the resulting %igner function
mill be

FIG. 1. Coherent and squeezed states in the signer phase
space. The circle centered around the origin describes the
ground-state harmonic oscillator. The circle around (r,0) is for
the coherent state. This coherent state can be squeezed to el-
lipse along the x axis, with a real value of the squeeze parame-
ter. %'hen the squeeze parameter becomes complex then the
ellipse is rotated around the origin in the %igner phase space.
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These operators serve two distinct purposes in physics.
They are step-up and step-down operators for the one-
dimensional harmonic oscillator in nonrelativistic quan-
tum mechanics.

On the other hand, in quantum-field theory, they serve
as the annihilation and creation operators. %e are here
interested in the creation and annihilation of photons.
Then, what is the physics of the phase space spanned by
x and p variables~ Indeed, the concept of creation and
annihilation comes from the commutation relation

[a,a ]=1 . (31}

This form of uncertainty relation states also that the
area element in phase space cannot be smaller than
Planck's constant. The area element in the Cartesian
coordinate system is (bx}(bp). It is also possible to
write the area element in the polar coordinate system. If
this area is described in the polar-coordinate system, the
uncertainty relation is the relation between phase and in-

tensity. This is the uncertainty relation we are discuss-
ing in this paper. %'e are particularly interested in the
minimum-uncertainty states.

In both Eq. (25) and Eq. (28) the rotation plays the
essential role. Let us see how the operators a and a can
be rotated. For two operators A and 8, we note the re-
lation"

%e can obtain this state by applying the translation
operator to the ground state,

i a) =T(a)
i
0), (38)

where

8 8
r cos—=&2[Re(u)], r sin —=&2[1m(a)] .

2 2
(39)

It is also possible to obtain the %igner function starting
from a real value of u by rotation. From the rotation
properties of the a and a operators given in Sec. IV, the
rotation of this operator becomes

R (8)T(r )R ( —8)= T(u),

with

(
i 8/2 )„—

(40)

T(a)=exp(aa —a"a) .

The translation operator in the phase space depends on
two real parameters. In the above case, the parameter a
is a complex number containing two real parameters.

It is possible to evaluate the %'igner function from the
above expression to obtain the form given in Eq. (25), '

with

e "Be "=B+[A,B]+—,'[A, [A,B]]
+ —,'[ A, [A, [ A, B ]])+ (32)

This means that we can make u complex starting from a
real number r by rotation.

The squeezed state
~ g, a ) is defined to be""'

[L,a]= ——,'a, [L,at]= —,'a (33) f g, a) =S(()
f
a) =S(g)T(a)

/
0), (41)

Since R (8)=e

R(8)aR( —8)=(e ' i )a,
R(8)a R( —8)=(e' ~ )a

(34)

L= ,'(aa +a a), —

Bi , (aa —a a ——},—B2———,'(aa+a a ) .I ]

(35)

We can rotate these operators using Eq. (34). In particu-
lar, the rotations given in Eq. (17) can now be written as

R(8}aaR(—8)=e ' aa,
R(8)a a R( —8)=e' a a

(36)

These relations will be useful in evaluating the %igner
function for the squeezed state.

V. COHKRKNT STATES AND SQUKKZKD STATES

In terms of the a and a operators, the coherent state
is defined as

f
a) =[exp( —

J

a [ /2)] g (a"/n!)(a )"
f 0) . (37)

In terms of the a and at operators, the generators of
canonical transformations take the form

N, =( i &/2)(a ——a ), Nz ——(1/&2)(a+a ),

T

S(g)=exp ~a a — aa
2 2

(42)

Here again the parameter g is complex and contains two
real numbers for specifying the direction and the
strength of the squeeze.

If ( is real, it is possible to evaluate the Wigner func-
tion by direct evaluation of the integral. If, on the other
hand, g is complex, the present authors were not able to
manage the calculation. %e can, ho~ever, overcome
this diSculty by using the method of canonical transfor-
mation developed in this paper. We can make g com-
plex starting from a real value of g by rotating the above
squeeze operator using the rotation properties of the a
and a operators.

Let us start from a real value of g for which the evalu-
ation is possible. For the real value q, the squeeze
operator becomes

S(g)=exp — x77

2 Bx
(43)

This operator makes the scale change of x to (e "~ )x.
It is therefore possible to visualize the deformation of
the circle into an ellipse in the phase space. Let us next
rotate this ellipse. From Eqs. (36) and (42),

R (8)S(rg)R ( —8)=S(g ),
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where

g=(e ' )g.
The operator S(g), when applied to the wave function,
leads to the VAgner function which is elongated along
the 8/2 direction in the phase space. It is indeed possi-
ble to evaluate the %'igner function for the squeezed
state with a complex value of g simply by rotating the el-

lipse elongated along the x direction.
Table I describes how we can determine the %'igner

functions for coherent and squeezed states. Figure 1 il-
lustrates how the above calculation can be carried out.
The translated circle in phase space describes the
coherent state. This circle can be elongated along the x
direction. The resulting ellipse is for the squeezed state
with a real parameter. This ellipse can be rotated. This
rotated ellipse corresponds to the squeezed state with a
complex parameter.

VI. PQSSIBI K MKASURKMKNT
OF THK %'IGNKR ROTATION

%e have noted in Sec. II that the transformation
group contains the subgroup Sp(2) which is locally iso-
morphic to the (2+ 1)-dimensional Lorentz group. It
may therefore be possible to design experiments in optics
to test the mathematical identities in the Lorentz group.
The %igner rotation is a case in point. Two successive
applications of Lorentz boosts in diferent directions is
not a I.orentz boost, but is a boost preceded by a rota-
tion which is commonly called the %igner rotation.

TABLE I. How to evaluate the %'igner function for
coherent and squeezed states.

Coherent
states

Squeezed
states

Direct computation
Canonical transformation

Possible
Possible

Not known
Possible

This will deform the circle into the ellipse

(e ")x +(e")@2=1 . (46)

If we squeeze the circle centered around the origin
along the 8/2 direction with the deformation parameter
g, the squeeze matrix is

This efkct exhibits itself in the Thomas eftect in atomic
physics.

Since the mathematics of squeeze is the same as that
of Lorentz boost, we can discuss the possibility of
measuring the effect of the Wigner rotation in optical ex-
periments. In order to illustrate how the Wigner rota-
tion comes into this subject, let us start with a circle of
unit radius centered around the origin in the Cartesian-
coordinate system with the coordinate variables x and p,
whose equation is given in Eq. (23). If we squeeze this
circle by elongating along the x axis, the squeeze matrix
applicable to the vector (x,p) is

r

e&" 0
S(O, A, ) = (45)0 —g/2

S(8,A, )=
cosh —+ sinh —cos8

2 2

sinh —sin 8
2

sinh —sin(9
2

cosh —— sinh —cos8
2 2

(47)

and the circle is deformed into the ellipse
I'

8 . 8 g . 8 8
e x cos—+p sin — +e x sin ——p cos—

2 2 2 2

(48)
In order to understand the squeeze mechanism

thoroughly, we should know how to squeeze an ellipse.
%'e can achieve this goal by studying two successive
squeezing properties. Let us therefore consider the
squeeze S(8,A. ) of the circle centered around the origin
preceded by S(O, g). This will result in another ellipse,

'2 2
EX . Q p . CX CK

e x cos—+p sin — +e' x sin ——p cos— = 1 .
2 2 2 2

(49)

cosh/ =(cosh' )coshA, + (sinhg)(sinhA, )cos8,

(sin8)[sinhA, +(tanhrl )(coshA —1)cos8]
tano. =

( sinhA, )cos8+ ( tanhrl )[1+( cosh A, —1 )(cos8)~]

This is an ellipse elongated along the a/2 direction with
the parameter g.

The above calculation gives an indication that two
successive squeezes become one squeeze. This is not
true. The product of the matrices S(8,A, )S(O, rl) does
not result in S(a,g). Instead, it becomes' ' '

S(8,A. )S(0,rI) =S(a,g)R (P),

(sin8)[tanh(A, /2)][tanh(g/2)]
2 1+[tanh(A. /2)][tanh(g/2)](cos8)

The right-hand side of the above equation is a squeeze
preceded by a rotation, which may be called the %igner
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rotation. Although Eq. (49) does not show the
effect of this rotation which leaves the initial circle cen-
tered around the origin invariant, we need the derivation
of Eq. (49) in order to determine a, g, and eventually P.

The study of coherent states representations requires
transformations of a circle not centered around the ori-
gin. If we squeeze this circle by applying S(O,g), the
circle is transformed into the ellipse given in Eq. (27). If
we squeeze this ellipse by applying S(8,A, ), the net eff'ect

is the squeeze S(a,g) preceded by the Wigner rotation
R(P). If we apply this rotation to the circle of Eq. (24),

x —p'cos + p —f s1n =1
2 2

The efFect of this rotation is illustrated in Fig. 2.
Next, if we apply the squeeze S(a,g) to the above cir-

cle, the resulting ellipse is

FIG. 2. Two repeated squeezes resulting in one squeeze pre-
ceded by one rotation. The circle around (r, O} in Fig. 1 is ro-
tated around the origin by P/2 and is then elongated along the
a/2 direction.

e ~ (x —a)cos —+(y b)sin ——CX CX

2 2

+e ~ (x —a )sin ——(y b)cos ——= l, (52)
Q Q

2 2
b =r sinh~ (sina)cos+

2 2

a =r cosh + sinh cosa cos—
2 2 2

+ slnh ( slna )sin
2 2

cosh~ — sinh~ cosa sin —. .
~

~

2 2 2

The efFect of this squeeze is also illustrated in Fig. 2.
The Wigner rotation angle P can now be determined

from a, b, which can be measured. In terms of these pa-
rameters,

tan
2

b cosh~+ sinh~ cosa —a sinh~ sina
2 2 2

a cosh ~ — sinh ~ cosa bsinh ~ sin—a
2 2 2

(53)

The parameters g and a can be measured or determined
from Eq. (49). The angle P determined from the above
expression can be compared with the angle calculated
from q, A, , and a according to the expression given in Eq.
(5O).

Indeed, if the parameters of the coherent and squeezed
states can be determined experimentally, the %igner ro-
tation can be measured in optical laboratories. The
question is then whether this experiment can be carried
out with the techniques available at the present time.
%hile the analysis presented in this section is based on
single-mode squeezed states, the squeezed states that
have been generated to date are two-mode states. '

Hence, in order to be directly applicable to experiment,
the present work has to be extended to the two-mode
case, unless the single-mode squeezed state can be gen-
erated in the near future. In the meantime, the present

work indicates that some of optical experiments may
serve as analog computers for the (2+ I)-dimensional
Lorentz group.

VII. CONCLUDING REMARKS

It is quite clear from this paper that the coherent and
squeezed states can be described by circles and ellipses in
the %igner phase space. One circle or ellipse can be
transformed into another by area-preserving transforma-
tions. The group governing these transformations is the
inhomogeneous symplectic group ISp(2).

%e studied the generators of these transformations
both for phase space and for the Schrodinger representa-
tion. It has been shown that the connection between
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these two sets of operators can be established through
the VA'gner function.

%e also studied in detail rotations in the %igner
phase space and their counterparts in the Schrodinger
representation. It is now possible to evaluate the %igner
function for a squeezed state ~ith a complex parameter.

The correspondence (local isomorphism) between Sp(2)
and the (2+ 1)-dimensional Lorentz group allows us to
study quantum optics using the established language of
the I orentz group. At the same time it allows us to
look into possible experiments in optical science to study
some of mathematical formulas in group theory. It may

be possible to measure the %'igner rotation angle in opti-
cal laboratories.
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