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The photon correlations of resonance fluorescence emitted by a degenerate two-level atom near

a metal surface are studied. An intense nonmonochromatic optical laser drives a low-lying atomic
transition, and the emitted fiuorescence is detected by a photon counter. An expression for the

spontaneous-decay operator is derived, and it appears that the various substates of the upper level

have a difkrent lifetime due to the presence of the surface, or equivalently, due to the loss of
spherical symmetry. The temporal photon correlation function is then evaluated in terms of a
photon-emission operator and the tine-evolution operator for the atomic density matrix. The gen-

eral theory is exemplified with a detailed elaboration of the jg =0~j,=1 transition, for which the
two-photon correlation is obtained explicitly as a function of the inverse lifetime A (h), depending

on the atom-surface distance h, the laser linewidth, the detuning from resonance, and the dipole-

coupling strength with the external 6eld.

I. INTRODUCTION

Irradiation of an atom by an optical laser with a fre-
quency ml in close resonance with an electronic transi-
tion frequency (level separation) will cause the atom to
absorb photons from the incident 6eld. Subsequent
spontaneous decay is accompanied by the emission of
fluorescence radiation, which is amenable to observation
in an experiment. Detailed properties of the scattered
radiation, like its intensity, polarization, spectral proNe,
and temporal photon correlations, reflect the dynamical
evolution of the atom in its environment. A generic
method to obtain information about interatomic poten-
tials, for instance, is by measuring the line shape of the
fluorescence, which is emitted during a collision. In a
similar way it should be feasible to study the behavior of
an atom in the vicinity of a surface, or the alterations in
its optical properties due to the presence of an optically
active substrate.

Resonance fluorescence of a free atom (gas phase or
atomic beam) in a strong external field has been studied
extensively during the last two decades. Theory' pre-
dicted a three-line spectrum for a two-state atom, which

was con6rmed by experiments. The nonclassical na-
ture of fluorescence radiation was established by the ob-
servation of antibunching and sub-Poissonian statis-
tics' in the temporal distribution of the photon emis-
sions. Also, combined time- and frequency-resolved
photon correlations were found to be in excellent agree-
ment with theory. As stated in the 6rst paragraph,
the characteristics of the fluorescence are a8'ected by the
atom's surroundings. Most notably is the change in life-
time of an excited atomic state due to con6ning boun-
daries for the radiation, like in a cavity, ' near a sur-
face, ' or in a waveguide. ' In a series of experi-
ments with molecular dye films on a dielectric sub-
strate, the theoretically predicted dependence of the

decay constants (inverse lifetimes) on the distance of the
molecule to the surface was found indeed. In this paper
we consider an atom near a metal surface (with perfect
conductivity), which is illuminated by a strong non-
monochromatic laser beam, and we study the correla-
tions between the emitted fluorescent photons. Recently,
the spectral distribution of the fluorescence was calculat-
ed ' for the same con6guration, in the case where the
atom could be accounted for by a two-state model, and
where a semiclassical description of the emission process
was adopted.

II. DRIVEN ATOM

An atom is situated at r =he„h ~ O, above the (x,y)
plane, which separates the vacuum z & 0 from a perfectly
conducting substrate z &0. This system is irradiated by
a laser, with an electric 6eld component

E, (r, t ) =EoReee (2.1)

where Eo is the amplitude, a the normalized polarization
vector (e e'=1), k the wave vector, perpendicular to e
(k e=O), and P(t) a stochastically fluctuating phase,
which gives rise to the laser linewidth. At the surface
this incident field is reflected, and the sum 6eld, evalu-
ated at the position of the atom, becomes

—itu& f+P(t)l]
EL (t) =2EoRee [eicos(hk, )+ieisin(hk, )],

(2.2)

where the polarization vector is divided into perpendicu-
lar and parallel components with respect to the (x,y)
plane, and k, =k e, is the z component of the wave vec-
tor. For solids with a finite penetrability (dielectrics),
the factor in square brackets is different, but the time
dependence of this external 6eld remains the same.

The laser frequency ~1 is assumed to be tuned in close

QC1988 The American Physical Society



37 CORRELATIONS BET%'KEN PHOTONS IN RESONANCE. . .

resonance with the level separation coo=co, —cd &0 be-
tween two (possibly degenerate) levels with energy fico,
(excited) and iiicos (ground). If we suppress irrelevant
quantum numbers, we can write the atomic wave func-
tions as Ij,m, & and Ij ms &, with j and m the angular
momentum quantum numbers. In terms of the projec-
tors

surface-dipole moment p, (x), defined as

pg (x )=2[cos(x )gsi+ i sin(x )gl((], (2.8)

D(h)=(EO/fi)P, [y,,(hk, ) e]Ps . (2.9)

where x is a dimensionless normal-distance parameter.
Then the Rabi operator becomes

P, =+Ij,m, &(j,m, I, (2.3) The equation of motion for the density operator p(t)
of the atom in the laser field and near the surface is

(2.4} iA =[H, —p Et (t),p] —iiill'(h)p,dp
(2.10)

onto the multiplets, the atomic Hamiltonian can be
represented by

H, =%co,P, +RcosPs . (2.5)

Coupling of the atomic dipole p to the external field is
governed by the interaction Hamiltonian

—p Et (r)= ——,'iilD(h)e ~ +H.c. , (2.6)

where we made the rotating-wave approximation and in-
troduced a "Rabi operator"

D(h) =2(EO/i}i)P, [gc a,cos(hk, )+i@ slsin{hk, )]Ps,
(2.7)

which generalizes the Rabi frequency (a real number) for
nondegenerate atoms in free space. s Notice that D(h) is
not Hermitian and that it depends explicitly on the nor-
mal distance h of the atom to the surface. A convenient
concept will turn out to be the effective (non-Hermitian)

I

where the Liouville operator I {h}accounts for the spon-
taneous decay. Its definition will be elaborated in the
next section. We mention that I {h) depends on h,
which embodies the second geometry dependence of the
equation of motion for p{t).

III. SPONTANEOUS DECAY

Due to the couphng of the atomic dipole p, to the vac-
uum of the electromagnetic field, the atom decays from
its excited state to its ground state, together with the
emission of a fiuorescent photon. In a previous paper29

we evaluated the atomic relaxation operator I (h) for an
arbitrary atom with degenerate levels and near a perfect
conductor. For optical transitions we can make the sec-
ular approximation~ (sometimes called "elimination of
fast-oscillating terms"3') and neglect the imaginary parts
of the relaxation constants. If we subsequently restrict
the number of atomic levels to two, which are coupled
by the laser, then I'(h) acquires the explicit form

I (h)cr= ,' g —[c,(h) Ij,m, &(j,m,
'

I
cr+c', (h)cr Ij,m, &(j,m,

'
I ]

rIll, Nl, Nl

[c, , (h)+c', , (h)]
I
J', m, &(j,m,'I (j,m, Io I J,m,'&,

I I
Nl ill re iP2t

(3.1)

which defines its action on an arbitrary density operator o. Through the functions

cos(2x) sin(2x)
(2x )2 (2x )

(32)

3 sin(2x ) cos(2x ) sin(2x )
II 2 2 (2 )2 (2 )3

(3.3)

the relaxation constants can be expressed in terms of the matrix elements of the perpendicular and parallel corn-
ponents of the dipole moment, according to

COc, ,(h )= ~ [bi (cooh /c )(j,m, I pi IjIm & (j m '
I y~ Ij,m,

'
&

3'JPAEoc

(3 4)

The presence of the surface is fully incorporated in the functions b~ and bII, which approach unity for h ~ ao.
Next we take advantage of the rotational properties of the atomic wave functions and the fact that p, is a vector

operator. Vhth respect to the spherical unit vectors

eo=e, , e+, ——T-(e, kie )/&2,
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eve can decompose p, =p~+pll as

p =Roe pi= g pe
v= +1

and from pt=p it follows that

p, =( —1)'p

Then we write bo bi——and b+i ——bi, which enables us to cast Eq. (3.4) in the form

(3.6)

c, ,(h)= gb, (cooh/c)(j, m, I p, l J m )(1 m
I p, I j,m, ) .

Itl Nlg Ill Itl 3~e~ 3

Matrix elements of p,, can be simplified with the Wigner-Eckart theorem, which states that

&J,m, I V, I jsms ) =(jsms le
I p, m, )&j, llPIIJs &/(2j, +1)'",

and the matrix elements of p, then follow from Eq. (3.7). Combining Eqs. (3.8) and (3.9) then yieldsc, ,(h)= A/gb, (cooh /c)(jsms le
Ij,m, )(jsm'lr

I J,m,'),

(3.8)

(3.9)

(3.10)

where we introduced the Einstein coefficient A/ for a free atom (no surface)

~o I &j, ilail jg & I

'
2J, + 1

(3.11)

Since the Clebsch-Gordan coefficients are real, all relaxation constants c, ,(h) are real. Expression (3.10) re-mmmm
veals the surface effect, incorporated in the parameter functions b, (pooh /c ) on the decay constants.

Insertion of Eq. (3.10) into Eq. (3.1) gives I (h) in terms of A/, h and geometrical Clebsch-Gordan coefficients. The
coefficients c, ,(h) are only nonzero if m —m, =m ' —m,', as follows from Eq. (3.10), so for m =m' we have

memgmgme

m, =ni,'. Therefore the summation over m,
'

in the first two terms of Eq. (3.1) is trivial, and furthermore we notice
that the summation over mg involves only the decay constants. With these observations the expression for r(h)
reduces to

r(h)a= ,'gA (h-)(
I j,m, &&j,m, I

~+~
I j,m, &&j,m,

I
)

—A/g& (oioh/c) g (jsmslr Ij.m. ) Ijsm, &&j.m.
I

~ Ij,m,'&& jgmg I
(jgmglr Ij.m') (3.12)

C I
m

where A~ (h) is defined by
e

A (h)= A/gb, (noh�/c)g(jsms 1~
I J,m, )' . (3.13)

with an inverse lifetime equal to A (h), which eluci-

dates the significance of this parameter. Without a sur-
face we have b,:—1, and the summations in Eq. (3.13)
can be performed to give the result

From the equation of motion (2.8) we find that the
population of level

Ij,m, ) obeys

(3.14)

in the absence of a laser field, and from Eq. (3.12) we ob-
tain

&j.m, I l:r(h)n«)l
I j,m, &=A, (h)& j,m, le(r) Ij,m, & .

A (h)=AI . (3.16)

Therefore the population of an atomic level
Ij,m, ) de-

cays in free space with A&, which is independent of m, .
This in turn expresses the rotational invariance of spon-
taneous decay for a free atom. Conversely, a preferred
direction in space (the z axis), which is iiilposed by the
presence of the surface, destroys the rotational syrnme-
try, which implies that the relaxation depends on the
orientation of the atom (the m, value of the substate).
From b, =h, we readily derive

(3.15)
A (h)= A (h), (3.17)

Hence the population of Ij,m, ) decays exponentially,
which expresses the remaining rotational symmetry
about the z axis.
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V. FI.UORESCENCK

In the equation of motion (2.10} the Hamiltonian is
explicitly time dependent through the external Seld
EL(t). With the standard transformation of the densi-

ty operator
—i (s)~ t+ &{t))L

(4.1)

where Ls is the commutator with the projector on the
ground state, e.g.,

Continuous excitation of the upper states (j,rn, } by
the laser and subsequent spontaneous decay to the
ground states

~ jsms }goes together with the emission of
a stationary (fluorescence) radiation Seld. This signal is
detected by a photomultiplier tube (PM} at a distance r
from the atom. In a previous paper we derived the
general expression for the fluorescence in the far field,
which reads

Lso' = [Ps,tr], (4.2) E&(r, t) = [r)& [y,(t +~ r /c)—
eeoc r

the time dependence is greatly simplifled. We find the
equation for p'(t) to be +It,'(t —~—r/c)]j Xr . (5.1)

i = Lg(h)+Lg i I—(It) p'. dp dP
dt t

(4.3)

in the compact Liouville notation. Oscillations with the
optical frequency cot have disappeared, and the phase
fluctuations only enter as a multiplicative factor dgldt
to p'(t), which is the standard form of a stochastic
differential equation. Here the I.iouvillian Lz(lt } is
defined as

Here, r =r/r is the direction of propagation, and
r=r e,h/c equals half the delay time between the
directly emitted wave and the wave which is first
reflected by the surface. The time dependence of the
operator p. represents the Heisenberg picture according
to

(5.2)

Lg(h)cr =f1 '[Hg(h}, tr]

in terms of the dressed-atom Hamiltonian

(4.4)
for any time interval t —to and in terms of
Ltr =f1 '[H, a], with H the Hamiltonian of the entire
system. If we divide the operator fs as fs=lsi+fsf, then

p,
' is deSned as

Hg(h) =H, +%cot Ps ——,'ff[Q(h)+Q(h) ], (4.5)
Ijl =IjI&—

8)) ~ (5.3)

rl(t) = (p'(t) }
has relevance, and the equation for Il(t) reads

(4.6)

(4.7)

which has the signiflcance of the atom, dressed with the
photons of the laser and including the dipole interac-
tion.

Due to the term Lsdg/dt in Eq. (4.3), the density
operator p'(t) is a stochastic process. Only its average

VI. Dkx.j.Crj.ON

From Eq. (5.1) it follows that the polarization of the
fiuorescence is determined by the vector operators p, and
fs', which have a different direction in space and a
difFerent retardation time. In order to keep track of the
polarization properties of the radiation, we suppose that
the radiation passes a polarizer, before entering the PM,
which transmits radiation with polarization az. From
the theory of photon detection by a PM, ' we then
know that the detector responds to the positive frequen-
cy part of the scalar quantity

$V =ALt (4.8) 8(t) =Ef(r, t) a~, (6.1)

II= lim II(t) „ta co

theo this H is the solution of

[L&(h) i W i 1 (h))I—I=O —.

(4.9)

(4.10)

Since the external Seld is assumed to be a nv laser, we
will always consider the atom to be in the stationary
state H.

in terms of the half-width at half maximum A, of the
Lorentzian laser pro6le.

Both the laser linewidth (W) and spontaneous decay
[I'(h)] give rise to damping of the free evolution[L&(h)]
of the dressed atom. After a transient time of the order
of (A, + Af ) ', following the switch-on of the laser, the
atom wiB have reached a steady state. If we write

which is the z component of the fluorescence. Then we
position the polarizer in such a way that the angle of in-
cidence is zero (e.g., r.a =0), and we suppress the
overall retardation with r/c. We then Snd

L 2~iLt
@(t)= (e' 'Is+e ' 'p') a'

4T6'gc r
(6.2)

where p and p' are time-independent operators
(Schrodinger picture). Then we notice that the surface
can only have a signi5cant effect if the distance between
the atom and the (x,y) plane is a few optical wave-

lengths. Hence the retardation r in Eq. (6.2) is of the or-
der of a few optical cycles 8-coo '), which implies that
we can neglect the interaction term with the laser in L in
the exponentials. In physical terms this means that the
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laser cannot cause a transition between the upper and
lower states on a time scale ~, which is completely
justi6ed for optical lasers. Furthermore, the L, is mere-
ly an overall factor, which hardly affects the time evolu-
tion of 8(t) T.herefore we can safely make the substitu-
tion Lcr~[H„o]lk in exp(+iLr) and L . Combining
everything then yields, for the positive frequency part of
0(r),

t2 in the tine-evolution operator for the density operator
—i [Ld(h) —i 8' —i I (h)]tU(t)=e

and the photon-emission operator 8, defined by3

(7.2)

If we assume that the atom has reached its steady state
H, then the intensity correlation function is found to be

6'+'(r)= e' 'jP [p, (coos)~.s']P, ] .
4m'@ r

(6.3) I,(t„r,+~)=g'Tr[RU(~)XII]= f(~}I, r&0 (7.4)

VII. PHOTQN CGRRELATIONS

If the active part of the PM is exposed to electromag-
netic radiation it will absorb photons from this incident
field. Time correlations between various photons are
most conveniently expressed in the function
Iz(t„t2)dr, dt's which has, by deffnition, the significance
of the probabihty for the detection of a photon in

[ti, t, +dt, ] together with a detection in [ti, ti+dt2],
and irrespective of detections at other times. The basic
relation between Iz and the incident radiation is given

35,36

I,(r „r,) =g'& 8'-'(r, g'-'(r, )4'+'(r, )4''+'(r, ) &

(7.1)

for t2 & t, . Here, g is a detector parameter (depending
on efficiency, aperture, etc.) and the angular brackets in-
dicate a quantum average. For our case, where the laser
field is taken as a classical wave with a stochastic phase,
the brackets also include an average over the process
P(t). The quantity & & in Eq. (7.1) is usually re-
ferred to as the intensity correlation of the Beld. For
quantum radiation, like ffuorescence, the different fac-
tors in brackets do not commute, which gives rise to
nontrivial correlations between the detections of pho-
tons.

It is a standard procedure to work out the intensity
correlation and to express the time regression from t, to

I

which defines the function f (r). Here, I equals the un-
correlated intensity of the radiation, which can be ex-
pressed as

I=(Tr(RII) . (7.5)

and therefore

f(0)=0. (7.7)

This famous relation for the detection of two fluorescent
photons is termed antibunching. In the case that the
delay time ~ is very long, we find

f(oo)=I, (7.8)

which shows that the second detection is independent of
the first one, e.g., the detections are uncorrelated. Equa-
tion (7.8) follows from the identity

lim U(t)cr =II Tro
f ~an

(7.9)

for any o, which states that every cr evolves to a unique
steady state II and that the trace of cr is conserved in the
time evolution with U(t).

With Eqs. (7.3), (6.3), (2.3), and (2.4) we find for the
emission operator the general expression

For a zero delay time w we have U(0)=1 and

f (0)=g Tr(R II)/I. With Eq. (6.3) we obtain

(7.6)

m, m
fm, m

(7.10)

where an overall factor (coo/4neoc r ) is omitted, since it
can be absorbed in the detector parameter g. Matrix ele-
ments of p, (coos) can be evaluated explicitly with Eq.
(3.9).

Ijgang & =
I
00 & ~ I g &, (8.1)

with j,= 1, which is threefold degenerate. %e introduce
the abbreviations

VIII. j ——0~j,= 1 TRANSITIQN

In order to study the effect of the presence of the met-
al surface on the photon correlations, we have to
prescribe more details of the system. In the remainder
of this paper %Ye consider the 1IQportant exaGlplc
jg=O~j, =1. For jg=O we have mg ——0 only, and in
view of Eq. (3.9} this nondegenerate state couples only

lj, rn, &=
I 1m, &~

I g&, r)=m, = —1,0, 1 . (82)

(001&
I lg)=5q, , (8.3)

Spontaneous decay of this atom is described by the
Liouvillian I (h} from Eq. (3.12), and the inverse life-
times of the states

I i)& are given by Eq. (3.13). The
occurring Clebsch-Gordan coeScients all have the form
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which yields for the relaxation constants

(8.4)

1.(i )&=,gA„(I )(
I ~&&~ I

~+~
I q&&q I

—2lg&&g I &ql~lq&), (85)

A„(h)= AIb„(cooI1 /c) .

We observe that the substates
I
ri=+1) decay with

AIbl(cook /c ), which equals the inverse lifetime of a di-
pole, oriented parallel to the (x,y) plane. The substate

I
1)=0) has the Einstein coeScient AIbi(cooiilc), and

therefore it decays as a perpendicular dipole. Notice
that the difFerences in decay constants of the various
substates are merely determined by the geometry of the
system. A two-state model-atom treatment; of fluores-
cence near a surface leaves the dipole direction, and
thereby the lifetime of the excited state, undetermined.
One can then choose the direction of the matrix element
&e I p lg) arbitrarily, and subsequently average results
ovel' a randomization of tlBS direction It. shollld be ob-
vious now that this is not a correct procedure.

The spontaneous-decay operator for this system at-
tains the simple form

and it involves only the Einstein coeScients A„(h) for
the three substates.

IX. ATOMIC STAr I;

Q„(I1)=&ALII

Q(I1) lg &,

which are explicitly

2 Eo
Qo(11 )= & 1llpllO)cos(l'ik, )s eo,

2 &o
Q~(h)= & ill)ulIO)i sin(hk, )a e+1 . (9.3)

With the definitions of Lz(h), W, and I'(h) we then ob-
tain

In this section we expand the equation of motion (4.7)
for the atomic state II(r) in matrix elements. The exter-
nal Seld enters through the Rabi operator Q(h), Eq.
(2.9), and we shall abbreviate its nonzero matrix ele-
ments as

d, &n I
11

I
n'& = ,'(A„+—A—„)&nI

11 In'& ——,
' '(Q,' &n I

II
I g &

—Q, &g I
Il

I
n'&) (9.4)

—&g I
11

I g &=&A„&n I
Il le& ——,'1X(Q„&g I

II
I n& Q„'&n

I

—11
I g &),

di
(9.5)

, &ril II
I
g—&= ( ,'A, +—~-~)&riIIIIg&+-'

f1'

(9.6)

~, &g I
II

I
ri&= (7'A„+~—+1~)&g

I
II

I
rI& T1 Q„'—&g I

II
I g &

—gQ„'&n'
I

11
I rI& (9.7)

where the dependence of A„and Q„on Ii is suppressed,
and we introduced the detuning of the laser from reso-
nance by

(9.8)

If we make all the combinations with rI and ri', then Eqs.
I

(9.4)-(9.7) constitute a set of 16 coupled first-order linear
di8'erentia1 equations.

X. INTENSITV CORRELATIONS

For the jg ——0~j,=1 transition, the photon-emission
operator R, Eq. (7.10), reduces to

&~=I',g&n I
&

I
1I'&&a

I Is.(~o~).e, I g &'&n'I I1.(~or) a, lg & (10.1)

and the matrix elements of p, (coor) are

& 11 I p, (a)o~) I g )= cos(coor)eo5~

+1 sin(67o'P) g e~ 5ov~
+ f

x & lll~llo) 2/&3 . (10.2)

%'e notice that the summation over q and q' in Eq.
(10.1) is just a number (not an operator), and therefore
Ra is proportional to the projector Pg on the ground
state for every o. This rejects the fact that after every
emission the atom is necessarily in its ground state

I g ).
Since for j~ =0 this state is nondegenerate, the 6nal state
after a photon emission is unique, or in other words, in-
dependent of the history of the atom. If the ground
state were degenerate, then we observe from Eq. (7.10)
that the density operator of the atom after emission is a
suPerPosition of (I.iouville) substates

I js111g & & jg111s I,
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CORRELATIONS BETWEEN PHOTONS IN RESONANCE. . .

0

FIG. 5. Correlation function for zero detuning, A=0. 1,
A, =0.5, and Qz ——3. Curves a and b correspond to linear and

circular polarization, respectively.

f(s)= f dt e "f(t),
we find immediately

l

(10.5}

(10.6)

which only requires the inversion of the matrix. Of
course, the result must be transformed back to the time
domain in order to achieve an explicit expression for

(i).

ever, is a 16&(16 matrix, which makes the evaluation of
the exponential intractable, in general. In most practical
cases (see the next section), the computation of f (t) is
facilitated if we first transform to the Laplace domain.
Kith

FIG. 6, The parameters in this figure are A, =0.5, 5=0,
Qz ——8, and the laser is circularly polarized. Curves a and b
represent the change in correlation as a function of h. %e take
h =0. 1 and 1 for a and b, respectively. It appears that the
atom-surface distance can a8'ect the photon-correlation func-
tion dramatically, which implies that a measurement of
f„(t }/I„mi ght appear to be a sensitive technique for the deter-
mination of h of atomic adsorbates.

such a place that it detects radiation, which is emitted
along the surface, e.g., r is in the (x,y) plane. Then we
filter the fiuorescence with c =eo. For this
configuration the photon-emission operator becomes

8 r7=P &Oi cr
i 0), (1 1.2)

where a factor —',
( & 1)~p(~0) (

' is absorbed in g.
(b) Circular polarization. In this case we take

e, =e+, ——az, k = —eo= —r, and therefore k, = —k
= —coo/C. The interaction with the laser field now be-
comes

XI. POLARIZATION
2 ~o

&1[1)ullO)i »n( —hk} (11.3)

To fix the geometry of the experiment, there are four
directions which remain to be specified. These are (1)
the laser polarization a, (2) the laser propagation direc-
tion k (restricted by k*a=0), (3) the observation direc-
tion r, and (4) the polarization unit vector c~ (restricted
by r ss ——0). We shall consider two complementary situ-
ations, for which we evaluate the two-photon correlation
function explicitly.

(a} Linear polarization. The laser polarization is

chosen as a=eo=e, „ for which the direction of propaga-
tion k must be in the (x,y) plane. Then we have k, =0,
and from Eqs. (9.2) and (9.3) we find that the only
nonzero matrix element of the Rabi operator is

IIo(»= „&1 tli ll»

which is independent of the distance h between the atom
and the surface. From Eqs. (9.4)-(9.7) it follows that
tllls external field couples oilly thc gi'ollnd state t g )
with the upper state

~
0), which has the decay constant

Ao(h)=AIbi(pooh/c). The PM will be positioned in

which couples only
~ g ) with

~
+1). Hence the relevant

Einstein coefficient equals A+, (h)= A/bi(cooh/c), and
for the operator R we obtain

&bio'=&s&+1
~

o
~
+1)sin'(oiP/c) . (11.4)

If we denote the wavelength of the radiation by
A, =2ir/k=2mc/coo, then we notice that both Qz, {h)
and R+, vanish for h = n)&A, /,2with n=0, 1,2, . . . .
For circular polarization the fluorescence intensity is
identically zero if h equals an integer multiple of A, .
Furthermore, the emission operator, the Einstein
coefBcient, and the Rabi frequency are identical for left-
and right-handed polarizations, and so the photon corre-
lations are identical (provided of course that we take
c=c ), which expresses again the rotational symmetry
about the z axis.

Now it is an easy matter to evaluate f(s), Eq. (10.6),
for both linear and circular polarization simultaneously.
The set of equations (9.4)—(9.7) defines the matrix
s+iLd(h)+&+I(h), and with some algebra we then
6nd
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—,'(s+ —,'A„+A, )
I
Q„l'

I 0„I'(s+-,'A„+k }+(A„+ )[(s+-,' A„+A)'+b, ']
for g= —1,0, 1. Then the fluorescence intensity follows from

I„=hm f„(t)=limsj„(s) .
t~ oo S~O

(11.5)

(11.6)

XII. SPECIAL CASES

Transformation of the general result (11.5) for f„(s) to the time domain is straightforward, but the expression for

f„(t) is very untransparent. A case of practical importance is the low-intensity limit, where the coupling strength be-

tween the dipole and the laser field

3 ~ I &ills II0& I
(12.1)

tends to zero in comparison with the relaxation parameter A„. Normalized with the uncorrelated intensity

I„=f„(oo), f„(t) is found to be

1 —(A. + 2 /i„)f
~ g„}2+Z' X+-,'~„(X—

—,'~, )'+a'

g [{A,2 ——,
' A i —b,2)cos(ht ) —2A, E sin(b, t )] . (12.2)

f„(t)/I„=1 —e " cos(P„r )+ "sin(P„r )
1I

(12.3)

Figures 1-4 illustrate the dependence of f„(t)/I„on the
parameters 6 and A, , the laser polarization, and the dis-
tance of the atom to the surface.

For higher irradiances we assume that coL is in very
close resonance with coo, e.g., we take 6=0. Then we
obtain

I

time in the emission of a fluorescent photon after excita-
tion of the atom. In this paper we considered the situa-
tion where the atom is continuously driven by a laser
field, and we evaluated the temporal correlation between
photons of the emitted fluorescence. After presentation
of the general theory, we focused on the j =O~j, =1
transition. In the most simple case, where the irradiance
is monochromatic (A, =O), exactly on resonance (5=0),
sufficiently weak {Qz~0},and has a polarization r), we
found [Eq. (12.2)]

with

ct„=32„/4+ 2'A, ,

&„=[I &„I

' ——,'4~ ~
—"}']'"

and typical behavior is illustrated in Figs. 5 and 6.

XIII. CONCLUSIONS

(12.4)

(12.5)

(13.1)

We conclude that the two-photon correlation function
f (r }, which is accessible to observation by a photon
counter, is essentially determined by the lifetime 1/A„
of the driven upper substate of the atom. This result
will possibly provide an alternative optical technique for
the investigation of atoms near a metal surface.
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