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Spontaneous deca3t and atomic fluorescence near a metal surface or an absorbing dielectric
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Optical properties of an atom in the vicinity of a metal or dielectric are di8'erent from those in

free space. The spontaneous decay of an atom with two degenerate levels is studied, where the re-

laxation operator is obtained as a function of the atom-surface separation and the complex bulk

dielectric constant e(co). The Einstein coefficient A of an excited state
~ j,m, ) appears to de-

pend on the magnetic quantum number m, . A sum rule for A is derived, and from the rotation-

al symmetry with respect to the surface normal it is found that A = A . A general expression
e e

for the fluorescent radiation 6eld in the far zone is then derived, which incorporates the polariza-

tion properties of the fluorescence, as they are modified by the presence of the dielectric. It is

shown that the angular distribution of the emitted intensity depends strongly on a{co), and it is

pointed out how information about the substrate, e.g., e(~), can be extracted from the temporal
statistical behavior of the emitted photons. It is emphasized that the major surface elects are

purely geometrical, despite the essential quantum nature of the problem.

I. INTRODUCTION

Consider space to be divided by the xy plane, which
separates a half-space vacuum z pO from an electromag-
netically active medium occupying z ~0. An atom re-
sides on the +z axis at a normal distance l't pO to the
surface. If the atom is prepared in an excited state at a
certain initial time, then it will decay spontaneously to a
lower state, together with the emission of a ffuorescent
photon. As compared to the same process in entirely
empty space, the presence of the substrate aff'ects the de-
cay and emission dramatically if the atom-surface sepa-
ration it is of the order of a wavelength or less. Essen-
tially, there are two distinct features which alter the in-
teraction of an atom with the radiation field when the
atom is close to an interface.

First, due to boundary conditions at z =0, the allowed
modes of the field are difFerent from the common
traveling-plane-eave modes in empty space. Since a
ffuorescent photon can be emitted only in one of the
available modes, it is obvious that a modi6ed mode
structure will change the lifetime of an excited state.
This is a purely geometrical phenomenon, which arises
as a consequence of the spatial interference of the
difFerent waves, supported by the configuration. In both
classical and quantum mechanics the radiation field must
obey MaxweB's equations, and therefore the spatial
dependence of the 6eld is identical in both theories. In
the classical paper by Chance et al. ' the atomic lifetimes
near a dielectric were found from semiclassical con-
siderations. Other approaches are the hnear-response
formalism, %'hlch l elles on the quantum-regression
theorem, an expansion in eigenmodes of the
geometry, and an elimination of the charges and the
currents in the medium from the Hamiltonian. In the
ease of a perfectly conducting solid, the lifetimes can be
obtained from a quantum analog of the method of im-

ages. ' There, the surface is replaced by a mirror dipole
in r= —he, .

The second efFect of the presence of the boundary is
again purely geometrical, but it has consequences only in
a full quantum treatment of the problem. In free space
the system (atom plus radiation} is spherically sym-
metric, or its Hamiltonian is invariant under any three-
dimensional rotation. For an atom near a Sat surface
only a symmetry for rotation around the z axis remains.
A convenient choice for the arbitrary quantization axis
for the deffnition of the atomic wave functions (the mag-
netic degeneracies) is then the normal to the surface. It
can in turn be shown"' that a bttt =El dipole transi-
tion is always governed by the lifetime of a dipole which
is oriented parallel to the surface, whereas a b,m =0 de-

cay process has a lifetime corresponding to a perpendic-
ular dipole. For an atom in empty space these two life-
times are equal, due to the spherical symmetry. If the
excitation of the atom is brought about by irradiation
with a polarized laser beam, then the distribution of
population over the various m states of an excited level
is unambiguous. By a proper choice of the laser polar-
ization we can prepare an atom as a pure parallel or per-
pendicular dipole vvith respect to its decay constant. In
semiclassical theories of fluorescence the dipole moment
is merely a vector in con6guration space, which can be
given an arbitrary direction. One then averages over a
randomization of the direction, which has the quantum
analog of a random laser polarization (or, in general, a
random excitation of the substates without any coher-
ence between the substates).

We shall assume that the solid can be described by a
macroscopic complex-valued and frequency-dependent
dielectric constant e(co}. Furthermore, we impose the
condition that the dielectric is absorptive, which implies
that traveling a&aves inside the medium die out exponen-
tially in amplitude. Sufficient conditions are E(to) &0 or
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Ime(co) &0. An illustrative example is the lossless free-

electron-gas model for a metal, for which we have

e( co ) = 1 —co& /co & 1,
with co the plasma frequency (uv region). Then for
co&co~ we have e(co) &0, corresponding to a reflective

metal, and for co ~ co& it is assumed that e(co) contains a
small positive imaginary part. In this frequency region
the metal becomes transparent and behaves as an ordi-
nary dielectric with 0&e(co) &1. A perfect conductor
can be modeled by Eq. (1.1) if we take co ~oo, which

gives e(co}~—oo. Other dielectrics can have e(co) p 1,
or more complicated structures. A. metal with dielectric
constant e(co) from Eq. (1.1) is perfectly re6ecting in the
range 0~~~~&, but is only a perfect conductor for
co ~~~&. For low-lying atomic transitions, co can easily
be of the order of u~, which changes the lifetimes con-
siderably in comparison with a perfect conductor.

Experiments on atomic fluorescence for transitions in
the visible region of the spectrum and near a surface
have been reported only recently. ' ' This is in contrast
to molecular spectroscopic measurements on thin films,
which have a long history, ' and to microwave transi-
tions between Rydberg atoms in a cavity. ' The main
obstruction for accurate experiments in the visible region
is that the atoms (from a beam) must fluoresce within a
distance shorter than a wavelength from the surface.
The inevitable van der %sais attraction between the
atoms and the surface then leads to large adsorption
probabilities, and thus the surface will be covered with
atoms before a measurement can be done.

E =Kj —
E)( (2.4)

(2.5)

Then an incident wave k, c upon a perfectly rejecting
surface will produce a reAected wave with wave vector
k' and polarization a.', and p' has the significance of the
mirror image of a dipole moment. Because p of an atom
is an operator in the Hilbert space, which is spanned by
the atomic wave functions, Eq. (2.5) is an operator equa-
tion. The Fresnel reAection coeScients for s and p
waves are

R, (co, u ) = [e(co)—1+u ] —u

[e(co)—1+u ]' +u

Rz(co, u )= ue(co) —[e(co)—1+u ]'
u e(co )+ [e(co )—1+u ']' '

(2.6)

(2.7)

with ~ the frequency of the wave and u the cosine of the
angle of incidence. %ith these definitions the normal-
ized mode functions attain the form

)&[ai, e'"'+R (coi„u„)si, e' '] (2.8)

Any wave vector k, polarization vector a, and dipole
moment p can be divided in a perpendicular and parallel
part with respect to the xy plane. In terms of these
divisions we define primed quantities by

k'=
kI)

—k~,

II. RADIATION FIELD

E(r, t)= g
26O

ai, (t)Fi, (r)+h. c. , (2.1)

with cok ——ck and where Fi, (r) represents the incident
wave and the rejected wave, and is normalized as

dr Fz r =1 . (2.2)
V

The operator ai, (t) is the annihilation operator for a
photon in the mode Fz (r}.

In free space the electric field operator E(r, t) is usual-

ly expanded as a sum of transverse plane waves with
wave vector k and polarization ei, . In a cubic volume

V with periodic boundary conditions, the wave vector
assumes only discrete values. In the presence of a half-
infinite dielectric in z ~0, one usually replaces the cube
V by a surface area V in the xy plane, and extends the
range for z to —(x) gz g 00. ' Since the atom is posi-
tioned in the region z g 0, we only need to consider the
field in the vacuum above the surface and hence we can
take the quantization volume as a cube V, which is en-

tirely located in z ~ 0.
Due to the presence of the substrate in z &0, every

plane wave will give rise to a reflected wave and a
transmitted wave, when incident upon the surface. For
the field in the quantization volume we can therefore
write

for k, &0. Here, ui, ———k, /k &0. For terms kcr with

k, ~0 we have

Fi, (r)=F„. (r) . (2.9)

III. EQUATIONS OF MOTION

Spontaneous decay is most conveniently described in a
density-operator formalism. If we denote by p(t) the
combined state of the atom and the radiation field, then
its time evolution is governed by the equation of motion

ih' —p(t) = [H, p(t)],
dt

(3.1)

iR p, (t)=[—H„p, (t)] i%I p, (t) . —
dt

(3.3)

Here, H, is the atomic Hamiltonian (internal structure)
and the Liouville operator I accounts for spontaneous
decay.

with H the Hamiltonian of the entire system. Since only
the state of the atom is of concern, we define the atomic
density operator as

p, (t)=Tr„p(t},

where the trace runs over the states of the radiation
field. %ith standard reservoir theory ' we then easily
obtain the equation of motion for p, ( t),
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iA- ai, (i)=[ai, (r),H),d
(3.4)

and we shall assume that the initial values ai, (0) coin-
cide with the standard boson annihilation operators ai, .

For the Hamiltonian we take

The general expression for the radiation field E(r, t) is
given by Eq. (2.1), which has only the operators ai, (r)
as unknowns. Their equation of motion reads

H, =Am, I', +Picot Pg, (3.8)

where P, and I'g denote the projectors on the excited
level and ground level, respectively.

and Heisenberg picture coincide) and evaluated at the
position of the atom. We shall assume that the atom
consists of two degenerate levels

~ j,m, ) (excited) and

~ j m ) (ground), which are separated by
coo=co, —co ~0. Then H, can be written as

H =H~+H, +H;,
where the Hamiltonian for the radiation field is

(3.5}

IV. SPONTANEOUS DECAY

Hq = g Scot, ui ~up~
kn

(3.6)

H =—p E(h, O), (3.7)

where p is the atomic dipole operator and E{h,O} equals
the radiation field at time zero (when the Schrodinger

Couphng between the field and atom is established by
the dipole interaction

In writing ~j,m, ) for a magnetic substate of the
upper level, we imphcitly refer to a direction in
configuration space, e.g., the quantization axis for the
definition of the m, degeneracy. Evidently, this axis can
be chosen arbitrarily, but in our geometry it is most con-
venient to take this direction to coincide with the nor-
mal to the surface (z axis}. With this convention the ex-
phcit form of the spontaneous&ecay operator I' be-
comes"

I cr =—,
' g A { ( j,m, ) &j,m,

~

o +cr
( j,m, ) &j,m, )

}

—A~ gb, (h) (j,m, 1~
Ij,m. }{1',mg I&

Ij.m,') I j,m, & &j.m. I
o

I j.m' & &jr ms I
(4.1)

which gives the action of I on an arbitrary density
operator cr, and where the zero-temperature hmit has
been adopted. The relaxation parameters A are
dcflllcd as

= A~ g b, (h)(j sms 1r
~ j,m, ) (4.2}

in terms of the Einstein coefiicient Af for spantaneous
decay in free space. The summation index r assumes the
values —1,0, 1, corresponding to the three possible pho-
ton helicities with respect to the z axis. Surface
modificatians to spontaneous decay are entirely incor-
porated in the parameter functions b, (h). With

b~~ b+, ——b, a——nd bi =bo we find

2l APOAQ /c
R~(coo, u )e

bii(h)=1 ——', Re f du u' ' '
l1+ (

R (ri)o, u) (

liruohu ic
——,

' Re du
1+ i R, (coo, u) i

2iuohu /C

Rz (coo, u )e
b, (h)=1+3Re f du(1 —u')

1+ (A~{coo,u)
(

(4.4)

The integration variable u has the significance of the
cosine of the angle of incidence of a plane wave. There-

fare, the integrals result from interference of waves [the
made functions Fi, (r )), and consequently any
modification of relaxation constants due to the presence
of the surface is a purely geometrical effect.

Some conclusions are easily drawn from the abave for-
mulas. If we take the matrix element
&j,m, ~. . .

~ j,m, ) of Eq. {3.3) and use the exphcit form
(4.1) for I', we find immediately

-&j,m, ~p. ( j,m, &= —A &j,m, ]p. ) j,m, & (4.5)

for the population of state
~ j,m, ). Hence A equalsNt

the Einstein coeScient, or inverse lifetime, of the state
( j,m, &.

In the limit h ~ao, where the atom is arbitrarily far
away from the surface, we see that Eqs. (4.3) and (4.4)
reduce to

b
1

( 00 )=b i ( ao )=1, (4.6)

because the fast-oscillating cosines in the integrands
avcragc alit to zci'o. Substltutlon of Eq. (4.6) Into Eq.
(4.2) then yields A = Af, and the hfetime of the state

~ j,m, ) becomes independent of m, . Conversely, due to
the presence of the surface every excited state has a
dÃcrent relaxation constant A, which is Unambigu-

ously defined by Eq. (4.2). The relation A = Af for an

atom in empty space rejects the isotropy of spontaneous
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emission, or the spherical symmetry of the system. In
the vicinity of a boundary this symmetry is destroyed,
which gives every state

I j,m, } a difFerent lifetime.
From Eq. (4.2) we deduce

(4.7)

which displays the remaining cylindrical symmetry for
rotations about the z axis.

By summing Eq. (4.2) over the magnetic quantum
numbers m„we obtain the sum rule

1 g A =—,'Ai+ —', A(),
2g, +1 (4.8)

bii(0) =0, bi(0) =2,
whereas the limit e~O yields

(4.9)

2

with A i = Afbi and A
~~

——Afbl. The right-hand side of
Eq. (4.8) is the average value of A over the difFerent

e

substates, because there are 2j, +1 excited states

I j,m, } for a given j,. If the population of the excited
states would be randomly distributed over the various
substates, with no coherence between the states, then the
atom will decay with the average of A . In this respectNl

the result (4.8} is a quantum-mechanical justification for
a randomization of the dipole direction.

Another interesting feature is the dependence of the
lifetimes on the distance h between the atom and the
surface I.et . us consider a real-valued dielectric con-
stant, as in Eq. (1.1), in combination with the limit
h ~0. In the case of a perfect conductor (e~ —00) or a
dielectric with a large polarizability (e~+ ao ) we obtain

FIG. 2. Enlargement of the region —2 & e & 2 from Fig. 1.

bii(0)=1, bi(0)=0, (4.10)

corresponding to the situation where the atomic transi-
tion frequency coo equals the plasma resonance co of the
metal. For a perfectly conducting solid the inverse life-
time of a parallel dipole is zero, but if the conductivity
becomes smaller, it is the inverse lifetime of a perpendic-
ular dipole which vanishes. This reversal of behavior of
paraBel and perpendicular dipoles as a function of the
conductivity illustrates the drastic effect that the struc-
ture of a metal can have on the optical properties of an
atom, experiencing its reflected fields. Results (4.9) and
(4.10) can qualitatively be understood in view of Eqs.
(2.5)-(2.7). For large values of e the solid behaves as a
mirror. Since the parallel part of the mirror dipole mo-
ment p, acquires a minus sign in comparison with pll,
the emitted Auorescence by I ll

and I ll
is out of phase

Exact cancellation of emitted radiation implies no decay,
which explains bl(0)=0 for

I
e

I
—+ oo. For e~O we see

from Eq. (2.7) that p waves pick up a phase change of
180' upon refiection. Because p~=p~ it is now the
fiuorescence emitted by the perpendicular component
which vanishes after interference with its refiected field.
Figures 1 and 2 give more details about the e depen-
dence of b~~(0) and bi(0).

FIG. 1. Normalized inverse lifetime b~~(0) and b&(0) as a
function of the dielectric constant e. The dotted line indicates
the asymptotic value of b, (0) for e~+ ce, and it is seen that
the approach to this limit is extremely slow. On the other
hand, b~l(0) is vanishingly small over the entire e range, corre-
sponding to its asymptotic value, except for a small region
around a=0. The region —00 & e &0 corresponds to a perfect-
ly rejecting metal, the region 0& a& 1 to a transparent metal,
and e ~ 1 represents a dielectric.

From Eq. (1.1} for the lossless electron-gas model we
see that for ~ &~ the dielectric constant is negative and
real. Therefore, we define an (idealized) metal by
e(co) &0, which, of course, only can hold in a certain fre-
quency range. The physical relevance of the assertion
e(co) &0 follows immediately from Eqs. (2.6) and (2.7).
We notice that, recalhng D & u & 1,

I
R (co, u )

I
=1

for every angle of incidence. In other words, the medi-
urn is perfectly rejecting. Radiation will still penetrate
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CU h/c

FiG. 3. Normalized inverse lifetime bz(h) as a function of
the normalized distance ~h/e between the atom and surface.
Both curves correspond to a perfectly reflecting metal, and the
e(~) values are e= —100 and e= —0.5 for curves a and b, re-
spectively.

FIG. 4. Normalized inverse parallel lifetimes as a function
of the normalized atom-surface distance. The permittivity is
e= —100 (curve a) and e= —0.5 (curve b). From both Figs. 3
and 4 it is seen that the value of the inverse lifetime for h ~0
depends strongly on e, or the phase shifts )(} which are picked
up by a plane wave upon reflection at the surface.

2ig (co, u)
R (co, u)=e (5.2)

where the real-valued phases for s and p waves are given
by

tang, (co, u ) =
[1—e(a) ) —u '])i (5.3)

the substrate, but there is no net energy transport
through the surface into the soHd. In view of Eq. (5.1)
we can write

VI. FLUORESCENCE

Dynamical behavior of an atom can be studied experi-
mentally by observation of its iiuorescence. Information
on various details, like lifetimes, is re8ected in the
different statistical properties of the emitted radiation.
In Eq. (2.1) we gave the general expression for the elec-
tric field E(r, t). Its time dependence is entirely incor-
porated in as (t) which is the solution of Eq. (3.4). If
we work out the commutator with H and diiferentiate
the result with respect to time, then it is easy to show
that a& (t) obeys

1 —e(co) —u ) /2

tan)I} (co, u)= —u e(co)
(5.4)

cf
2 +Mk ak~(t}t'

' 1/2

with 0&/ &)rl2. Substitution of Eq. (5.2) into the
definition (2.8) of the mode function F), (r) then exhi»ts
that the reiiected wave is only shifted in phase (with

2p ) with respect to the incident wave. For a perfe«iy
conducting metal, e{c0)~—ao, we f)nd )I} =0.
seemingly small efFect of only a phase shift upon
reAection already has a great impact on the atonic life-
times, as can be understood from the fact that the altera-
tions of lifetimes are brought about by the interference
of incident and rejected waves. In Figs.3 and 4 we have
plotted the lifetimes of a perpendicular and parallel di-
pole as a function of /), and for different values of e(co).
It is easy to show that our general expressions (4.3) and
(4.4) for the lifetimes, ill combination with Eqs. (5.3) aild
(5.4), reduce to the results of Philpott. 6 In Sec. VII we
shall study the consequences of the phase shifts )t) on
the angular distribution of the emitted Quoresence.

[cokIs(t)+its(t)] F)', (h) . (6.1)

1 8V2 — E+(r, t )
c c}t

2 g F~~(r}I[cokie(t}+icokgi(t)] F)c (h) j .
2F(f

The solution of this wave equation can be written as

E+(r, t)= +E(r, t)+E)+(r, t), (6.3}

The first term on the right-hand side of Eq. {2.1) is the
positive frequency part E+ of E (or the annihilation
field), and a combination of Eqs. (6.1) and (2.1) yields its
equation of notion
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Ee+(r, co)= f dt e' 'Ed+(r, t), (6.4)

with Ed+(r, t ) the particular solution which has the
right-hand side of Eq. (6.2) as source. Then Eh+(r, t) is
an arbitrary solution of the homogeneous equation. Usu-
ally ' the particular solution is the radiation field for a
dipole in free space, and the homogeneous solution is
then chosen in such a way that the boundary conditions
at z =0 are obeyed. An advantage of the introduction of
the mode functions is that every term kcr in Eq. (2.1)
satisfies the boundary conditions, and consequently
E(r, t ) has the correct behavior at z =0, no matter what
the time dependence of cia (t) is. A disadvantage of the
expansion (2.1) concerns the boundary conditions for
r =

~
r

~
~0()." Traveling waves with periodic boundary

conditions on a volume V are a combination of incoming
and outgoing spherical waves, which is in conflict with
the physical picture of an emitting dipole and surface
(moving charges). A way of eliminating the advanced
solutions is through the intermediate step of deriving the
wave equation (6.2), for which we know how to discard
incoming waves.

Solving Eq. (6.2) is most easily accomphshed after a
Fourier transform. If we define

With the retarded Green's function

G„(r—r')=
[ r —r'

[ 'exp(ik
~

r —r'
~

), k =co/e

Eq. (6.5) can be integrated to give

(6.6)

Ee (r,co}=
z g I dr'cok{cok+co)[p(co) F)', (h)]

'7TEOC k u

&(F„(r')Gk(r —r') .

Since this solution has the dipole moment P(co) as a
source and obeys the boundary conditions by construc-
tion, we conclude that Eq. (6.7) represents the fluores-
ence radiation 6eld in the region z g 0.

Macroscopic devices which detect the fiuorescence are
positioned in the far field r~ao, and consequently we
have to make an asymptotic expansion for r ~ 00 of Eq.
(6.7}. At first sight this might appear to be a problem,
because the quantity

f dr'F„(r')G„(r —r') (6.8)

does not involve localized source terms with
~

r'
~

small
in comparison with r. It is only after summation over
the plane-wave modes k that the expression (6.8) be-
comes localized, as is most evident from identities such
as

and similar for p(t), th, en the transformed equation reads I dke')r' '+")=8~ig{r'yh) . (6.9)

Qj
V + 2

Ee+(r co)
C

—1
, y cok(cok+co)[p(co) F)', (h)]F), (r) . (6.5)

26gC

Bearing this in mind we can expand the Green's function

G (r r } r —leikr —ikr r'
(6.10)

with r=r/r. Then it is straightforward to find the
asymptotic expansion of Ed+(r, co), and we obtain

Q7 R~(co, u )E+(r ) y ~ '
~ [~ .[p( )R u

( u )
ic0(r —h )l u+pc~( )ei~(r+hu)lc])

2msoc~r 1+
~
R~(co, u ) (

' (6.11)

for the radiation traveling in the direction r and evalu-
ated at a distance r from the atom. Here, u =r.e, is the
cosine of the angle between r and the z axis, or the angle
of observation. The first term in square brackets corre-
sponds to photons which are emitted by the atom at
r=h and travel directly to the detector, whereas the
second term represents the photons which are emitted
by the surface (or reflected by the surface}, as can be in-
ferred from the retardation. Notice that the surface
photons have as a source the mirror dipole moment p'.

Obtaining Ed (r, t ) from a Fourier inverse of Eq. (6.11)
will be cumbersome in general, because the Fresnel
coefficients R (co, u ) depend on co in a complicated way.
In deriving Eq. (6.11) we did not use the explicit form of
the atomic Hamiltonian H„as given by Eq. (3.8). If
there were no radiation field present, then the time
dependence of p(t ) would be given by its free evolution

p(t) =e ' pe (6.12)

and with the explicit form of H, this becomes

p(t) =e 'PsitP, +e 'P,pP (6.13)

The second term on the right-hand side contains only
negative frequencies, and therefore its contribution to
the positive frequency part Ed+(r, co} of the electric field
will be negligible, in view of Eq. (6.11). Consequently,
we can omit the raising part of the dipole moment in ex-
pression (6.11}. Then, Pgp(co)P, will be strongly peaked
around ~=coo, with a frequency spread of the order of
the relaxation constant (-AI). Over this width AI of
the emission line at coo we can safely replace R (co,u)
and the prefactor m by their values at mo. Furthermore,
the retardation time hu /c in the exponential is of the or-
der of a few optical cycles, which implies that we can re-
place exp(kicohu /c) by exp(kicoohu /c) Combining.
everything then finaBy yields for the fiuorescence field in
the time domain and the radiation zone
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Eg+(r, t)= z g 2 q [a .Pe[@(t r—lc)R "(coo,u )e ' +p'(t r—/c)e ' ]I', I .
2ms~ r 1+ )R (coo, u)

(

(6.14)

Result (6.14) encompasses all statistical properties of the
emitted photons, such as the spectral and temporal dis-
tribution, including their polarization and angular distri-
bution.

VII. PHOTON DETECTION

A photomultipher tube above the surface detects the
fiuorescence and registers the passage of photons
through its active medium as a function of time. In or-
der to extract maximum information from the signal, we
position a polarizer in front of the detector, which only
transmits radiation with polarization a~, . Then it can
be shown that the photon count distribution is deter-
mined by the field

where irrelevant constants are absorbed in Io. First, we
notice that this intensity decays exponentially to zero
with an inverse lifetime Ai, which allows a direct deter-
mination of Ai from a measurement of I(t} Se.cond,
the angle of observation 8 appears in Eq. (7.4) in a way
that I(t) vanishes for 8=0 and n/2 (detector on z axis
or in xy plane), so in order to detect any fiuorescence we
have to position the detector under a finite angle. From
Eq (7..4) it follows that I(t) is maximum for

' 1/2
1 —Q —e(c0(i)

8=arccos (7.5)1+e(c00)

In case of a perfect conductor this becomes 8=m/2, but
for a metal with a small conductivity we find 8=0, and
the expression for the intensity reduces to

8+(t)=E& (r, t) s' i, (7.1) I (t) =Ioe ' [e(rao)], e(coo) $0 . (7.6)

evaluated at the position r of the detector. The d«ec-
tion rate at time t (intensity) is tlien given by

I(r) ~ (4-(r)@+(r)), (7.2)

I (t) a:Trp, (r —r Ic)8 (r Ic)8+(rlc), (7.3)

which involves the atomic density operator at time
t —r Ic.

Further evaluation of I (t}depends on the atomic level
structure and the preparation of the atom at an initial
time. Suppose we wish to design an experiment to ob-
serve the enhancement of the perpendicular lifetime with
decreasing conductivity, e.g. , the dip in the curve for b,
of Fig. 1 for ef0. First we choose a metal and a dipole-
allowed atomic transition, in such a way that e(coo) is
suSciently close to zero. Assume, for simplicity, that
the ground state and the excited state, have an angular
momentum j ——0 and j,=1, respectively. Since we are
looking for the observation of a perpendicular hfetime
we have to consider the emission of linearly polarized
photons in the decay I 1,o)~

I 0,0). At an initial time
we prepare the atom in the excited state

~
1,0), for in-

stance, by laser excitation. Then we place a linear polar-
ization 5lter in front of the detector, which is inclined by
an angle 8 with respect to the z axis. It is easy to show
from symmetry considerations that the intensity of s-
polarized photons equals zero for this con6guration.
Therefore we take the polarizer direction as a~, =a .

PO p
%'ith some algebra we then 6nd for the intensity

sin'8 cos'8[e(~,}']I (r) =Ioe
[1—e( a)0)][ 1 —[1+e{coo) ]cosz8 I

(7.4)

where the notation 0: indicates the suppression of ir-
relevant overall factors and 8 (i) is the Hermitian con-
jugate of 8+(t). Transformation to the Schrodinger pic-
ture gives the equivalent expression

In conclusion, the detection of p-polarized photons in a
(j,= I )-+(j&

——0) transition will reveal the dependence of
A~ on the conductivity, but the photon-detection rate
becomes extremely small in the region of interest
e(coo) =0.

VIII. PHOTON CORRELATIONS

Recently' we advocated that in designing an experi-
ment for the observation of surface-modified optical
properties of atoms, one can greatly benefit from the po-
larization properties of the fiuorescence, which are in-
duced by the presence of the substrate. In particular,
the combination with state-selective excitation by an in-
tense polarized cw laser beam, propagating in a well-
de6ned direction, allows the construction of a geometri-
cal configuration for which only a specific combination
of A i and A

~~

determines the statistical properties of the
fluorescence. In order to illustrate the idea, we consider
again the (j, = 1}~{js ——0) transition. If we irradiate the
atom by a linearly polarized laser field which travels in a
direction parallel to the surface, then it follows from the
dipole-selection rules that only the state

~
1,0) will be

populated. Alternatively, we can assume a circularly po-
larized beam, which is incident normal to the surface.
In this case, only of the substates

~
1,kl ) will be occu-

pied. Since
~

1,0) and
~

1,+1) decay with an inverse
lifetime equal to A~ and A

~I, respectively, we can simply
fix the dipole direction with our choice of external 6eld.

Driving aIl atomic transition with a cw laser results in
a time-independent fluorescent intensity I=I(t = oo },
and consequently the information contained in this
quantity is mimmal. Therefore we consider the two-
photon correlation function f (t), where f (t)dt equals
the probability for the detection of a photon in [t, t +dr]
after a detection at time zero, and irrespective of possi-
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ble detections at other times (for instance, in [O, t]).
Evaluation of f (t) is quite involved, so here we will

merely quote the result. Details about the algebra can
be found in, for instance, Refs. 31 and 32. For the two
different laser polarizations we 6nd

f (r} 1(1 ( —1/2)At)2

for a weak monochromatic laser exactly on resonance
with the transition frequency neo. Surface-induced effects

are entirely incorporated in the Einstein coeScient A,
which equals Ai for the linearly polarized case (5m =0),
and A

N

for a circularly polarized laser (ibm =21). Just
as in the situation of measurement of intensities, Sec.
VII, the time regression of the observable is governed by
the inverse hfetime A, and hence the measurement of
photon correlations might provide an alternative tech-
nique for the observation of atomic lifetimes near an in-

terface.

IX. CONCLUSIONS

%e have presented a quantum-electrodynamical
theory for the interaction of radiation with an atom,
which is located in the vicinity of an optically active sur-
face. The atom was allowed to have an arbitrary (degen-
erate) level structure. The optical properties of the sub-

strate were assumed to be represented by its complex
dielectric constant e(co), which is the only classical con-
jecture in the theory. %e obtained an explicit expression
for the spontaneous-emission operator I", and it was
pointed out that surface modifications of lifetimes [the
parameter functions b, (h)], are solely due to geometrical
interferences of incident and re6ected waves. For the
case of a perfectly re6ecting metal it was shown that
dramatic changes in lifetimes can be found, which are
brought about by the phase change of a plane wave upon
reflection at the interface. In general, the lifetimes are
determined by the classical Fresnel coefficients R (ro, u ).
Furthermore, we derived the sum rule (4.8) for the Ein-

stein coefficients of an excited level, and the (cylindrical)
symmetry relation (4.7) for these coefficients. These
quantum-mechanical results are again purely geometri-
cal.

Subsequently, we derived the explicit form of the
fluorescence radiation Seld from the equation of motion
for the photon annihilation operator a„(t). It appears
that E&+(r, t) acquires two contributions [see Eq. (6.14)].
The first term is proportional to

2 ~R (ca, u)
~

'
&
p(t r/c—}, (9.1)

1+
i R~(co, u)

i

which corresponds to direct emission by the atomic di-

pole p above the surface. A nonunity prefactor of y,

then represents power absorption by the dielectric. For
the second term we 6nd that the mirror dipole p,

'

emerges automatically as a source of fluorescence, corre-
sponding to emission of radiation by the oscillating
charges in the surface.

Polarization-dependent excitation of the atom and
detection of fluorescence were considered in some detail.
It appears that for a metal with a finite conductivity
there are no linearly polarized photons emitted in the
direction parallel to the surface. For a poorly conduct-
ing metal these photons are emitted under an angle 8=0
with the z axis, whereas an increase of conductivity
directs the angle of emission for linearly polarized pho-
tons towards H=ir/2. This value is reached arbitrarily
close for a perfect conductor. Finally, we mentioned
how photon-correlation techniques could be employed in
order to study the surface modi6cations of optical prop-
erties of an atom.
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