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Driven Morse oscillator: Classical chaos, quantum theory, and photodissociation
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%'e compare the classical and quantum theories of a Morse oscillator driven by a sinusoidal

field, focusing attention on multiple-photon excitation and dissociation. En both the classical and

quantum theories the threshold field strength for dissociation may be estimated fairly accurately

on the basis of classical resonance overlap, and the classical and quantum results for the threshold

are in good agreement except near higher-order classical resonances and quantum multiphoton

resonances. %e discuss the possibility of "quantum chaos" in such driven molecular systems and

use the Morse oscillator to test the manifestations of classical resonance overlap suggested semi-

classically.

I. INTRODUCTION

For over half a century the Morse potential has pro-
vided a useful basis for interpreting and Stting the vibra-
tional spectra of diatomic molecules. ' In the last few
years the classicaL Morse oscillator driven by a
sinusoidal force has been invoked in studies of stochastic
excitation and dissociation associated with the onset of
chaos. Davis and Wyatt, for instance, 6nd that dissocia-
tion always occurs from what would appear to be chaot-
ic regions of phase space in the classical model. Galvao
et aL. have made estimates of the classical threshold for
stochastic excitation and dissociation based on
Chirikov's resonance overlap criterion. ' They Snd,
based on numerical integration of classical trajectories,
that the dissociation rate scales approximate1y with the
laser intensity, in agreement with the earlier studies of
Shur yak.

A number of classical studies have pointed to the im-

portance of chaos in the infrared multiple-photon excita-
tion and dissociation of molecules. In particular, the
chaotic meandering of trajectories in phase space can re-
sult in a diN'usive energy growth in which the average
energy grows linearly with time, leading eventually to
dissociation. On the other hand, it is known from mod-
els like the periodically kicked pendulum that quantum
efFects can suppress this diS'usive behavior and produce a
phase-space localization analogous to the Anderson lo-
calization of a particle moving on a lattice with random
site energies. The question therefore arises as to the
range of validity of the rather large number of classical
models.

This question, of course, is an old one, and the answer
depends on what one ls trying to accomplish with a clas-
sical model. In the context of molecular excitation and
dissociation, classical models have long been advocated
on intuitive grounds, but only rarely have classical and

quantum models been directly compared. An important
exception is the work of Walker and Preston, in which
classical and quantum results for a sinusoidally driven
Morse oscillator were compared. Using parameters ap-

propriate to the HF (hydrogen Suoride) molecule, these
authors found that gross features of quantities like the
expectation value of energy or position, as functions of
time, could be fairly well predicted by averaging over
classical trajectories. Multiphoton resonances, however,
were not we11 accounted for by the classical theory.

Another reason for making detailed comparisons of
classical and quantum computations is to better under-
stand the quantum-mechanical manifestations of classi-
cal chaos. That is, how does the onset of classical chaos
manifest itself when the system is treated fully quantum
mechanically'? This question of "quantum chaos" has
been a diScult and controversial one; some aspects of it
are discussed in this paper. Our main goal here is to ex-
tend the work of %alker and Preston to include the pos-
sibility of dissociation. %'e do this by direct numerical
solution of the time-dependent, Schrodinger partial
differential equation. This approach may be extended to
include molecular rotations, and we plan to discuss this
extension in a future publication.

Section II summarizes the classical model and ad-
dresses the question of resonance overlap. In Sec. III we
present some results of the classical model and discuss
the onset and rate of photodissociation. Section IV sum-
marizes our approach to the numerical solution of the
time-dependent Schrodinger equation, and we consider a
simple quantum-mechanical extension of the notion of
resonance overlap. In Sec. V we discuss the quanturn-
mechanical results for multiple-photon excitation and
dissociation of the Morse oscillator, and compare these
results with the corresponding classical trajectory
theory. In Sec. VI we take up questions of chaos and
summarize our conclusions from this work.

II. CLASSICAL DRIVEN MORSE OSCILLATOR

%'e consider the time-dependent Harniltonian

H =p /2m +D(1—e '") d, Eox cos(coLr) —(2.1)

and integrate the classical equations of motion
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x =p/m,

P = 2—Da (e '"—e ")+d,Eocos(toL t),
(2.2a) we make a "rotating-wave approximation" in which only

the most slowly varying part of the perturbation is re-
tained in (2.6),

where x „xzare the turning points [ V(x, )=E,i =1,2].
For the Morse potential we obtain
J = —(2m/a )' (&D E —&—D ) and therefore the un-

perturbed energy and frequency as functions of the ac-
tion J are

E =too(J tooJ /4D—),
8=to(J) =BE/BJ =coo(1 tooJ/2D—),

(2.4a)

(2.4b)

as, of course, is well known. We may write x(t) in
terms of the angle variable 8 as follows:

where D and a are the dissociation energy and range pa-
rameter, respectively, of the Morse potential, and d, is
the effective charge, or dipole gradient. Near the bottom
of the well we have approximately harmonic motion
with frequency coo=(2Da /m)'

For Eo ——0 the motion is, of course, integrable. The
action variable is

J=(1/2n) fpdp=(1/m) f pdq

=(1/m )&2m I dx&E —V(x),
r&

(2.3)

H HRw~ ——Ho( J)—V~( J)cos(NO to—L t) .

Following Chirikov's line of reasoning we write

(2.9)

J =J,~. +NP (2.10)

and assume P is small enough that Vtt(J)= Vz(Jz). We
also define

(2.11)

so that

P =N 'J = N' — = Vtt(JN )sinQ, (2.12a)
ae

Q =cot NO—

¹oo+—(Neo

l2D�
)(Jtv +NP) + tot

=(N coo/2D)P

=—I'/M~ . (2.12b)

H =P /2Mtv+ V~(J~)cosQ, Mx =2D /N~too2— (2.13)

Thus Q and P are coordinate and momentum variables
for the pendulum system with Hamiltonian

D +&DE cosOx, =a n

where the values 9=0 and m correspond to the outer
and inner turning points, respectively, of the unper-
turbed motion.

To investigate qualitatively the behavior of the driven
Morse oscillator (Eo&0), we consider Chirikov's reso-
nance overlap criterion. For this purpose, the Hamil-
tonian (2.1) is expressed in terms of the action-angle
variables O,J as follows:

From (2.5) and (2.7) we have

Vv (J)= (d, Eo la) Att,

Atv —=( —1) +'/N[&D/E (1+&1 E/D )]—
%/2

1 —coL /Ntoo=( —1P'+'/N ' ', N~o.1+coL /N too

(2.14)

Here ~L is the laser frequency at which the resonance
condition (2.8) is satisfied,

toL ——Ncoo&1 E/D— (2.15)

H =Ho(J) —(d, Eo/a)ln cos(toLt)
D +&DE cosO

=Ho(J) 2g VN(J)cos—(NO)cos(toLt)

=Ho( J)—g V~(J)[cos(NO+ toL t )

+cos( NO coL t )], —

Vz(J) =(d, Eo/2m) f d8x (J,O)cos(NO) (2.7)

and Ho (J ) = too( J cooJ /4D ). Near —an 1solated reso-
nance defined by

%e are now in a position to formulate Chinkov s reso-
nance overlap criterion for the driven Morse oscillator.
According to this criterion, the onset of chaos is expect-
ed roughly when the sum of the widths of neighboring
resonance zones exceeds the distance between the zones
in action-angle space. The width of the Xth resonance
may be inferred from (2.13): the maximum excursion
of P for the pendulum system (2.13) is EP
=+2M„

I Vtv(J~) I
so that, from (2.10),

~J~=N&2M~
I

Vx(J.v) I
=2&D j~oV'

I Vx(J~) I

(2.16)

is the width in the action variable associated with reso-
nance X. The resonance overlap criterion for the onset
of chaos then takes the form

coL NO =Nto(Jt„)—— ]+~~a»x+ i
—Jx (2.17)
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or, using (2.8), (2.14), and (2.15),

d, EO/D& & (coL/coo) N (%+1)
(2.18)

This is equivalent to the condition
g co&+&

—~z, where ~& is the resonance frequency satis-
fying (2.8) and Sroz is the spread in this frequency asso-
ciated with the width of the action variable.

Consider, for instance, the classical Morse oscillator
with energy corresponding to the ground state of the
quantum system,

E =BD =0.0419D, (2.19)

where the value of 8 is chosen to correspond to the
Morse parameters for the HF molecule, for which
D =6.125 eV (Sec. IV). Then for an N =1 resonance
raL

——0.979coo and we calculate A, =0.10, A2 ———0. 17,
and the resonance overlap condition d, EO/Da & 0.45 or

E/0

0.2

K=d, EO/DB a &256 . (2.20)

It Inust be emphasized that the resonance overlap con-
dition (2.18) provides only a rough estimate of the field

strength at which chaos might be anticipated. We will
see in Sec. III that in fact the estimate (2.20) is more
than a factor of 2 larger than the value of E necessary
for dissociation. It is perhaps worth noting that (2.18)
has a simpler form than the resonance overlap criterion
derived by Galvao et al. 3

III. CLASSICAL COMPUTATIONS

Since we wish to compare with the quantum theory of
the driven Morse oscillator, we average the classical re-
sults over a large number of trajectories with diferent
initial conditions. This is done by Gxing the energy E of
the initially unperturbed oscillator, setting the momen-
tum p =+&Zrn[E —V(x)], and sampling the x values
according to a uniform distribution on the interval be-

LS OaR

E/D
O.a

0
0.80 0.92

E/D
Q.98

FIG. 1. The critical pump parameter K, for dissociation vs
E/D, determined from the resonance overlap condition (2.18)
( ), classical trajectory analysis (), and the Schrodinger
equation (+ ). For each E/D the laser frequency is set to the
classical nonlinear resonance value (2.15) with %=1. The
Morse parameters are those appropriate to HF.

FIG. 2. (a) K, vs E/D given by the resonance overlap con-
dition (2.18) as in Fig. 1 for N =1, 2, 3, and 4 resonances; (b)
E, as in (a) for X=1, together with the classical (0) and quan-
tum {+} predictions; (c) as in (b) for an N =4 nonlinear reso-
nance.
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tween the two classical turning points. [We have also
performed computations in which the x's are distributed
according to the quantum-mechanical probability densi-
ty

~
P(x)

~

for a stationary state of energy E, but the re-
sults were very similar to those with a uniform x distri-
bution. t To further facilitate the comparison of the clas-
sical and quantum theories, we generally choose E to
correspond to an energy eigenvalue of the quantum-
mechanical Morse oscillator (Sec. IV).

Some aspects of the classical and quantum results are
summarized in Sec. V. In this section we focus our at-
tention on some classical predictions for the photodisso-
ciation of the Morse oscillator. For this purpose we
consider the "compensated energy"'

0.03—

CA
Cfl
Cl

0.00 -,
0

I I

20 40
Y'{optical cycles)

E, = mx—
'2

1EO
sin(air) 2m + V(x), (3 1)

which is constant when V(x)—:0. As such, the compen-
sated energy varies more smoothly than the energy
—,'mx + V(x). Following the work of Leopold and Per-
cival' on an analogous ionization problem, we define
dissociation in our computations by the condition
E, pa. The dissociation probability is defined as the
fraction of sampled trajectories for which E, p D.

Equation (2.18) provides an estimate of the critical
pump parameter 3', necessary for resonance overlap.
We plot this K, versus E/D in Fig. 1 for the case of an
X = 1 resonance, and compare with the corresponding
critical pump parameters for dissociation determined
from the classical trajectory calculations. (For the
Morse parameters of HF the field intensity I may be ob-
tained from E =d, EO/DB a by the relation I =0.08K
TW/cm .) In the trajectory computations E, was
defined as the value of K, for fixed E/D, that causes dis-
sociation of =1—3 trajectories out of 500 within 90 opti-
cal cycles. This value of E, was typically two or three

FIG. 4. The classical dissociation rate is de6ned by fitting a
straight line to the curve of dissociation probability vs time, as
indicated. In this case we chose E =80 and p=45. 11 and the
molecule was initially in the ground state.

times smaller than the value predicted by the simple res-
onance overlap criterion derived above. However, the
curves of K, versus E/D are seen in Fig. 1 to be qualita-
tively similar. This can also be seen in Fig. 2, where we
plot K, versus E/D for the % =1, 2, 3, and 4 reso-
nances.

Figure 3 shows the dissociation rate y as a function of
for an initial energy equal numerically to the

quantum-mechanical ground-state energy; the driving
frequency is chosen to be slightly redshifted from the
n =O~n = 1 transition of the quantum system, and cor-
responds closely to an %=1 resonance in the classical
system. The dissociation rate was defined by fitting a
straight line to a plot of the dissociation probability
versus time, as illustrated in Fig. 4. For strong fields the
dissociation probability as a function of time has a satu-
ration behavior, as illustrated in Fig. 5 after =30 cycles.
In such cases the dissociation rate is defined by the
short-term, nonsaturated part of the curve.

0.45 -'

CD

CD 0.30—
CL
CL.

90
I

$00

FIG. 3. The classically predicted dissociation rate y (per op-
tical cycle) as a function of E for an initial energy equal nu-

merically to the quantum ground-state energy for the Morse
oscillator. The field frequency is slightly redshifted from the
resonant value for the quantum n =O~n = 1 transition, and is
close to the value for an N =1 resonance.

0.$5—
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FIG. 5. For large values of the dissociation probability
there is a saturation of the dissociation probability because
fewer and fewer trajectories are available for dissociation. In
this case, E = 160.
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IV. QUANTUM SYSTEM

The eigenfunctions for the unperturbed Morse oscilla-
tor are

(» ) g e —s/2z [(k —I ) —2n]/2L k —2n( )

(4.1)

r =(DB'/R)t,

X =ax,
p =fuuL /DB

K =d, EO/aDB

(4.8a)

(4.8b)

(4.8c)

(4.8d)
where 3„is a normalization constant, L,

„

is the general-
ized I aguerre polynomial, and

z =ke

k =4D /ftcoo,

coo (2Dct——/m)'

(4.2b)

(4.2c)

The corresponding energy eigenvalues are given very ac-
curately by '

E„=BD (n + —,
' }[2—B ( n + —,

'
)],

where

(4.3)

(4.4)

The Morse parameters for HF are taken from Walker
and Preston: 8 =0.0419, D =6.125 CV, a = 1.1741a(} ',
and d, =0.7876 0/ao. For these parameters the Morse
potential allows 24 bound states.

In order to compare with the classical theory de-
scribed in Sec. III, we solve the time-dependent
Schrodinger equation

In terms of these variables the Schrodinger equation
takes the form

i = — +B (1—e )P KX —cos(p~)g .. a@ a'y
c)w

(4.9)

One way to check our computer program for solving
(4.9) is to compare with conventional basis-state ap-
proaches when the driving field is sufficiently weak that
dissociation is negligible. In particular, we have com-
pared with results shown in the paper by Walker and
Preston. Figure 6, for instance, shows results for the
energy expectation value. The parameters for these
computations were chosen to correspond to Fig. 5 of the
Walker-Preston paper (K =23.7, @=45.11, B =0.0419),
and the agreement with %alker and Preston is excellent.
%'e defer further discussion of such numerical results to
Sec. V.

Since the resonance overlap criterion is such a useful
tool in the analysis of the classical system, the question
arises whether there is a meaningful quantum analogue
of resonance overlap. Let us first note that the semiclas-
sical quantization prescription J~(n +r)R, which pro-
duces the quantum energy levels (4.3) from the classical
expression (2.4a), implies that an isolated resonance
occurs when

2 2.~ c)P iit' c),„2
dt 2m

d, E0 cos(cot—t} (4.5)

cot Nco(JN ) =¹——oo(1 cooJ~/2D),—

J~ ——(n~+ —,
' )i)i .

(4.10a)

(4.10b)

1 iH ht /2fi-
I+ tH ~t/2f

L

(4.6)

for (unitary) time evolution by a step ht This proc. edure
leads to a tridiagonal linear system of equations that
may be solved by a mell-known, efficient "two-sweep"
method. '

In all our calculations we have written (2.2) in the
scaled form

d L = —(4/B )(e —e )+2K cos(p~),2 —X —2X

Our approach is to solve this parabolic partial
difFerential equation numerically rather than to employ a
basis-state expansion for it and then solve the coupled
ordinary dilerential equations for the state amplitudes.
By automatically accounting for the continuum, this ap-
proach facilitates the treatment of photodissociation in
our model system.

Our numerical approach involves a simple spatial
discretization together with the algorithm

I $.6-

w 0.8—

0',
LU 40

T (optical cYcles}

l

eo

FIG. 6. The energy expectation value for a driven Morse os-
cillator with parameters E =23.7, @=45.11, and 8 =0.0419.
The system is assumed to be in the ground state at t =0. This
corresponds to Fig. 5 of the paper by %'alker and Preston CRef.
9).
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The width (2.16) then implies

2&D & I
I tc«(Jtc) I

(4.11}

to obtain from (4.15) the equivalent Schrodinger equa-
tion

i 1)iC„=(E„E— n—ftcot )C„

for the number of levels "mixed" by the applied field
near an isolated classical X resonance, or equivalently a
width

DER 28D——[1—8 (nil+ —,
' )]An v

o 1 — (nn+ ') -a
2D

l tc)1 f —l OPI t—d 1Ell(x„„lc„ le +x„„+lc„+le )

(4.18}

id lEO[xn n —lCn —1+xn n+ lCn + 1 ]

Xcos(coLt) .
Under the assumption that the C„are slowly varying

kl COL f
compared with e, we make a rotating-wave approxi-
mation,

iliiC„=(E„E—n ftc—oL )C„

=fico( JN )b,nil (4.12) = —[mftcoL+8 D(n —m) ]C„
in energy. %e now assume a quantum resonance over-
lap condition of the form

TdlEO[xn n —lCn —1+xn n+lCn+1]

~nN+1+~ntc & nN+1 nil (4.13)
(4.19)

Picot =(1/2A')[(E +, E)+(E E —1)]—
=BD [2—28 ( m + —,

'
) ] . (4.14)

To see how many levels near m might be strongly cou-
pled by the field in this case, let us consider for simplici-
ty the Schrodinger equation with only nearest-neighbor
couplings assumed,

i fic„=(E„E)c„—
1EO(Xn, n 1Cn 1+Xnn+1cn+1),COS(NLt) &

(4.15)

where c„is the probability amplitude for level n and we
have measured the energy levels from the level m satisfy-
ing (4.14). Now

E„E=BD[2—28 (m +—,
' )—](n m) BD (n —m)— —

=ficot (n —m) BD (n —m)— (4.16)

and so we define C„by
c„(t)=C„(t)e (4.17)

This resonance overlap criterion leads to the same value
of the threshold field strength as the classical condition
(2.18) wheri the classical energy Etc is equated to the
quantum energy level E (nn }. For a fixed field frequency

ml, however, there will generally be no quantum energy
level for which the classical resonance condition
coL

——¹o(JN ) is satisfied exactly.
If the classical nonlinear resonance condition is

satisfied for some N, then (4.11) says that the effective
"width" in ntc is proportional to QEo, i.e., to the
square root of the electric 6eld strength. This An& is a
measure of the number of levels near n~ that are strong-
ly coupled, or mixed, by the applied field. The peculiar
dependence on Eo actually appears to have a quantum-
mechanical explanation. «Consider an N =1 classical res-
onance, cot ——co(J1)—:co(J ). In quantum terms this res-
onance condition becomes

Now the energy rnkcoL represents a constant shift and
may be removed by redefining the zero of energy. This
leaves us with a Schrodinger equation with effective en-

ergy levels = ( n —m ) . We expect strong coupling
among those levels "detuned" by an amount comparable
to or smaller than the Rabi frequency, which is propor-
tional to Eo. ' This leads us to expect that the spread or
"width" of energy levels near m that are strongly cou-
pled by the resonant field is proportional to QEO, as we
have inferred above from semiclassical arguments. This
point will be discussed further in Sec. VI.

There are different ways in which the dissociation
probability may be obtained in our quantum calcula-
tions. The most straightforward approach is simply to
compute the probability,

P (t)= y I (y„I
1((t)) I', (4.20)

V. COMPARISON OF CLASSICAL
AND QUANTUM THEORIES

As noted in Sec. II, we de6ne the dissociation thresh-
old iri the classical calculations by the condition that
=1-3 trajectories out of 500 reach a compensated ener-

gy E, ~D within 90 cycles of the driving field. The dis-
sociation probability at any time t is defined as the frac-
tion of trajectories with E, g D. For some purposes only
a few tens of trajectories are needed, but we use typically
500 trajectories for the dissociation calculations in order
to obtain smoothly varying dissociation probabilities. In
the quantum calculations we similarly define the dissoci-
ation threshold to occur when the dissociation probabili-
ty 1 —I'D becomes larger than 1/500 within 90 cycles.

For "weak" driving fields there is no dissociation.
Consider the case when the Morse oscillator starts out in

that the system at any time t is in any one of the 24
bound states. The dissociation probability at time t is
then 1 PD ( t }. This is t—he approach taken for the pur-
poses of this paper. For other systems (e.g. , the hydro-
gen atom) this approach may, of course, be impractical.
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its ground state and the 6eld frequency is tuned to the
n =O~n =1 transition (p=45. 73). Figure 7(a) shows
the energy expectation value as a function of time. Note
that Eo/D =0.041 and E, /D =0.122. ~e do not ob-
serve perfectly sinusoidal Rabi oscillations between the
n =0 and n = j. levels because the population does not
remain confined to these two levels. Figures 7(b) —7(d)

sllow the probabilities
~

(1/lo
~
y(i)) ~',

~ (1(,
~
l/(t)) ~',

and
~

lt'2
~

tp(t)) ~, respectively, and indicate that most,
but not all, of the population resides in the n =0 and
n =1 states. Figure 7(e) shows the expectation value
(X(t)). In these figures we can discern the rapid field
oscillations superposed on the slower Rabi oscillations.

Figures 8(a) and 8(b) show the average energy and in-

0.8—

Lr Lrq
50 fRO

T'(optical cycles} Y(optical cycles)
180

0.8—

0
60 120
T'(optical cycles)

60 120
T(optical cycles)

180

(e)

$0 $21

e{optical cycles)

FIG. 7. (a) Energy expectation value for a Morse oscillator vvith E =10, @=45.73 (n =0~1 resonance), and the initial state
n =0. (b)-{d) show the probabihties

~
(lto ~

l((t)) ~, ~ (p, ~
@(t)) ~, and

~ (p, ~
@(t))

~

', respectively, and (e) shows the expectation
value (X{t) ) corresponding to the intermolecular separation.
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termolecular separation X predicted classically for the
case of Fig. 7. For =10 cycles the classical predictions
are in excellent agreement with the quantum results, but
for larger times the agreement is not so good. If we use
larger values of the driving amplitude the scales of the
energy and coordinate variations predicted by the classi-
cal and quantum theories are in fairly good agreement,
which is consistent with the observations of %'alker and.
Preston. The good agreement of the classical and quan-
tum predictions for short times could have been antici-
pated from the energy-time uncertainty relation; for
short times the discrete energy levels of the quantum
system are "unresolved" and so we have an approxima-
tion to the classical continuum of allowed energies. The
point that the classical and quantum theories come into
better agreement at larger field amplitudes was also
made by Shirts and Davis, and is discussed further
below.

In Fig. 1 we also show the results of quantum calcula™
tions (denoted by + ) for the threshold field strength for
dissociation when the field frequency is set for each ini-
tial energy level to the value necessary for a classical
N =1 resonance. The Morse oscillator is assumed to be

in its ground state before the field is switched on at t =0.
The agreement with the classical calculations (denoted
by ~ ) is rather good at these field strengths required for
dissociation, with both the quantum and classical results
for E, being smaller than the value predicted by the sim-

ple classical resonance overlap condition. This compar-
ison of the classical and quantum predictions is focused
on larger values of E/D in Fig. 2(b) for the N =1 reso-
nance, and in Fig. 2(c) for an N =4 resonance.

Obviously there is a wide range of parameters that can
be investigated. We will simply summarize here what
appear to be general trends in the comparison of the
classical and quantum theories of the driven Morse oscil-
lator.

(a) The classical and quantum theories are in good
agreement for short times, typically =10 cycles in the
parameter range we have focused on. Of course, this re-
sult is hardly surprising. For longer times the classical
and quantum results look quite different, although the
scale of variations is roughly the same.

(b) The simple resonance overlap criterion (2.18) is a
fairly accurate predictor of the threshold field strength
for dissociation for both the classical and quantum
theories.

(c) However, the classical and quantum theories can
di8er substantially near quantum multiphoton reso-
nances and near higher-order classical nonlinear reso-
nances, where the resonance frequencies approximate
those for single™photon quantum overtone transitions
(i.e., n ~n +N, N & 1).

C)

0.08—

The latter point is important for understanding the
differences between the classical and quantum theories,
and therefore we now discuss it further.

In Fig. 9 we plot the critical value of E for dissocia-
tion versus frequency for a Morse oscillator starting in

O.4—
0

I

60 120
T (optical cycles)

(b) 3 800—

0.2— ~ 1200— N=3
+

+

n=0 —1
n=0 2

¹2 t n=Q —3

-0.2—
0

& (optical cycles)

60

FIG. 8. (a) Average energy and (b} intermolecular separa-
tion predicted classically for the case shown in Fig. 7. For
short times {=10 cycles) the classical and quantum predictions
are in good agreement.

FIG. 9. E, vs p for a Morse oscillator starting in the
ground state. The labels refer to either an n =0~% quantum
overtone resonance or a classical nonlinear X resonance. Unla-
beled points do not correspond to a resonance, classical or
quantum.
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the ground state. It is seen that as we get further from
the lower-order resonances the difFerences between the
classical and quantum predictions increase. This is also
seen in Fig. 2(c). One way to understand this is as fol-
lows. As one goes to higher resonances the resonant fre-
quency for a quantum overtone resonance difFers increas-
ingly from the corresponding classical nonlinear reso-
nance. This is shown schematically in Fig. 10. Also in-
dicated are the ranges of frequencies that satisfy the res-
onance overlap criterion for the various classical reso-
nances. This range is given by

Since AJAR decreases with increasing E, A~L decreases as
X increases, as seen in Fig. 10. Therefore, as one probes
higher overtone resonances the laser frequency gets fur-
ther outside the classical nonlinear resonance range and
consequently a more intense field is typically required for
dissociation in the classical system.

It should be emphasized that the agreement between
the quantum and classical theories occurs at the low-
order resonances and low frequencies. As seen in Fig. 9
the agreement between the quantum and classical
theories gets worse, in general, as the frequency is in-

creased. It should also be noted that the agreement dis-
cussed here relates to E„notthe detailed dynamics.

4)(N = 4)

m(o-a)

4U(N = 3)
u(O-3)

QJ(N = 1)
— — (d(0 =1)

Mainly we have investigated "experimentally" the re-
gime of rather high 6eld strengths for dissociation. It is
perhaps worth emphasizing that even at the lowest-order
resonances there can be signi5cant difFerences between
the classical and quantum predictions if the field intensi-
ty is weak. This is due again to the fact that the reso-
nance widths scale as the square root of the 6eld ampli-
tude. For weak 6elds, therefore, the difFerence between
classical and quantum resonance frequencies can lie out-
side the width of a resonance. An example is shown in
Fig. 8, where the average classical energy appears to be
decreasing (due to dephasing among diff'erent classical
trajectories) whereas the quantum expectation value of
energy (Fig. 7) is not. As noted above, the possibility of
such substantial differences between the classical and
quantum predictions at lower field strengths was also
recognized by Shirts and Davis.

VI. CLASSICAL AND QUANTUM CHAOS

Classical chaos may be defined unambiguously by the
existence of a positive Lyapunov characteristic exponent,
implying the "very sensitive dependence on initial condi-
tions that is the hallmark of chaotic dynamics. "' How-
ever, the definition of the Lyapunov exponents involves
the long-time limit of a system's dynamics, and for sys-
tems like the Morse oscillator the resonance overlap
leads to dissociation; we do not know how to character-
ize the predissociation dynamics as "chaotic" or "regu-
lar" in any rigorous fashion. The problem is analogous
to that of whether it is meaningful to characterize any
Pnite string of digits as random. As noted earlier, Davis
and Wyatt have found that dissociation always appears
to occur from "chaotic" regions of phase space in the
classical Morse oscillator. By "chaotic" they mean that
the surface of section appears to be an erratic sequence
of points with no evidence of confinement to KAM
(Kolmogorov-Arnold-Moser) tori.

Although we refrain from calling the predissociation
dynamics chaotic, it is certainly true that dissociation is
preceded by resonance overlap. The question of "quan-
tum chaos" then reduces, for us, to whether there are
any quantum-mechanical manifestations of (classical)
resonance overlap.

In Sec. IV we deduced from semiclassical considera-
tions that the number of energy levels mixed by a strong
Geld is proportional to the square root of the electric
field amplitude. We also ofFered a heuristic justi6cation
of this prediction based on the Schrodinger equation, the
rotating-wave approximation, and Rabi splittings (i.e.,
the so-called "ac Stark efFect"' ). In fact, the prediction

FIG. 10. The laser frequencies for the classical resonances
(N) and the corresponding quantum overtone transitions
{O~X) relative to each other, indicated schematically. The
shading indicates the width of the classical resonance for a
given value of the field amplitude Eo.

appears to be confirmed in numerical experiments. Fig-
ure 11 shows the probabilities of the Morse oscillator be-
ing found in the various bound states for two difFerent
values of E with the oscillator starting in the ground
state. For K =10 we have =4 levels signi6cantly popu-
lated. For E =80, however, =11 levels are populated.
Figure 12 shows another case, this time with the oscilla-
tor starting in the n =14 state. Here we have An =6 for
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E =2 and hn =14 for K =15. In both cases it is seen
that the change in An with K is in good agreeroent with
(6.1). In our numerical experiments it appeared that the
prediction (6.1) was corroborated whenever the spread in

hn was large enough to resolve as in Figs. 11 and 12.
Note that for large geld strengths the approximation of
purely two leuel dy-namics breaks down completely, even
at an exact n ~n +1 resonance. Instead of population
remaining con6ned to a "two-level atom, " it appears to
spread in accordance with (6.1).

It is also worth noting, based on limited numerical
evidence available to us, that (6.1) also appears to be
supported by quantum calculations for a one-
dimensional model of the hydrogen atom in a sinusoidal
Geld. ' %e are presently examining in detail the range
of validity of the conjecture (6.1).

Assuming the validity of (6.1), it would appear that
classical resonance overlap translates quantum mechani-
cally into a level mixing by the strong field. The number
of levels mixed by the field grows with the field strength
as QEO, and as Eo grows the spread of population is
enough to give rise eventually to dissociation. The
predissociatioo quantum dynamics is, of course, quasi-
periodic, although if enough (discrete) energy levels are
mixed by the field the dynamics can be quite cornplicat-
ed.

Such "complicated" but noochaotic dynamics may
suice in some contexts to justify statistical assumptions
about the laser-molecule dynamics. For instance, we re-
cently considered the simple example of a quasiperiodi-

FIG. 12. The probability of being in the various bound
states after about 10 optical cycles. The oscillator starts in the
n =14 state with parameters IM. =18.67, 8 =0.0419 and (a)
EC =2.0; I,'b) E =15.0.

cally kicked two-level atom, and found that, although
the dynamics is quasiperiodic, it can nevertheless be er-
godic on the Bloch sphere; furthermore, the autocorrela-
tion function for the state vector can appear to be a de-
caying function of the time difference, with recurrences
occurring only on long time scales. ' This nonchaotic
behavior is reminiscent of Slater s theory of unimolecu-
lar reactions, which invokes a number of incommensu-
rate frequencies to explain certain "statistical" features
with purely quasiperiodic dynamics. ' Similarly, Mazur
and Montroll studied ergodic properties of purely har-
monic chains using the properties of quasiperiodic func-

tions involving a large number af incommensurate fre-
ueocles.
As noted earlier, classical models have often been in-

voked to describe multiple-photon excitation and dissoci-
ation. It is typical of recent classical models that disso-
ciation or eff'ectively statistical (incoherent) behavior are
consequences of classica1 resonance overlap ' ' and
chaos. The mixing of a large number of energy levels
by the field may provide a justification for classical dy-
namics, even though quantum chaos in the strict classi-
cal sense of extreme sensitivity to initial conditions may
be impossible. In the present example of the driven
Morse oscillator, for instance, we have found rather
good agreement between the classical and quantum pre-
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dictions for the dissociation threshold, except near
higher-order classical and quantum resonances.

Note added in proof Q. uestions of resonance overlap
and localization in the driven Morse oscillator have also
been addressed in a brief note by Hohnerbach and Gra-
ham. ' These authors define a classical diffusion con-
stant and a mean 6rst passage time for di8'usion across
t'he dissociation border, which they indicate to be in

good qualitative agreement with numerical (classical) re-
sults.
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