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The preceding paper (I) of this series develops a molecular-state close-coupling theory of ion-

atom collisions including the electronic continuum, which is described by packet states spanning it
locally. The present paper describes results of computations applying this formulation to the pro-
totype problem of impact ionization in proton-hydrogen-atom collisions, in particular, studies of
the properties of the basis states and the nonadiabatic couplings among them. (1) %e construct
continuum eigenfunctions using a "quantal momentum" or phase-amplitude representation and
use this to study construction and properties of continuum packet states, and we show how locali-
zation of packet states within a specified interaction region leads to speci6cation of packet widths
and/or energies. (2) %e verify assumptions made in the derivations given in paper I about nonadi-
abatic couplings of continuum states, and report computations of coupling matrix elements needed
to implement the theory for this system. Subsequent work will present close-coupling calculations
using this data.

I. INTRODUCTION

The first paper in this series' formulates a theory of
close-coupling in slow ion-atom collisions using molecu-
lar electronic states as the expansion basis and including
the continuum, which is represented by a discretized set
of packet states spanning it locally and constructed from
the exact continuum states. Inclusion of the effects of
escape by continuum electrons from the local region
spanned by the close-coupled basis is an important
feature of the theory. Although specific attention was
restricted to a simple class of problems, in which a single
dynamical electron is excited by collision from an initial-
ly bound state to other bound levels or to a continuum
lying entirely above the bound levels, the assumptions
needed to derive the close-coupled integral equations of
Ref. 1 are actually fairly broad and the theory can be ex-
tended, with suitable modifications, to a larger class of
model problems. The discussion in Ref. 1 was therefore
presented in the most general terms compatible with
basic assumptions, and specific applications to particular
systems were not a primary concern.

The theory of Ref. 1 is directly applicable to the prob-
lem of collisional (impact) ionization in one-electron pro-
totype systems, for which the required assumptions may
be justified quite rigorously. In this and succeeding pa-
pers in this series, we apply the theory to ionization in
slow proton-H-atom collisions as an example. The
description of the continuum given here is a considerable
advance over previous close-couphng studies of H+-
H(ls) collisions, which have either omitted the continu-
um entirely, represented it by a limited basis of pseu-
dostates, or treated continuum couplings only by 6rst-
order perturbation methods. This formulation (1) uses
a much more complete continuum description, (2) treats
effects of close-coupling between continuum and discrete
states and among the continuum components, and (3) al-

lows us to assess the escape e8ects. These points can be
addressed separately. Reference 1 presents integro-
difkrential equations which show the relation between a
correct formulation and the (probability-conserving)
differential equations of conventional close-coupling
treatments [Ref. 1, Eqs. (4.21) and (4.22)]; neglect of es-
cape terms in these equations reduces this formulation to
the conventional ones. Such a simplified calculation
would give information on the first two points, and the
efkcts of escape may be included as a further step.

In this paper we present detailed computational re-
sults bearing on the properties and couplings of the con-
tinuum states for the H2+ system (and packet states con-
structed from them). Results illustrate points made in
Ref. 1, but are also relevant to recent work on this par-
ticular systeIn. Emphasis is given to the results
(displayed in figures and tables) and derivations and
descriptions of computational methods are kept to a
mlnlmum.

Section II is concerned with construction and proper-
ties of the continuum packet states, following the scheme
described in Sec. III of Ref. l. %'e find that these have
densities concentrated mainly at the center of nuclear
charge of the molecular system, even for large internu-
clear separations, i.e., they remain localized on the
center of charge and do not follow the individual nuclei.
%e have computed tables of packet energy widths ap-
propriate to basis sets spanning the continuum within lo-
calized regions of speci6ed size.

Section III is concerned with the properties of nonadi-
abatic couplings among continuum states. We examine
their behavior for H&, especially in relation to the
singularities exhibited when the coupled states are de-
generate, using the generalized Hellmann-Feynman rela-
tions derived in Ref. 1. Results show that the assump-
tions made in deriving the coupled integral equations of
Ref. l are indeed valid for this prototype system. Subse-
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quent work will carry out close-coupling calculations us-

ing results outlined here.
and depends on a single real function p, (g),

p+(k) =p, (k)+~[p,'(P/2P, (P] . (2.4b)

H, (r; R)g(eijk, ;r; R) =eP(epA, ;r; R) . (2.1)

They are separable in prolate spheroidal coordinates
[(g, ri, q)), 1&)(oo, —1&ri(+1,0&q&(2m],

p(epA, ;r;R)=X(elk:,g;R }S(epA,;rt;R)e "~r/v'2~,

and X(e}uA,;g;R) and S( epA, ; ri R) e" 'rlv'2n are called
radial and angular wave functions, respectively. A, is the
component of orbital angular momentum on the molecu-
lar axis, and the index p, labels the separation constant
A„i, which may be computed as the (discrete) eigenval-
ue of the angular equation for given energy e and

configuration R; in the united-atom limit 8~0, A„~
speci6es the total angular momentum,

H. CONTINUUM PACKET STATES

A. Phase-amplitude 6eseriytion of c;oatimuum states

Exact continuum states for the Hz+ system are the
eigenfunctions P(epA, ;r; R) of the electronic Hamiltonian
H, (r;R) at each nuclear configuration R,

The quantah momentum is uniquely defined as that solu-
tion of Eqs. (2.4) satisfying the asymptotic boundary
condition

p, (g)~P, (g), g~ oo .

Global solutions for p„(g) and 8(g) are generated by (1)
initiating solutions by a suitable asymptotic approxima-
tion at large g, (2) numerically integrating Eqs. (2.4) and
the phase integral inward toward g= 1 and, at a point gp
suitably near the origin, (3) matching regular and irregu-
lar trigonometric solutions of the forms

F, (g) = [p„(g)] ' sin8(g),

F,(g):—[p„(g)] 'i cos8(g)

[where 8(g) is defined by Eq. (2.2b)] to linear combina-
tions of regular and irregular power-series solutions of
Eq. (2.2a) about g=1. A more detailed description of
the computational method is given elsewhere.

p, (g) and 8(g) have the asymptotic forms

I (l +1» }
=

I
~

I I
~

I
+1 e« p„(epA, ;g;R) =c+(q/2c)/)+0(g '), (2.5a)

Continuum wave functions for the one-electron two-
center system have been computed previously by several
workers, ' but here we found it computationally and
conceptually more useful to develop a new representa-
tion of the radial wave functions in the quantal momen
turn or phase-amplitude form, '

X (epA, ;g;R ) =2/[mR (g' —1)]'~ [p„(epA,;g;R )]

X sin8{epA, ; g; R ),
where the phase 8(e}uk,

;JR�

) defined by

8(epA, ;g;R)—:f d g'p„{epA;g', R ),

(2.2a)

(2.2b}

and the quantal momentum p„(elk; g; R ) are easily com-
puted, slowly varying functions of their arguments.
These functions are computed as follows: The substitu-
tion X(g)=F(g)/(g —1)'~ in the radial equation gives

8(e}uA,;g;R ) =cg+(q/2c)ln(cg)+5(epA, ;R )+0(g '),
(2.5b)

where 5(e}uA,;R ) is the phase shift.
More efficient generation and storage of the continu-

um wave functions are possible in this form because the
quantal momentum and phase functions are slowly vary-
ing, nonoscillatory functions of g over essentially the en-
tire domain 1 & g & oo. They are also slowly varying
functions of the parameters e and R, a fact we use in
computing packet-state properties.

Figures 1 and 2 show some typical plots of quantal
momentum and phase for a number of continuum states
of H2+. Also sho~n for comparison are suitable JWKB
approximations to these variables.

B. Packet states

F"(g)+&, (g')F(g) =0,
where

(2.3a) ~e define continuum packet states $(j}LtA,;r;R) as su-
perpositions of the exact continuum states with uniform
amphtudes over a packet width 6 centered on a mean
energy e,

c =eR /2, q=(Z„+Zs)R
Q.3b)

(2.6a)
(nuclear charges Z„,Za), and we seek the solution F,
regular at the origin g= l. A fundamental solution pair
is wntten in the form

fz (g') =exp +c f d g'p+ (g')

where

e/+i ——e.+(bi+EJ+, )/2, j =1,2, . . . , eh /2i,

(2.6b)

and then p+(g} satisfies the equations

+ ip ~(g)+p + (j)=&,'(() (2.4a}

and the packet widths h~ are not yet de6ned. %e
showed in Ref. 1 that the packet states are localized in a
region near the nuclei,
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FIG. 1. Quantal momentum and phase vs g (solid curves) for quantum numbers {p,A, ), internuclear distance R (a.u.), and contin-
uum energy e (a.u.). Curves with attached data points show the corresponding J%'KB approximations. Left-hand figures, top to
bottom, are for {p,A) =(0,0) and (a) R =1.0, a=0.05; (b) 8 =10.0, @=0.05; (c) R =1.0, @=1.00. Right-hand figures show same

R,e values for (p, k) =(2,2).
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p(j pA, ;r;R)=b,,
'~ p(e pA, ;r;R)f(h, (B8IBe), /2),

DJ[B8(epk;gd', R)IBe], =2m . (2.8)

Hence the width 6& determines the spatial localization
of the packet state p(jpA, ;r;R).

De6ne a prolate spheroidal interaction region with a
fixed major radius rz, which specifies gz 2r&——IR for a
given internuclear distance E.. Then for a given set of
quantum numbers (p, A, ), Eqs. (2.6b) and (2.8) jointly

(2.7)

where f (x)=x 'sinx; since (B8(epA.;g„R)/Be}, is a

uniformly increasing function of g, f is a packet envelope
function whose magnitude decreases strongly for g&gd
such that

h(pi%. ; R;rd ,e):'2n —l[B8(epk;gd, R, )I'Bet (2.9)

and examined their dependence on R and on (p, k, ) for
various choices of major radius rz. The results are fairly
insensitive to the quantum numbers (p, A, ). The depen-
dence on R is stronger for increasing (p —A, ) and de-
creasing energy e and rd, but there is a large domain

specify a consistent set of packet widths Ihi I such that
the corresponding packet states tp(jpA, ;r;R}] are all lo-
calized within this region, according to Eq. (2.7). How-
ever, two practical questions arise: (1}The formalism of
Ref. 1 assumes the widths Ih, J are independent of inter-
nuclear distance R (and hence independent of time). Is
the above specification consistent with this? (2) Are the
widths I b,, j independent of the quantum numbers (p, i(, )?
We computed pocket width functions defined by

3 ~ 0"

2 ~ 5-

2 ~ 0"

I
i.sI

1 ~ 0-

0 5-

0.0 &

~ ~. g 1 4''4' % 4 4-em~

2
I

I

iI

0 1 1
3 4 Q fj

FICs. 2. Quantal momentum and phase vs g (solid curves) for quantum numbers (p, k, ), internuclear distance R (a.u.), and contin-
uum energy e {a.u.). Curves with attached data points sho~ the corresponding JWK9 approximations. Top 6gures from left are
for (p, )t, )=(2,0), e=0.05, and & =1.0 and 100, respectively; bottom figures, (p, k)=(1,0), R =1.0, e=1.00 and (p, A)=(3,0),
8 =1.0„@=1.00.
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FIG. 3. Typical packet width function 4 vs continuum ener-

gy e for several values of region size rz [actual curves shown
are for (p, l(, )=(0,0), R =12.0 a.u.]: ", rz ——20.0 a.u. ; ----,
rd ——40.0 a.u. ; ———--, r~ ——60.0 a.u. , —-—-—,rd ——80.0 a.u.

over which this dependence is very small. In particular,
for rd &40.0 a.u. , e&0.05 a.u. , a.nd 8 &20.0 a.u. , the
maximum deviation of any function h(pA, ;R;rd;e) from
the average for all states with p &2 is less than 0.01 a.u.
(10%); hence, to good approximation one can define a
common packet width function independent of both 8
and (p„A,). Figures 3 and 4 show the dependence of this
function on energy 6 and radius r'd . Using the packet
width function for a given rd, the packet widths and en-

ergies for an entire basis set of packet states localized in
the corresponding "interaction region" are fixed by Eq.
(2.6b). Tables of packet widths and energies are given in
Table I for rd ——40.0, 60.0, and 80.0 a.u. Finally, Fig. 5

shows how the energy of the lowest packet, e„varies
with region size rd.

To verify properties deduced above, we have con-
structed packet-state wave functions in the Cartesian
(x,z) plane by explicit evaluation of the integrals (2.6a),
using packet widths given in Table I. Quadratures with
seven and nine points achieve convergence of the result-

ing amplitude functions at major maxima within
1X10 absolute error. Some typical plots resulting are
shown in Fig. 6. Each picture represents a grid size
80p 80 a.u. The decaying envelope is evident and
though ihe graphs shown do not go out far enough to
show the fuB decay we have veri6ed by computation at
selected further points that the predictions of Eq. (2.7)
are valid.

The packet states display significant properties of the
molecular continuum. For moderate values of the quan-
tum numbers (p, , A, } the packet-state densities are cen-
tered not on the nuclei but on the center of positive
charge and remain there as internuclear distance R in-

creases. Densities located near the nuclei can be main-
tained only by continually increasing the quantum num-
bers (p, A, ) as 8 increases. Hence (a) molecular continu-
um packet states are not linear combinations of the
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FIG. 4. Packet width function 5 vs region size rd for

several continuum energies e [curves shown are for
(p„A, ) =(0,0), R =12.0 a.u.]: ",@=0.001 a.u. ; ----, @=0.05
a.u. ; ———.—,@=0.5 a.u. ; —---—,e= 1.0 a.u.

atomic continuum packet states [i.e., not "LCAO"-like
(where LCAO represents linear combination of atomic
orbitals)] and (b) the molecular packet-state basis, if re-
stricted to only the lowest 10 ((tt, A, }, is essentially in-
dependent of and nonoverlapping with atomic packet
states for all except small internuclear distances (say,
R (2.5-4.0 a.u.). These properties hold for both low
and high electron energies e.

A recent close-coupling study by Winter and Lin us-
ing a "triple-center" basis of pseudostates to represent
the continuum indicated that ionization occurs predom-
inantly to regions of con6guration space centered at the
"zero-force point, " i.e., the molecular center of charge in
this case, and they argued that this is an instance of the
"Wannier mechanism" for three Coulomb particles. A
quite diferent study by Olson, ' based on Monte Carlo
sampling of classical trajectories for the electron system,
reached the same qualitative conclusion, that the ionized
electron is located predominantly near the center of
charge, and Olson recommends that basis sets having
densities there be used for close-coupling studies of ion-
ization. From the present work it is evident that the
molecular continuum packet states have the appropriate
spatial distribution properties and that these properties
result from the geometry and fairly minimal mechanical
assumptions, i.e., that if ionization occurs without im-
parting significant orbital angular momentum to the
electron the resulting density will be centered at the
center of positive charge rather than on the nuclei.

We can make some assessment of the adequacy of the
packet-state basis for representing the molecular contin-
uuln within the speci6ed interaction region. %'e find
that the number of radial nodes between the origin and
the interaction region boundary at gd increases uniform-
ly by 2 from a packet state with energy e~ to the next
higher one with energy e, +,. We think this argues
favorably for the local completeness of the basis set.
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TABLE I. Packet widths and energies for three values of interaction region size parameter r& (all

quantities in a.u.).

rd ——40.0

0.0450
0.1500
0.2825
0.4400
0.6200
0.8250
1.0600
1.3225
1.6100
1.9225
2.2600

0.0900
0.1200
0.1450
0.1700
0.1900
0.2200
0.2500
0.2750
0.3000
0.3250
0.3500

1

2
3

5
6
7
8
9

10
11
12
13

15
16
17

0.0250
0.0800
0.1450
0.2200
0.3075
0.4075
0.5175
0.6400
0.7750
0.9200
1.0750
1.2400
1.4175
1.6075
1.8075
2.0175
2.2375

0.0500
0.0600
0.0700
0.0800
0.0950
0.1050
0.1150
0.1300
0.1400
0.1500
0.1600
0.1700
0.1850
0.1950
0.2050
0.2150
0,2250

1

2
3
4
C

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.0150
0.0500
0.0925
0.1400
0.1950
0.2575
0.3250
0.3975
0.4775
0.5650
0.6575
0.7550
0.8600
0.9725
1.0900
1.2125
1.3425
1.4800
1.6225
1.7700
1.9250
2.0875
2.2550

0.0300
0.0400
0.0450
0.0500
0.0600
0.0650
0.0700
0.0750
0.0850
0.0900
0.0950
0.1000
0.1100
0.1150
0.1200
0.1250
0.1350
0.1400
0.1450
0.1500
0.1600
0.1650
0.1700

III. COUPLING MATRIX ELEMENTS

As shown in Ref. 1, the Hellrnann-Feynman theorem
may be extended for the calculation of nonadiabatic cou-
plings among continuum states of the one-electron pro-
totype systems. For radia1 codlings, the matrix ele-
ments coupling two states, $(epA, ;r;R) and P(e'p'A, ;r;R),
have the form

(ep'I;R
~
2),"

~
epA:, R}=(1—5„.„}S„„cosh„"„,

where

(3.2a)

where P means a principal value is taken in integrations
over continuum energies. It was shown (cf. Appendix 1,
Ref. 1) that the analytic coeScient of the singular term
in Eqs. (3.1) is given by

(y(e'p, 'X;R)
~
(a/aZ),

~
y(epA, ;R) &

=(ep'X;R in i cpa;R)5(e —e)

(~'i X;R~(aH, /aZ), ~ei X;R&
+ (3.1)

5„".„=5(ep, 'A, ;R ) 5(epA, ;R )—

4„„=J driS(ep, 'A, ;ri;R)[aS(epk. ;r);8)/M]„
1

=[eR/(3„.& —A„~)]f dr)S(ep'A, ;ri;R)—I

(3.2b)

0.14

0.18

0.10

I
)

I I ~
l

~
l

I I I X7) S(epA, ;g;R), (3.2c)

and also that when e'=e the commutator matrix ele-
ment in Eq. (3.1) reduces to

(ep'A, ;R i (aH, /M), i epA, ;R)
0.08

a$

0.06

0.04

0.08

0.00
0.0 80.0 40.0 60.0

r~ (a.u.}
80.0 100.0

=(1/n ) [(1—5„„)A'„„sink„.„
—5„„[a5(epA, ;R )/aR ] ] .

Similarly, for the angular couJphngs,

(e'p'A, +1;R
i
L z i

ep, A, ;R }
= (ep')L.kl;R

~
2)+

~
epA, ;R}5(e'—e)

(e'p'A, ;R
~
[L~,H, ] ~

epA, ;R}
t

(3.2d}

(3.3)

FIG. 5. Energy e, of lowest packet state vs interaction re-

gion size parameter rz. the analytic coe%cient of the singular term is
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( Ep A2, 1;R
~
2)y ~

Cps:, R ) =el' ~coskp ~,

5+— =5(e}u'A,+1;R} 5(—ep, A, ;R ),
AM P

dq S(ep'A, ;g;R)L/S(eyA, ;g;RPP

with

L$=+(1—g )' [(BIBg)Eke/(1 —q )],

(3.4a}

(3.4b}

(3.4c)

0

and when e'=e the commutator matrix element ss

(ep'A+1;R
~
[L~,H, ] ~

epA, ;R)=(1/n)4„„ i &„„.
(3.4d)

In Ref. 1 we showed that to form a valid representa-
tion of the nonadiabatic coupling operator within t e
truncated subspace spanned by the packet states one
must take explicit account of any energy dependence in
the couplings which varies rapidly over a packet width.

. jIJI, ~)I}
(;r'

„-. yet, . II'~

--'JJJXI)q ~ . 'I4s It

';,i'iil( '

~Q l

ane showin localization of packets at the center of charge. Interaction regionFIG. 6. Continuum packet states in the {x,z) plane, showing oca iza ion o p
icture shows a re ion 80&80 a.u. {p„A.) and (R,e) values as o ows: a p=f 11:(a) =0, X=0, R =2.0size parameter rz ——40.0 a.u. ; each picture shows a g
R =20.0 a.u. @=0.150 a.u. ; ( ) p=0, =, = . a.u. ,

A, =l R =20au a=0 150au (})p=&, &=&,
=1 X=O R =2.0 a.u. , a=0. 150 a.u. ; (f) p=
=1 A, =O R =20.0 a.u. , a=0.825 a.u. ; (i) p=2,R =40.0 a.u. , a=0. 150 a.u. ; (h) p=, =, =. . ., = . . ')

R =20.0 a.u. , a=0. 150 a.u. ; (k) p=2, k=1, R =40.0 a.u. , t. =0.150 a. .; ( p=,
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We used the structure given by the Helbnann-Feynman
'

ns [E s. (3.1) and (3.3)] as an assumed general
anal ticf for the couplings, and assumed that the ana y icorm or e

coeScients of the singular terms and the numeraterators in
the principal-value terms are slowly varying functions of

is investigated here for the proton-H-atom system,
fi d

' '
1 d to a good approximation. Fina ly, we

have computed the matrix elements needed in qs.
and (3.3) for energies e', e corresponding to packet ener-
gies EJ given 1n a eJ I bl I using the formulas given in Ref
l for efFective couplings of the packet states, these ma-
trix elements provide data necessary for close-coup ing

calculations to follow in later work.
The quantities displayed in Figs. 7--10 are ust the3

commutator matrix elements

'p'A, ;R j
P"

j pA, ;R ) = ( p'A, ;R i (BH, /M), i pA, ;R ),

(3.5a)

(e'p'A, +1' R
i
P

i
epA, ;R )

=(ep, 'A+1;R
I [L+,He] I

apl, ;R ), 3.5b

appearing &n qs.E (3.1) and (3.3), and the quantities
(ep'A, ;R [2)"

~
eIJA, ;R ) and (ep'1+1;R, [2)+ j epA, ;R )

defined in Eqs. (3.2a) and (3.4a), respectively.

FIG. 6. (Continued).
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Figures 7 and 8 display the dependence of the commu-
tator matrix elements in Eqs. (3.5) upon continuum ener-
gies e', e. These are generally slowly varying over a
packet width, though in a fevv cases the slopes are also
significant, especially at large R; certainly, hovvever, re-

placement by the mean value at the center of a packet is
a reasonable 6rst approximation. The qualitative behav-
ior of the angular matrix elements (3.5b) does not de-
pend much on the quantum numbers p', p, or A,, vrhile in
contrast, the radial matrix elements (3.5a) show a

Q, 8 I I j I 'I I j I I I j I I I 1..0 I I I j I I I
t

I I I

A

M

It

V

0.8

0.5
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stronger dependence on these quantum numbers. In
general, the magnitudes of both types of matrix elements
decrease when one of the energies is large. The energy
dependence of the 5-function coe%cients is also shown in
Fig. 8, and is generally much simpler.

In Figs. 9 and 10 the 8 dependence of the same ma-
trix elements has been plotted for energies e', e corre-
sponding to various packet-state energies e in Table I.
Again the behavior of the 5-function terms is simpler.
In all cases the range of internuclear distances E. over
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which the matrix elements are significant decreases as
the energy difFerence increases. Note that for the angu-
lar couphng matrix elements an additional factor of E.
must be included to get the true 8 dependence.

Ponomarev er a/. have reported calculations of some
continuum-state nonadiabatic couplings relevant to the
Coulomb three-body problem. The quantity these au-
thors define as Q'+' fcf. their Eqs. (6) ff.] appears to be
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the coefficient of the 5-function term in the radial cou-
pling matrix element, given here by Eq. (3.2a). It is evi-
dent that their claim that this vanishes is not correct ex-
cept when the two continuum states are the same, i.e.,

p' =p (as is required from symmetry). They have not
computed the principal-part matrix elements Or the an-
gular coupling matrix elements.
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