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%e formulate a close-coupling theory of sloe ion-atom collisions based on molecular (adiabatic)
electronic states, and including the electronic continuum. The continuum is represented by packet
states spanning it locally and constructed explicitly from exact continuum states. Particular atten-
tion is given to two fundamental questions: (1) Unbound electrons can escape from the local re-

gion spanned by the packet states. %'e derive close-coupled integral equations correctly including
the escape e6'ects; the "propagator" generated by these integral equations does not conserve proba-
bility within the close-coupled basis. Previous molecular-state formulations including the continu-
um give no account of escape efkcts. (2) Nonadiabatic couplings of adiabatic continuum states
with the same energy are singular, reflecting the fact that an adiabatic description of continuum
behavior is not valid outside a local region. %e treat these singularities explicitly and show that
an accurate representation of nonadiabatic couplings within the local region spanned by a set of
packet states is well behaved. Hence an adiabatic basis-set description can be used to describe
close coupling to the continuum in a local "interaction region, " provided the efFects of escape are
included. In principle, the formulation developed here can be extended to a large class of model
problems involving many-electron systems and including models for Penning ionization and col-
lisional detachment processes. However, we restrict speci6c attention here to the simp1er problem
of collisional (impact) ionization in one-electron systems (e.g., proton-hydrogen-atom collisions)
and some results have been proved rigorously only for those systems.

I. INTRODUCTION

This work develops a close-coupling theory of ion-
atom collisions at low to intermediate energies, based on
a molecular (i.e., adiabatic or near adiabatic-) description
of the coupled channel states, and including close cou-
pling to the electronic continuum. We restrict attention
here to a very simple class of problems, in which a single
dynamical electron is excited to the continuum from
bound electronic states lying entirely below it and there
are no quasibound levels embedded in the continuum.
The formulation is directly applicable to impact ioniza-
tion in one-electron collision systems and we use the
proton-hydrogen-atom system as a prototype in compu-
tational applications made in following papers.

%ith this simplification we can focus directly on three
basic problems related to continuum excitation in slow
collisions: (1) limitations of an adiabatic description of
the continuum, (2) implications of a discretized represen-
tation of the continuum, and (3) bipolarity of collision
system and its effects on the spatial distribution of eject-
ed electrons.

The theory is based on a classical trajectory treatment'
of the nuclear motion: For each impact parameter b and
collision energy E, the trajectory R(t) is specified and
the electronic system evolves according to the time-
dependent Schrodinger equation, subject to suitable
boundary conditions:

t(B/Bt)%(r;t) =H, (r;R(t))4(r;t) .

Molecular or adiabatic electronic states are eigenfunc-

tions of the electronic Hamiltonian H, (r;R) at each nu-
clear configuration R(t). If the continuum is included,
these states form a complete set at each R, and provide
a valid forrnal basis for solving the Schrodinger equa-
tion. Close-coupling formalisms based on this fact and
including the continuum have been given in the litera-
ture and used as a framework for computations. '

%hile our formulation has the same forrnal starting
point, major modifications arise from consideration of
the basic problems mentioned above.

It is obvious that an adiabatic expansion cannot offer
a practical description of the electronic continuum
throughout all time and space. An electron far from the
nuclei certainly cannot follow their motion as the adia-
batic continuum states do. There are singularities in the
"nonadiabatic couplings" among adiabatic continuum
states which arise from this fact. On the other hand, an
adiabatic state description, including continuum com-
ponents, should offer a valid description of electrons in
the vicinity of slowly moving nuclei. %'e show here that
a discretized set of adiabatic continuum packet states
forms an appropriate basis for treating close-coupling
un thin a granite 'subspace spanning a suitably chosen in
teraction region. The size and characteristics of this re-
gion are not evident at the outset and may depend
strongly on the mechanism of excitation and resulting
continuum electronic energy distribution.

Even if there were no inherent diSculties in an adia-
batic description of continuum states, there are impor-
tant physical consequences of any mathematical pro-
cedure which replaces the formal integrations over con-
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tin uum energies appearing in an exact equation of
motion by a discrete sampling scheme. In efFect, such a
discretixation always replaces the part of Hilbert space
spanned by the true continuum with a truncated sub-
space. As a result, certain operators in the equations of
motion cannot be fully represented, and unless great care
is taken they may not even be accurately represented
within the truncated subspace. This is true in particular
for the (zeroth-order) propagator itself. This point has
been made earher by Reading and Fords in a paper
treating close coupling in ion-atom collisions but using
atomic-state basis expansions. They showed that if a
discretization of the continuum is introduced (in their
case, with a basis of L~-type pseudostates), such a trun-
cation necessarily restricts the description given by the
close-coupled wave function to a finite region of
configuration space. But since the propagator for con-
tinuum electrons must describe their escape from any
such region, then, in contrast to the exact close-coupled
equations, the close-coupled equations for the wave func-
tion in the truncated subspace are neeessariiy nonunitary,
i.e., they should not conserve probability. Reading and
Ford derived coupled integral equations with the re-
quired nonunitary character and discussed methods for
their solution. However, their work was mainly con-
cerned with collisions at intermediate and high energies,
where the collision time is comparable to or shorter than
the time required for an electron to escape from the lo-
cal region described by the truncated pseudostate basis.
We might expect escape efFects to be more important in
slow collisions. In the adiabatic closewoupling treat-
ments cited above, discretizations of the continuum
are introduced, but escape effects are not accounted for.
Here we develop the theory showing that the correct
close-coupled equations in a discretized basis are not
probability conserving and escape eSects are included.
In fundamental respects our derivation is similar to that
of Reading and Ford, s but difFers from theirs in that (a)
we derive the integral equations in the truncated sub-
space by projection on packet states constructed explicit-
ly from the exact continuum states and (b) we use an
adiabatic zerothwrder basis description, with resulting
additional complications arising from the singularities in
the nonadiabatic couplings.

In Sec. II we present a version of the adiabatic close-
couphng formahsm, in the form of an integral equation
for the unitary propagator, based on the adiabatic uni-
tary propagator as the zeroth-order approximation.
This serves to introduce the problems in adiabatic
descriptions and provides a formal starting point for the
close-coupling scheme eventually developed. In Sec. III
we discretize the exact continuum using packet states,
and derive some important results from the construction;
in particular, we show that a representation of the adia-
batic propagator within the packet-state subspace con-
tains efFects of escape by unbound electrons from the lo-
cal region spanned by that basis. In Sec. IV we con-
struct a subspace representation of the nonadiabatic cou-
pling operator and derive integral equations for the evo-
lution of the subspace state vector; as expected, probabil-
ity is not conserved within the subspace. A following

paper contains illustrative computational results for the
proton —H-atom system. Later papers will present results
of close-coupling studies on this system based on the for-
mulation.

II. ADIABATIC CLOSE-COUPLING FORMALISM

A. Molecular (adiabatic) eigeustates

define a complete orthogonal set of molecular (adiabatic)
eigenstates. The set Igk(r;R)) includes both discrete
and continuum states and the general index k subsumes
a more complete speci6cation of quantum numbers ap-
propriate to each system. The prototype one-electron,
two-nucleus systems are separable in prolate spheroidal
coordinates and eigenstates are labeled by two more
quantum numbers (is, A, ), in addition to the energy. A, is
the component of orbital angular momentum on the R
axis; the index is labels a constant of the motion A&i as-
sociated in the united-atom limit R ~0 with the angular
momentum A„i-+is(p, +1),p=

(
k ), [ A,

~
+1, etc. p, , A,

are thus analogous to spherical polar quantum numbers
i, m but should not be confused with them. Bound states
are denoted I P(n pA, ; r; R) ], with energy eigenvalues
e(nish;R}&0,, and continuum states IP(epA, ;r;R)I with
continuous eigenvalues e&0. At each R these eigen-
states satisfy the orthogonality relations

(P(n'p, 'A, ', R)
~
P(npA:, R) =5„.„5„.„5 ~

(P(e'p'A, ';R)
i P(n pA, ;R) ) =0,

(P( 'p, 'A, ';R)
~
P(epA, ;R))=5( ' —}5„„5„

(2.2)

Assuming that H, ( r; R } and its eigenfunctions can be
continued analytically as functions of R, then for the
discrete states, as R~R', there is a one-to-one mapping,

P(nish;r; R)~P(n, isA, ; r; R'), e(nish, ;R )~e(n pA, ;R ');
(2.3a)

for the continuum states, we dePne the mapping so that

P(eisA. ; r; R)~P(epA, ; r;R'), (2.3b)

i.e., the continuum energy e is independent of E. This
mapping simpli5es the problems associated with the
one-electron type of continuum and the properties of the
associated nonadiabatic couplings.

This work assumes that the electronic continuum basis
states are "simple" in certain ways. Certainly the con-
tinua of the one-electron prototypes are simple in the re-
quired sense, and we use them here to illustrate what is
intended by the term. %e have speci6cally excluded adi-
abatic continua which contain embedded quasibound
levels. The essential requirement is that the continuum
wave functions vary smoothly without displaying any
"6ne structure" of the sort associated with Feshbach res-
onances (and arising from mixing with specific alterna-

At each nuclear configuration R the solutions of the
electronic stationary state problem,

(2.1)
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tive physical configurations). Our results are strictly val-
id only for the one-electron prototype problems, but the
general assumptions may be extended to a large class of
approximate model problems; in general we may assume
that continua of systems with a single active electron,
described within an independent-particle model, are also
simple in the required sense, and therefore the general
framework presented here can be extended to them as
well.

B. Nonadiabatic eouplings

If the solution %(r;t) to the Schrodinger equation (1.1)
is expanded in the basis states IP„[r;R(t)]j at each
configuration R(t), transitions arise from nonadiabalic
coup1ings, whose matrix elements are given formally by

where v:(dR/—dr) The .physical meaning is that transi-
tions result from the finite rates of deformation of the
adiabatic states as the nuclei move along R(t), with a
coupling strength proportional to the local collision ve-

locity v. However, a rigorously correct definition of this
operator and its matrix elements requires careful con-
sideration of several points.

(1) Nonadiabatic couplings must be gauge inuariant,
i.e., their matrix elements cannot depend on the inertial
reference frame chosen for electron coordinates, and
they Inust also be de6ned consistently with correct
asymptotic boundary conditions for the molecular-state
channels. These requirements lead to electron transla-
tion factor (ETF) corrections to nonadiabatic couplings
(cf. Sec. II 82 below).

(2) The nonadiabatic coupling operator is not like an
ordinary finite-range potential operator P'(t) Its matri. x
elements among continuum components have singulari-
ties which reflect fundamental limitations of an adiabatic
description of the continuum. We discuss the structure
of these singularities in Sec. II C.

Radial and angular couplings

The trajectory R(t) is confined to a plane and is
specified by magnitude R(t) and angle 8(t); v then has
radial and tangential components Uz ——(dR /dt),
Uz ——8 (dl/dt)= buo/Ji. , wh—ere Uo is the asymptotic
collision speed, and hence

(2.4b)

The gradient in Eq. (2.4) is taken keeping electron coor-
dinates r' fixed in a nonrotating frame; if as is usual the
eigenstates Pk(r;R) are described in coordinates r of a
frame rotating with R, the eigenstates P„(r;8) depend
only on R and the nonadiabatic couplings then are writ-
ten formally as

(2.S)

P„"k(R ) = i—& pk ~

(8/BR )
~ p„& (2.6a)

(2.6b)

and I. is the electronic orbital angular momentum com-
ponent normal to the collision plane (z axis coincides
with R). Equations (2.6a) and (2.6b) define the radial
and angular nonadiabstic coupling matrix elements, re-
spectively.

Selection rules are as follows: Since Igz(r;R)j are
eigenfunctions of the 8-axis angular momentum com-
ponent L„ the radial couplings obey the selection rule

and angular couplings A, A.
——A, I, +1. In a cen-

trosymmetric system like Hz+, coupled states must also
have the same parity (g or u).

2. Translational invariance and ETI' corrections

The physical description given by Eq. (1.1) cannot de-
pend on the reference origin chosen for electron coordi-
nates; hence the couplings denoted formally above as

i, &Pk
~

(8—/Bt
i P„& and elaborated in Eqs. (2.4)—(2.6)

must also be invariant to that choice. [We use the
geometric center of the system (GC) as (conventional)
reference origin. ] It is easy to show, however, that the
coupling matrix elements defined by Eqs. (2.6) do not
have the required origin invariance. The inconsistency
is resolved by the observation that due to nuclear motion
any new origin is translating with respect to GC and
transformation theory requires that wave functions de-
scribed in the new frame differ from those in the GC
frame in a manner representing the relative translation.
When the Hamiltonian acts on the transformed wave
functions in the new frame, additional coupling terms
are generated which preserve translational invariance of
the eFective couplings.

The couplings computed using GC as reference origin
must also be defined correctly, i.e., consistently with
correct asymptotic description of channel basis states.
This cannot be done using only the adiabatic molecular
eigenstates of 0, . Seen from the origin GC, an electron
bound to either nucleus is translating with it, that is, the
"correct inertial reference frame" for an electron bound
to nucleus A is at A, not at GC. It is impossible to
choose a unique inertial reference frame for the active
electron which resolves this problem; since the colliding
nuclei move relative to each other with velocity v, the
correct inertial frames for electrons bound to each are
diFerent and this diFerence has to be included in the
definition of the basis functions, even in a classical tra-
jectory description. Since the Hamiltonian 0, contains
no information about nuclear motion, this relative
translation cannot appear in the eigenstates Igk j them-
selves but must be included as a modifying electron
translation factor (ETF) in a correct description of basis
states. Asymptotic definitions of these factors are easily
found from transformation theory, but the problem is
how to modify molecular-state basis functions and the
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resulting couplings in a global way which (1) gives
correct asymptotic behavior, (2) ensures translational in-
variance of couplings, and (3) forms an efficient basis set
for rapidly convergent close-coupling calculations.

Several solutions to this problem have been proposed.
Here we use the molecular sta-te switching function for-
malism of Thorson and Delos. ' Several close-
coupling calculations using this or a closely related
scheme have been carried out, " ' though none so far
has treated close-coupling to the continuum. The most
important result of translation factors in a molecular-
state description of ion-atom collisions is to correct the
nonadiabatic coupling matrices. ' VA'th GC as reference
origin, the radial and angular couplings formally given
in Eqs. (2.5) and (2.6) are explicitly defined as follows:

"—&P„ I
(c}/M)

I
P„&"=P„„+A" (2.7a)

and

(1/R—)&ctk
I L, I kk &"=l'k k+ Ak k (2.7b)

where Pk.I, and Pk k are the nonadiabatic couplings
defined explicitly by Eqs. (2.6a) and (2.6b} with GC as
reference origin, and the ETF correction matrix elements
are given by

the singu1ari ties in continuum-state couplings which
mainly concern us; these arise entirely from the cou-
plings P,P .

C. Nonslilabatlc coUpllngs

and the Helhnann-Feynman theorem

Nonadiabatic couplings Pk k, Pk k between two molec-
ular continuum states are singular when their energies
ek and el, are equal. As noted earlier, this re6ects the
fact that an unbound electron far from the nuclei cannot
really follow their motion adiabatically. General con-
siderations based on the adiabatic approximation sug-
gest such a result must always hold for continuum-
continuum nonadiabatic couplings, but for the prototype
one-electron systems we can derive the explicit form of
these singularities by a generalization of the Hellmann-
Feynman theorem.

Hellmann-Eeynman theorem

If the Hamiltonian H, and its eigenstates [pkj can be
analytically continued as functions of a parameter g,
then the Hellmann-Feynman theorem,

&4k i(~~, /~0) lkk&=(«k/d0)&0k Ilk&

+(ek' ek ) & ~k I
(~/~4)

I 4k &

Ak k (c/2)(ek ——ek )&pk I—zfk(r;R) I pk & (2.8a)

(2.8b)

holds, provided at least one of the eigenstates pk, (tk is

of L, type. This relation is applicable to both radial and
angular nonadiabatic couplings,

where fk(r;R) is the switching function for the eigen-
state pk(r;R). ' In efFect, the switching function shifts
the electronic reference origin from GC to one more lo-
cally appropriate. For bound states, the appropriate lo-
cal origins asymptotically are the atomic nuclei ( A, B) to
which an electron is bound; hence fk(r;R ) satisfies the
boundary conditions

lim fk(r;R)=+1,
I rs

I

finite
R ~ oo

= —1,
I
r~ I

finite,

but the form of fk(r;R} for finite R is not fully deter-
mined. EIciency and convergence of close-coupling cal-
culations using the resulting basis set is a relevant cri-
terion for choice.

This paper is not concerned directly with the study of
ETF corrections to nonadiabatic couplings, but two con-
cluding points do bear on present objectives.

(1) For the prototype one-electron systems, the
molecular continuum packet states are centered on GC
(more generally, on the center of positive charge), and
not on the atomic centers, and this is probably a general
feature of molecular continua. The implication is that
for these states, the GC (or center of charge) is itself the
proper reference origin, i.e., there should be no ETF
corrections to continuum-continuum couplings.

(2) In any case the ETF correction matrix elements
defined by Eqs. (2.8} are at most finite and cannot afFect

pk'k c& 4k' I
(~~ /c}R }

I 0'k &/[ek(R ) ek (R)]—

pk I, ———( I /R ) & yk I [L,H, ] I yk & /[ek (R ) ek (R )], —

(2.9b)

provided at least one of the coupled states is bound,
These relations imply that nonadiabatic couplings may

be very large if the states coupled become degenerate.
For the one-electron prototypes considered here the
bound states lie below the continuum, so this point is
not pertinent to bound-continuum couplings. For cou-
plings of two bound states, two cases may occur.

(l) AUoided crossings Two adiabatic . bound states can
have an avoided crossing at some internuclear separation
8„; the adiabatic eigenvalues obey the noncrossing rule
but the difference (ek —ek ) may become very small
near R„. In such cases the radial coupling matrix ele-
ment PI, & is not singular, but exhibits a resonant max-
imum near R„.

(2) Real crossings Adiabatic bou.nd states with
di6'erent A, , and, in the prototype one-electron systems,
even with the same A, ,

' may have real crossings. How-
ever, in these cases the corresponding couplings are not
singular; the commutator matrix elements in the
numerators of Eqs. (2.9) are linearly proportional to
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(ek —e„.) near R„, and the couplings themselves are
smooth, nonresonant functions of R near such crossings. &e'p'&'Ilt"'I epli, &= b(e —e')&ep'X'I A"

I
cpa&

(1) The relations (2.9a) and (2.9b) hold without
modification for two continuum states when

(2) When (ek ek )~—0, nonadiabatic couplings Pk k
and Pk k between two continuum states have the forms

TtkT ~
R E.

'~ k'k
~k'k ™k'k~(ek ek')+~

'I

(2.10a)

T(T~'Vk'k
I'k k ™kk&«k —ek )+'P (2.10b}

where 5(x) is the Dirac 5 function and P imphes that
the Cauchy principal value is taken in integrations over
continuum energies ek and ek. .

(3) The numerators Nk"k and Nk k are given as expect-
ed by the analytic matrix elements

(2.10c)

(2.10d)

2. Generalisation for continuum states

Kith appropriate de6nitions, and the mapping of con-
tinuum states versus R defined earlier, the Hellmann-
Feynman relations may be extended to continuum-
continuum nonadiabatic couplings. In particular, the
following is true.

&ep, A, IW Iep, z&

(e—e')

(2.11)

Matrix elements of the operators A, ,At and JV",JV
are analytic functions of the energies e,e' [script nota-
tion for these operators indicates velocities U~, U& are in-
cluded as required by Eq. (2.5)].

D. Derivation of integral equation

Direct substitution of the formal adiabatic expansion

I
%(t) & = g I

pk[R(t) j&bk(t) exp
' —i, f ek(t')dt'

k

in the time-dependent Schrodinger equation (1;1) (where
it is understood that the sum over k includes both
discrete and continuum states and implies integration
over continuum energies e) leads directly to a system of
coupled differential equations for the coefficients Ibk(t) ).
While formally correct, these equations are not a useful
starting point for our formulation, and we develop in-
stead the equivalent formulation in terms of an integral
equation for the unitary propagator 0(t; to ).

A solution
I
%(t) & to Eq. (1.1) is generated from its

precursor
I
%(to) & at an (earlier) time to by the unitary

propagator 0(t;to},

I
%'(t) & =0(t;t, )

I
4(t, ) &;

0(t;to) also obeys the Schrodinger equation

and the analytic strength coefficients Mk k and Mk k of
the singular terms are also directly related to these corn-
mutator matrix elements.

with initial condition 0(to, to)=1, and unitarity of 0 en-
sures the conservation of probability,

An outline of the proof of these results and the explicit
expressions for the analytic coeScients Xk"z and Mk &

are given for the one-electron prototype systems in Ap-
pendix A.

9. Summary of continuum nonadiabatic couplings

In this and preceding subsections we have given more
explicit definition to the nonadiabatic coupling operator
K(t) and its matrix elements. We divided the couplings
into radial and angular types,

K(t) =L"(t)+K e(t ),
with their respective selection rules on A, ; we introduced
the ETF corrections A and A, and discussed their
effects on nonadiabatic couplings; and SnaBy we have
used the generalization of the Hellmann-Feynman
theorem for continuum states (Appendix A) to show that
for ihe one-electron prototypes both radial and angular
couplings have a common singular structure,

If the Hamiltonian for a system has the form
8(t)=80+ f'(t), it is easy to show that 0(t;to) is relat-
ed to the zeroth-order propagator 0O(t;to) satisfying the
equation

i(B/t)t) 0,(t; t, )=8,0,(t; t, )

by the well-known integral equation

0(t;t, ) = 0',(t;t, )

—i, I dt'0, (t;t')P(t')0(t';t, ) .

%'e derive here the analogous integral equation

0(t;t, )=x(t;t, ) i I dt'x(t;t')E(t')0(t', t, ),
(2.12)

where the zeroth-order propagator g(t;to) is an adiabat
ic propagator and k(t) is the nonadiabatic coupling
operator discussed earlier. In the derivation it must be
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kept in mind that basis kets
I Na[R(t)] & =—

I
k {t)&

well as operators depend on the time t.
The operator

X(t;t,):g—
~
k(t) }

k

XexP —c ek t dt' k io 2.13
0

propagates any state vector adiabatically from to to t. It
satisfies the equation of motion

t(anat)i(t;t, )=P(t)x(t;t, )—t(t)x(t;t, ),
where k(t) is the nonadiabatic coupling operator given
formally by Eqs. (2.4) and defined more explicitly in ear-
lier discussion.

In adiabatic representation the unitary propagator
0(t;to) is given by

0(t;t, )= g ~

k'(t))U„.„(t;t,)(k(t) (;
k, k'

if we de6ne

0 "(t;t,)=X(t;—t, )(t;to)
= g ~

k(te)) exp —t J ei, (t')dt'
k„k' 0

x(k( t) ~,

it satis6es the "adiabatic interaction picture" equation of
motion

i(erat) 0 "(t;t, )=[P(t;t, )E(t)i(t;t, )]0 "(t;t,) .

Since this equation is expressed in the 6xed basis
I ~

k (to) ) I it can be integrated directly to yield

6' "(t;t,) =1—i f dr'[f' (t', t, )]E(t')

XX(t';t&)~ "(t';to)

and multiplication by f'(t;to) then gives Eq. (2.12).

1. Geeerulisetion to part)y diabatie bases

An important generalization of the above integral
equation is possible. If a Hamiltonian 8(t) can be parti-
tioned,

P(t)=P, (t)+ 0'(t),

and I ~

k (t)) I are the eigenstates of the operator 8'0(t),
then the procedures used above lead to the generalized
integral equation

0(t;to) =f'(t;t, )

—t J dt%(t;t')[~(t')+~(t')]~(t';to),

{2.14)

where g(t;to) is the adiabatic propagator for the
zeroth-order Hamiltonian 80(t), and E(t) the corre-
sponding nonadiabatic coupling.

Equation (2.14) can form the basis for a treatment of

problems in which quasibound levels are embedded in a
continuum and are coupled to it, using a formulation
similar to the one developed here. Suppose a model
Hamiltonian 8o(t) can be devised for such a problem,
which defines a set of quasibound states and a surround-
ing set of continuum states in which they are embedded,
but such that the (partly adiabatic) continuum of 8o(t)
contains no mixing with the embedded bound levels and
is coupled to them only via the interaction potential )I (t}
{the quasibound levels and the continuum are then dia
batically related to one another). If the continuum of
80(t) is of the "simple" one-electron type exemplified
here in the prototype systems, the assumptions required
in the derivations of Secs. III and IV are met, and Eq.
(2.14) then forms the basis for a model formulation in
which the interaction 0'(t) is responsible for initiating
transitions from the quasibound levels to the continuum
and nonadiabatic couplings in the continuum manifold
influenc the subsequent propagation of the unbound
electron. Such a model provides a scheme for including
close couphng to the continuum in the treatment of
more complex phenomena such as Penning ionization
and collisional detachment from negative ions. '

III. ADIABATIC PACKET STATES
AND THEIR PROPAGATION

In this section we discuss representation of the molec-
ular electronic continuum by a discretized basis set of
packet states which span the continuum in a local region
of configuration space. The packet states are construct-
ed explicitly from exact continuum states using suitably
chosen spectral density functions. Any application of
close-coupling methods to the continuum involves some
such discretization —for example, the use of numerical
quadrature to represent the integrals over continuum en-
ergies which appear in the equations for the propagator
0(t;to) [Eqs'. (2.12) and (2.14}]or equivalent differential
equations. Such discretizations always entail a truncated
representation of the full continuum, and their implica-
tions must be considered carefully.

In particular, the propagation of a continuum wave
packet is of direct interest, and we examine the behavior
of a system which is in a packet state at time to, under
the influence of the adiabatic propagator f'(t;to). Since
the packet states are not stationary states of the Hamil-
tonian H, (r;R), the wave packets evolving from them
move away from the region spanned by the packet
states, in accordance with the Ehrenfest theorem, and
their projections on the original packet states decay with
time in a manner consistent with this propagation.

From these considerations we can draw two con-
clusions. The 6rst and most important is that if the full
continuum is represented by truncation to a subspace
spanned by a discrete set of packet states, a proper rep-
resentation of the zeroth-order propagator X(t;to) must
include the decay mentioned above, representing escape
by an unbound electron from the subspacc spanned by
the packet states. The second conclusion is implicit, and
concerns the validity of an pdiabatie evolution for a
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moving wave packet whose amplitude is far from the nu-

clei.
tions. The angular functions can be expanded in spheri-
cal harmonics,

Representation of a continuum by a discrete set of
"pseudostates" has been widely discussed, in a variety of
contexts. ' ' Given the di%culty of constructing exact
continuum states for many problems, a major goal in
much of the literature is the construction of pseudostates
as eigenfunctions of the Hamiltonian (or a suitable
pseudo-Hamiltonian) from basis sets of I. -type func-
tions. ' ' In such cases the positive energy eigenvalue
spectrum for such pseudostates emerges as a result of
the basis set and/or boundary conditions and the model
Hamiltonian, and a primary concern of the construction
process is the accuracy with which various spectral mo-
ments of the true continuum can be represented using
such pseudostate expansions.

However, it is also possible to construct discrete sets
of pseudostates by a direct superposition of exact contin-
uum states, assuming these are known. In particular,
the construction of such packet states as discrete bases
for close-coupling calculations has been discussed for-
mally by Micha and Piacentini. It is characteristic of
this direct construction approach that the spectral distri-
bution of packet amplitudes and the resulting mean en-
ergies and widths associated with the packet states is
open to choice, and criteria for that choice must in turn
be determined by the purpose of the construction: For
example, the criterion that each packet state shall be lo-
calized approximately within some given bounded region
of con6guration space leads to a specification of the
spectral distribution.

Here we use the continuum eigenstates of the proto-
type one-electron system (Hz+ in particular) as a specific
example for our discussion, and some features of deriva-
tion and notation are specific to that system. However,
we emphasize that the major conclusions of the discus-
sion are expected to apply more generally to packet
states representing an electronic continuum. The proto-
type system H2+ retains the characteristic properties of
a "simple" adiabatic eigenspectrum and the bipolarity in-
herent in a molecular problem. Simpli6cation to a cen-
tral potential problem, for example, even though it
would display the essential points we wish to make
about packet-state propagation, would cause the loss of
these realistic features and hamper later discussion.

Continuum eigenstates for H2+

where q =ZTR and ZT is the total nuclear charge. The
constant C is chosen to satisfy Eqs. (2.2), i.e., the density
of states is included in the normalization. Since
c =kR /2, where e=k /2, we can express this in spheri-
cal polar coordinates as

~

r
~

~ ao,

X(epk;g;R) =(2/mk)'~ r ' sin[kr +(Zz/k) ln(kr)

+5(apl, ;R)] . (3.4}

This is the standard form for a Coulomb radial function,
but the phase shift 5(epA, ;R) differs from the standard
Coulomb phase, due to the bipolar field. At all g the
solutions can be represented in the phase-amplitude
form

X(ep&;g;R)=C[(g —1)p, (g)] '~ sin8(@pi, ;g;R),
(3.&)

where the phase 8(epk, ;g;R ) given by

8(epA, ; g;R ) = I p„{epA;g';R )d, g'
1

(3.6)

and the quantal momentum p„are easily computed,
slowly varying functions of their arguments. This rep-
resentation of the radial functions makes it particularly
easy to construct packet states and examine their prop-
erties.

Together with the bound states I ~
({}(npA,;R) }I the

continuum states form a complete set,

g ~
P(npA, ;R))(P(npA:, R)

~

p, A, , n

S(epk, ;q;R)e' ~/v'2~= g B,~"
~ I;„(cos 'ri, y);

I =
(

t)t.
]

(3.2)

the coefficients IBI~t"'
I and associated eigenvalue A„i

depend on both e and R in the general case, but for the
homopolar systems (e.g. , Hi+} only on the parameter
c =(eR /2). The dependence of S(ep, A, ;ri;R} on e is
not rapid but in principle must be considered in con-
structing packet states.

The radial function has the asymptotic form

X(epA, ;JR)=L(g —1) ' sin[cd+(q/2c)ln(cf)

+5( epA, ; R}], (3.3}

The one-electron two-center Coulomb problem is se-
parable in prolate spheroidal coordinates (g, q, y) and
the continuutn eigenfunctions P(epA, ;r;R have the
form

dg ejMX; epk;R =1 .
0

2. Definition and properties ofpacket states

(3.7)

$(epA, ;r;R)=X(@pi;f;R)S(epA;q, ;R)e' 'r/&2, m; (3.1)

as
~

r
~

~ Do for fixed R, the coordinates approach
asymptotically closely to spherical polar coordinates,
(R/2)g=r, g=cos8, and we refer to X{epA:,(;R} as
"radial" and S(epA. ;g;R}e'~/&2' as "angular" func-

We define a discrete set of packet states ($(jpA, ;r;R)]
by the integrals

e. +6, . /2

p(j pi, ;r;R)= (b,, )
'~ I de/(epA:, —r;R),

J J

{3.8a)
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where

e.+,=e +—'(4 +4 +, ), e, =-'4, (3.8b)

and the spectral widths 5- are not yet de5ned. From
Eqs. (2.2) it follows that these functions are orthogonal
and normalized to unity,

& y(j'p'&', R)
~
y(jpA, ;R) ) =5J,8„.„5,., (3.9)

The packet states
~
p(jpA, ;R}) are localized spatially

in a fashion controlled by the widths 4: From Eqs.
(3.1) and (3.5) and making the approximations

ter ro. The resulting widths I4 I are found to be essen-
tially independent of internuclear distance R and quan-
tum numbers (p, A, ) for ro &40.0 a.u. The packet states
[computed explicitly from Eqs. (3.8)] are localized as ex-
pected within the region bounded by ro. A less expected
result is that for all reasonable values of the quantum
numbers (p, , A, ) they are strongly localized at the center
of charge and not on the nuclei as internuclear separa-
tion R increases. This is probably a general characteris-
tic of molecular continuum states.

Since such a packet-state basis set clearly does not
span the full continuum, the approximate closure relation

$(@It,A,;ri;R) =S(ejpL;rt;R)+

[p (e)uA, 'g'R}] '~ =[p (e.pA, g R)] ' + (3.10)

8(epk, ;JR)=8(ejpA, ;g;R)

g ~
P(npA;R) , ) & P(npA, ;R)

~

n

+ ~4(jjMA, ;R))&p(jjuA, ;R)
~

=1 (3.13)

+(e e, )[B—8(epA, ;JR}/Be], +
J

in Eq. (3.8a), we obtain

P(jIt A;, r;R) =4,'~i/(e, pA;, r;R)

Xf(—,'4J[B8(epA, ;g;R)/Be], ), (3.11)

where f{x)=x sinx. Since (B8/Be) is a monotonical-
ly increasing function of g, the factor f is an envelope
function which decreases to a small size for g & go such
that

4, [B8(ei X;g,;R)/Be], =2~ .
J

(3.12)

[Asymptotically, (B8/Be), =(rluj ) where UJ is the elec-
J

tron speed for energy eJ, and this result reduces to the
condition (4 r/U ) =2m". The packet is localized in a re-
gion whose radius is the distance an electron with energy
e~ would travel in time r =2m/4 . ) The packet width

41 thus fixes the packet s localization in a spatial region
for given e . Equations (3.12) and (3.8b) can be used to
determine a set of packet widths I4, j for a basis set of
packet states localized within an interaction region of
specified size r 0(Rg /20); alternatively, an a priori
specification of packet widths implies corresponding
packet-state sizes.

In the paper following we present the results of
packet-state computations for the prototype system H2+,
for various values of the interaction region size parame-

must be used with great caution. It is valid only for
operators such as localized interaction potentials whose
inhuence is con6ned to the interaction region spanned by
the packet-state basis. For other operators, notably the
adiabatic propagator X(t;to) and the nonadiabatic cou-
pling k(t}, it is not valid, and their representations
within the subspace spanned by the packet states must
be computed very carefully.

p '[jpA, ;r; R(t) ]
e.+6./2

=(4 )
'~ I doe '"P[e)uA, ;r;R(t)] . (3.14)

J J

These moving packet states are also orthogonal and nor-
malized,

&0 '[j'p'~'«t)]
I
0'[Jp~'R{t)])=&I,8,,8i i, (3.15)

but for
~

r
~

&&0 they are no longer localized in the in-
teraction region but outside it. With the same approxi-
mations previously used to obtain Eq. (3.11) one obtains
the result

B. Adiabatic propagation of moving packets

Now consider the actual behavior of a mouing icaue
packet given by one of the packet states p[j pA. ;r;R{to)]
at some initial time to, but developing from to to
t =to+r under the adiabatic propagator X(t;to). This is
given by the expression

p'[jpA, ;r;R(t)]=(C l2i)4'~ exp( ie, r)[S(e pA, ;rt;R—)e '~/v'2m]

X[f(g )e ' f (g )e ' ' ' —)/[(g —1)p„(e,pA, ;g;R)]'i (3.16)

g~=(4~/2)[2(B8/Be), r]—
and f (x)=x sinx as before. For asymptotically long times r »0 (or r &~0) this corresponds to an outgoing (or in-
coming} wave packet centered at r =

~
Ujr ~, i.e., the packet moves according to classical expectations for a particle of

energy E..
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Consistent with this result, the moving packets are escaping for
~

r
~

&&0 to a portion of Hilbert space not spanned
by the standing packet-state basis I ~

p(jpA, ;R)) j at to+r. The overlap or correlation amplitude with the standing
packet states is

((() [j 'p'A', r, ;R(to+r)]
~
p'[j pA;R, (to+r)]) =(p [j'p'A, ', r;R(to+r)]

~
X(to+r;to)

~ p [j pA;R, (to)])

=5, 5„„5gg(h,r/2), (3.17)

where f (x) is the same envelope function as before. The projection of the true adiabatically propagated moving pack-
et on the corresponding standing adiabatic packet at the same time decays with time r. Hence the correct packet
basis representation for the continuum portion of the adiabatic propagator X(t;to } is not the simple result

g I blgpA'R(to+r)]) exp( te,—r)(p[j pA;, R(to)] ~;
jpA,

instead one must use the expression

g ~ p[j pA, ;R(to+r)]) exp( cejr)—[(hjr/2) 'sin(hjr/2)](p[jpi, ;R(to)]
~

JP~

(3.18a)

(3.18b)

This is the result obtained by Reading snd Ford in s
slightly different context: The subspace representation
of the continuum propagator must exhibit decay due to
escape of particles from the interaction region.

The same difBculties appear if one retains the formally
correct integral equations (2.12) or (2.14) (or equivalent
diS'erential equations}, with the full continuum as formal
basis, and then attempts to implement them by doing in-
tegrals over continuum energies by numerical quadra-
ture. ' The point is that the propagator is a rapidly
varying function of energy e snd it is this rapid variation
which moves the wave packet [(()'(j)uA,;R)) out of the
subspsce spanned by the packet-state basis

I ~
(()(jpA, ;R) ) j. Unless the integrals are done very care-

fully, the correct physical behavior will not be obtained.
In particular, if the quadrature points are spaced at in-
tervals 6, , the neglect of escape effects is a serious
source of error after times ri =~/EJ

C. Failure of adiabatic description for escaping particles

These results illustrate s second point more clearly.
The moving wave packet

~ p '[jIt A, ;R(to+ r) ] ) pro-
pagated by X(t;to) from the initial packet state

~ p [jpA, ;R(to)]) is a superposition of continuum eigen-
states of the Hamiltonian at time t = to+ r,
H, [r;R(to+r)]. Yet as shown by Eq. (3.16) this wave
packet is located at this later time in s region of space
increasingly remote from the interaction region. By
what physical mechanism is such s packet able to adapt
its shape adiabatically to the nuclear positions' Of
course, no such mechanism exists: The zeroth-order
description given by f(t; to) is 'unrealistic outside a local
region. If in spite of this such a description is used, the
price to be paid shows up in the elects of the nonadis-
batic coupling E(t) with its singularities.

In Sec. IV we show that the nonadiabatic coupling
operator E(t) can be represented within the truncated
subspace spanned by a set of bound states plus a set of
packet states with widths [b, j; the coupling matrix ele-
ments then have 6nite strengths, but the strength of cou-
plings linking neighboring packets varies inversely as the

packet widths. Choosing smaller packet widths implies
spanning a larger spatial domain, as we have seen, but
nonadiabatic couplings are then correspondingly
stronger, and become singular in the limit ss the widths
[6 j tend uniformly to zero. At some point the only
practical solution of the problem is to abandon the
whole idea of adiabatic propagation far from the nuclei;
an adiabatic description can only be valid locally.

IU. SUBSPACE REPRESENTATION
OF CLOSE-COUPLED EQUATIONS

A. Introduction

In Sec. II we derived the formally exact equations
(2.12) for the unitary propagator 0(t;to), with the adia-
batic propagator X(t;to) as zeroth-order description and
the nonadiabatic coupling E(t) as the operator causing
transitions. Equation (2.12) is equivalent to the diQeren
tial equations which have been used more commonly as
a framework for close-coupling treatments. Equation
(2.14) provides an important generalization of Eq. (2.12)
to partly diabatic descriptions of a system.

One must replace the true continuum with some
discrete sampling procedure to realize these formalisms
computationally. In Sec. III we introduced such discret-
izstion in the form of packet states; using numerical
quadrature to do integrations over continuum energies is
essentially an equivalent procedure. Using the prototype
one-electron system as an example, we showed that a set
of packet states can be constructed which describes the
continuum states within a local interaction region whose
size dictates the packet widths I b, j.

In this section we derive approximate representations
of the exact close-coupled equations within the truncated
subrace spanned by s suitable set of bound states and a
set of such packet states. %'e denote this subspace by I'
and its complement by Q =1 P(P may be divid—ed into
its bound and continuum parts, P =PD+Pc). Again
our derivation snd specific notation are strictly valid
only for the one-electron prototype systems, but general
assumptions snd results are applicable to a broader class
of model systems.



MOLECULAR-STATE CLOSE-COUPLING THEORY. . . . I.

The representation of operators such as finite-range
potentials whose effects are localized in the region
spanned by the P subspace is straightforward, since the
approximate closure relation (3.13) may be used. Tech-
nically, we assume the packet states span the continuum
adequately with respect to operators whose matrix ele-
ments vary slowly with continuum energy over the pack-
et widths h~. Representations for operators not meeting
this criterion must be computed more carefully.

We showed in Sec. III that the adiabatic propagator
X(t;to) [Eq. (2.13)] cannot be completely represented

within the Pc subspace because it takes operands in that
space into the complementary subspace Q outside the in-
teraction region (escape). However, taking explicit ac-
count of the rapid variation of the factor exp[i, e(t to—)]
over a packet width AJ-, we computed the accurate rep-
resentation of 7( t; to ) uuthin the Pc subspace [Eq.
(3.18b)]. If the close-coupling basis spanning P at any
nuclear configuration R consists of bound states
I ~

((I(npA, ;R) ) } and the packet states I ~
p(j)MA, ;R) ) },

the subspace representation of the adiabatic propagator
is given by

Xpp(t;to)= g ~
P[npA;R(t). ]) exp —t f e[npA. ;R (t')]dt' (P[npA, ;R(to)]

~

5pA, 0

+ g ~
(()[j)uA,;R(t)])f (b, r/2) exp( i.e,—r)(p[J'lsA;R(t , )]

~
(4.1)

where r=t —to and f(x)=x 'sinx. It is evident that
this operator is no longer unitary, i.e., does not conserue
probability, because of the decaying amplitude factors
f (b,,rl2) in the packet-state terms.

Similarly, the effects of the nonadiabatic coupling
operator cannot be fully represented within the P space
because of the rapid variation with energy given by Eq.
(2.11) for the continuum-state couplings. As noted ear-
lier, the singular structure near the energy shell e' —e=O
shows that these couplings have in6nite range and im-
plies an adiabatic representation is not appropriate far
from the nuclei. However, we are only concerned here
with representing the effects of E(t} within a local re-
gion, and these are finite and well behaved. As in the
case of the adiabatic propagator, we obtain more accu-
rate P space representations of this and other "rapidly
varying" operators by performing the implied integrals
over continuum energy within a packet width, including
explicitly any energy dependences deemed to be rapid.

In this section two approximate subspace representa-
tions of the integral equation (2.12) are derived. [We
only need to consider Eq. (2.12), since Eq. (2.14) differs
from it by the inclusion of a potential f (t) whose effects
we assume to be local, i.e., Ppp = P]The 'f.irst equation,
which we call the disconnected form, is

varying operators appearing in Eq. (2.12). The intent of
this paper is to propose Eq. (4.2} as a workable equation
for close-coupling including the continuum. In princi-
ple, Eq. (4.3) is more accurate than Eq. (4.2), but is de-
rived here mainly to show that Eq. (4.2) is a reasonable
approximation.

The propagator happ(t;to) generated by Eq. (4.2) [or
Eqs. (4.3)] is approximate, firstly because it cannot de-
scribe unbound electrons outside the interaction region,
or the propagation of electrons from the P subspace into
the complementary Q subspace; the best account of this
Opp(t;to) can give is in its nonunitary character, i.e., it
exhibits time decay of packet amplitudes due to escape,
but gives no description of the fate of the escaped fjux.
Secondly, Eqs. (4.2) or (4.3) are approximate in the more
usual sense that they assume the adequacy of the P sub-
space basis, i.e., that sampling appropriate slowly vary-
ing matrix elements at the finite intervals h~ suSces to
give a good description of local physical behavior.
%'hether the size of the "interaction region" entailed in
a given choice for the packet widths Ihj } really is large
enough to cover the significant physical behavior is, of
course, a matter of judgment and experience.

l. Operand structure assumption

~pp(t to) =&pp(t to }

—i I dt'Xpp(r;t')Epp(t')
f0

X ~pp(t;to) .

The second, eonneeted form is

0 (pptot)=gpp(t;to)

—a J dt Qpp(t;t )Opp( tt),o
where

Qpp(t; t ') =[X(t;t ')k(t ') ]»

(4.2)

(4.3a)

(4.3b)

~
+,(t')) =~„(t';t,) ( +,(t, )) (4.4a)

and having the discretized form

~

+ (t')) = y y ~
y[npA;R(t')])b(np, A;t'),

+g ~ P[jpA. ;R(t')] )b(j pA;, t') '

(4.4b)

%e thus assume at the outset that a P-subspace state
vector

~

'Pp(t') ) given by

is a joint representation of the two juxtaposed rapidly can describe the system locally throughout the collision.
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Formally, a complete wave function, which obeys the ex-
act equation

~%„(t'))=~(t';t, )
~
p, (t, )) (4.5a)

and forms an operand in the exact integral equation
(2.12), may be expanded in the complete basis,

~~,(t )&=@. y ~y[ni);R(t )]&b(nl.).;t )

epA, ;R t' b epA, ;t'

2. Normalization relations

(4.5b)

and is able to describe the state vector not only in the
"interaction region" spanned by the I' subspace, but also
outside it. It is evident from Sec. III, however, that its
capacity to do so arises specijtcaliy from rapid variations
of the coefficients b(ep)i;t') .with energy e. Insofar as
these coeScients are slowly varying functions of e, the
wave function given by Eqs. (4.5) is contained wholly
within the P subspace, and hence could be adequately
approximated by Eqs. (4.4). At some points in the
derivation of Eqs. (4.2) and (4.3) (cf. Appendix 8) we
make the formal assumption that a (hypothetical)
operand for the exact continuum operators to be
represented has the form (4.5) with coefficients b(eljk. ;t')
which vary slowly with energy over a packet width.

be decomposed into four parts,

E=t, +E„+E„+t„,
and the bound-state couplings EDD are already project-
ed.

In this work we assume that the dominant dependence
of nonadiabatic coupling matrix elements on continuum
energy e is displayed explicitly in the Hellmann-
Feynman relations [Eqs. (2.9) for bound-continuum and
Eqs. (2.10) for continuum-continuum couplings]. The
commutators [BH, /M], and [I. ,H, ] are essentially lo-
cal operators, and if the continuum states in addition are
"simple" in the sense required here, they have no fine
structure due to embedded resonances; hence the matrix
elements of these operators will indeed be slowly varying
functions of e. In the prototype system H2+ this as-
sumption is known to be valid for the bound-continuum
couplings, and in Ref. 6 we present results showing it is
also valid for both types of analytic matrix elements
(Nk k, Xk k and Mk k, Mk i, ) appearing in Eqs. (2.10) for
the continuum coupling matrix elements.

l. Bound contin-uum couplings k~c, kco

Since the bound states lie completely below the contin-
uum, the energy denominators in Eqs. (2.9) are not really
"rapidly varying" unless the bound state is just below
the ionization limit and the continuum packet in ques-
tion is just above it. In any case it is easy to show (cf.
Appendix 8) that

(a) Expansion coe+cients Given .any state vector of
the form (4.51), with slowly varying coefficients
b ( ep)(, ; t ), corresponding coefficient b (Jil A, ; t ) of its P-
space approximant (4.4b) are given by

(g ) ~ ~ ~

~(, ,~, ))
(n'p'A, '

~
JV~)pk, )

n', p' v j pi[ej. e(n 0' ~ }1

b(i@) t')=~,'"b(ep);t'} . (4.6a)
X i~;(p(jpA, ~}, (4.7a)

(4.6b)

(b) Matrix elements of sloiuly uarying operators 8.
Similarly, the matrix elements of an operator 8' in the
P subspace are related to the matrix elements of 8
among true continuum states, provided these vary slowly
with energy over a packet width:

(n p, )I,
i
8 i)pA, ) =6, (n p A,

i
8

i e,p)(, )

where the eQectiue strength factor it„' is given by

a„j=aj„' ln[(1+ —,'a „,)/(1 —
—,'a.„,)]

and

(4.7b)

and

(J'p')'[b~ji) &=a'/a, ''(e, i )L. ~8[ei X) .

[Here and below we use shorthand notations "
~
jp)I, )"

for the packet states ~(()(jp) )), "~npA)" for b, ound
~
P(nyl)), and "~ ezpA, )" for exact continuum

states
~
P(e pA, )).]

B. Disconnected form

a,„=b,, /
~ e, —e(n'p'I, ')

~
(4.7c)

For a,„(1this factor differs from 1 by at most 10%.
Of course, in this case we really had no reason to be con-
cerned about "ra id" variation of the energy denomina-
tor; this part of is really "slowly varying. " Similarly,

Equation (4.2) is obtained from Eq. (2.12) if we assume
the rapid energy dependence in X(t;t') is somehow se-
parable from that in k(t'). This may not seem very
plausible but we will show that the results are not very
diferent from those obtained if we do not disconnect
thein. Since Xt,r(t;t') is given by Eq. (4.1) we need only
to construct the P-space representation of k(t'). k can

Xa„~ (P(npA)~,(4.7d)

[In Eqs. (4.7) as in Eq. (2.11) we have used script
notation, A; to indicate the inclusion of collision veloci-
ties. ]
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2. Contlnuunl coupllngs Ecc

These are given by [cf. Eq. (2.11)]

''A, ' JY A,~« = X 2 I d' I d'
l 4('j ') ') & &

~
+(i(e—e')

& e '~'
I
~

I ~s ~& &4(ep~)
I

(} 0 E—6'
p~ p~

and we treat the two parts separately.
(a) 5 function part. This is easily found to be

[&«(&)lpp= g gg Id(jest')')&&hajj ')'I~ I&jjt) &(%V() )
I

P~A, PA, J

(4.8)

(4.9)

(note that the matrix element is not renormalized}. As shown in Appendix A, this coupling is strictly off-diagonal,
i.e., it vanishes if (p', A, ') =(p, A, ).

(b) princt'pal value parts. The principal value terms can be broken up into a double sum over packet cells j ',j:

J,P, g J,P„j)t. j j j j
(4.10)

we consider first the nonresonant terms j'&j and then the resonant terms j'=j. In Appendix 8 we show that the
nonresonant terms are given by

[g (p)]Nit y y I y( g )) j P I I jjt z (p(. g)
I

JP~ JP~ J J
(j'&i&

where the effective strength factor K)) 1s g1ven by

nlj (ctIjttjl } I [1+p(ttjl ++Ij )] In[1+ p(&jl +ctIj )]+[1 2(ttjl +ctij }]in[1 i(ctjl +ctIj )]

—[1+—,'(aj, —al, )]in[1+ —'(a i
—ai )]—[1——'(ct, —al )] in[1 ——'(ct I

—al )]]

and 0,'jI is de6ned

ajl =~, /
I s, el I

~—

(4.11a)

(4.11b)

(4.11c)

The factor ~lj" differs from unity by less than 5% for a,l, uj (0.5. For the "near-resonant" terms j'=j+1, Eq.
(4.11b) becomes

(~j+~j+-~) ~,J+) J' 2g g Jj J+)

~j+~j» +6 +) ln
J

(4.11d}

which has the value 2 ln2 for bj =hj+).
Finally we also show in Appendix 8 that the efkct of the resonant terms is an enhancement of the couplings be-

tween adjacent cells:

[Ir«(P)]pp ——g g g (4j/4&j, ) I qY(j p'A') ) , (p(j+ i@A, )
I

P, A, P, A, J j+)

+ Ip(j+Ij'&')) '+'" I I'"" (y(jl ~}l
~j+)

+(6, /4h, , ) I p(jp.'&') ) — (p(j —lp&)
IE. )

—E'-
J — J

XII(j 1PA)& j p I IJP &&4(JPA)l
6'j —EJ

(4.12a)

this amounts to an extra strength factor of

(+2++2 )/4Q (4.12b)
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(c) Summary of continuum couplings .The singular nonadiabatic coupling operator Ecc is therefore represented in

the close-coupled basis by

+ g g g ( p(gp, 'A, ') ) (e~p'A') JK,
)
e pA. ) (p(jpA ) [

iM', A,
'
p, k j

(4.13}

where vi, is given by Eq. (4.11b) if j'&j+1, and by the sum of the two strengths (4.11d) and (4.12b) if j'=jul. The
second term, arising from the Dirac 5 function singularities in Ecc, is strictly off-diagonal, [(p', A, ')&(p, A, )], and the
entire expression is nonsingular and retains the proper symmetries of the nonadiabatic coupling operator; the exact
expression for Pcs is recovered in the limit when the widths 6 tend uniformly to zero.

The construction of /~~ completes the derivation of Eq. (4.2). Before discussing them we first derive the connected

form, Eqs. (4.3).

C. Connected form

To derive Eqs. (4.3) we require a P-space representation of the joint operator Q(t;r') =St;t')E(t'). As with I we

decompose 9 into four parts QDD, @Dc, QcD, and Qcc. Only the last two need be considered since QDD is already pro-
jected and

(&Dc4v=&pp(r'r')[&Dc(i')ln .

Bound-continuum part

By essentially the same procedure used to determine (Ecn )pp we find

[~cD(r'r')]pp = g X 1(()(j'p'~') ) exp( «'"r)g .('r—) ~,' &(()(iip~)
I

(j'p'A, '
~
iv~ npA),

[E ( ii pl, ) —e') ]
(4.14a)

where r=t r, xj'„ is the efFe—ctive strength defined in Eq. (4.7b}, and the function gj „(r) is given by

exp( —i,P'u )du

2(1+—'a u )2 J &

(4.14b)

with P'=(6,'rl2) and a '„defined by Eq. (4.7c). For small a „ this is approximately equal to the decay factor f(P,')
appearing in the corresponding terms of the disconnected approximation (cf. Appendix 8).

2. Continuum-continuum terms 9'z&

(a) 5 function parts.-The terms in Qcc arising from the 5-function terms in Sec are just given by the product

[&cc(&}]pp=&pp(r'r')[&cc(~)]pp . (4.15a)

(b) Principal Ualue parts. As with fCcc we can break up the principal-value integral into a double sum over cells
j',j and then treat the nonresonant terms (j'&j) and resonant terms (j'=j) separately. For the nonresonant terms
we obtain the result

(4.15b)
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where zJ'J" is the e8'ective strength factor defined in Eq.
(4.11b) and the time-decay factor g . (r) is defined

subspace at time to, into that portion of the state vector
which remains in the subspace at time t,

I
+p(t) &= ~pp(t to) I +p(to) & . (4.16)

+a, y2

x J, , dxe

+h. /2 dxx
BJ I2 (e —ei+x —x )

(4.15c)

For l&j+1, where the parameters ajar and nil are small

compared to 1, this function is again well approximated
by the simple decay factor f(13&). For the near-resonant
case I =jul, the isolated singularity at the boundary of
neighboring ceBs leads to somewhat more significant
modification; an explicit formula is given in Appendix B.

Calculation of the resonant contribution to the
principal-value part is more difficu}t, but it is shown in
Appendix 8 that a reasonable approximation again cor-
responds to an enhancement of the near-neighbor

(j~jk1) terms in (Qc&)pp, with a more comPlicated de-

cay function.
(c) Summary Comp. aring the results obtained for the

connected propagator [gpp(t;t')] with those for the
disconnected product Xpp(t;t')Epp(t') shows that the
two difFer negligibly except in the details of the decay
functions and effective coupling strengths linking near-
neighbor packets (j~jk1), and even for these cases the
differences are of quantitative rather than qualitative
character. Since our purpose in this derivation was to
show that the disconnected form of the integral equa-
tions [Eq. (4.2)] is a reasonable approximation to the
more accurate version, we have not put much emphasis
on these finer details. In what follows we work only
with Eq. (4.2).

D. Noneonservation of probabiVity

The propagator Opp(t;to) obtained by solving the
close-coupled integral equation (4.2) describes the evolu-
tion of the electronic system within the subspace (P)
spanned by the bound states and the chosen set of pack-
et states, from an initial state

~
%p(to) & contained in the

However, the following restrictions are necessarily im-
plied.

(a) The true state vector at to must be described by

~
alp(to) & and, in particular, cannot contain continuum

components; hence, to must be an "initial time" before
collision begins, when no excitation of continuum com-
ponents has yet occurred; in this sense to ——"—00."

(b) The true state vector at time t is not fully de-
scribed by

~
4p(t) &, but only that part of it remaining in

the P subspace; part has escaped due to the decay fac-
tors f(b.)r/2) in Eq. (4.2).

(c) 6'pp(t;to) is not unitary; its inverse is not defined,
and, in particular, the relation

0(t;to)= 0(t;t')0(t', to),
satisfied by the exact unitary propagator, is not satisfied
by Opp(t;to)

(d) Hence it also follows that Eq. (4.2) cannot be con-
verted into any equivalent close-coupled differential
equation.

In particular, Opp(t;to) does not satisfy the
Schrodinger equation; an extra term arising from the
time derivatives of the decay functions f(SIC/2) ap-
pears, and we mill show that it leads to a net change in
probability with time.

Differentiating Eq. (4.2) with respect to time t yields

i(a/at )0„(t;t,) =«a/at )x„(t;t,)

+Kpp(t) happ(t; to)'
—i f dt'[i(a/at)f'pp(t;t')]

'o

XKpp(t') ~pp(t', to),

i(a/at)x„(t;t )=—E„(t ix„(t;t )

+@pp(t)ipp(t 't )

+i&pp(t;t'),

where

Ppp(t )Xpp(t;t') = g ~
$[npA, ;R(t)]&e[npA:, R(t)] exp —i I dt"e[npA, ;R(t")] ({(}[npA.;R(t')]

~

n, p, k

~ P[jpA, ;R(t)]&ej exp( ie r)f(bjr/2)(P—[J'pl, ;R(t')]
~

J,P, , A,

and &pp(t;t') is defined

&pp(t;t'): g~ $[j)LtA.;R—(t)]&[(EJ/2)f'(b, .r/2)] exp( i,ejr)(,p[J'iJ, A;, R(t')—] &,
J~P~~

where r=t t' and f'(x) =d /dx—(x ' sinx ) =(1/x )(x cosx —sinx ). Making the reasonable approximation

P(t)happ(t;t') =A'pp(t)Xpp(t;t'),

(4.17)
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me obtain the result

[t(B/Bt) 8—(t)]0pp(t;to)=ia pp(t;to)+ f dt'a pp(t;t')~pp(t')~pp(t';to);

since
~
+p(to) ) contains only bound states,

[i(B/Bt) —8(t)]
~
'Pp(t)) = f dt'a»(t;t')happ(t')

~

0'p(t') } . (4. 18)
Eo

Now let Wp(t) = (—%p(t)
~
+p(t) ) be the total probability in the I' subspace at time t; we assume that

Wp(to)=Wp( —oo)=1. If we de6ne

~

Dp(t'))= Epp(—t')
~

%p(t')) = g ~
p[jpA, ;R(t')])Dp(j pk, ;t')+ g ~

p[npA, ;R(t')j)Dp(npA, ;t'),

then from Eq. (4.18) we find

dWp(t)/dt = g f dt' f dt "e ' Dp(j pk:, t")Dp(j pk;t') [f[—b. (t t')/2]f—(b, (t —t")/.2)] .
00 —oo dtJ,P, , A,

Integration of this equation from I,o = —ao to t ~+ 00, and subsequent integration by parts, gives

Wp(+ oo )=1+ g f dt'e"'j "Dp(j pk;t')f(b, , (t —t')/2)
J,P~k,

—2Re g f dt f dt'e "j" ' 'Dp(jIJA, ;t)Dp(j pA, ;t')f(A&(t —t')/2) .
00

J~Pi

However, the first sum vanishes in the limit t ~+ oo because the amplitudes Dp(t) tend to zero as t ~ oo, while the
decay factors f are nonzero only for finite arguments. Hence the final probability is

Wp(+oo}=1—2Re g f dt f drDp(jpi, ;t)Dp(jpi:, t r)e ' f—(b, r/2) .
J~}M,, A,

We have not shown formally that Wp(+ oo ) & 1 but it seems likely on physical grounds.

(4.19)

E. Integro-di8'erential equation related to conventional scheme

Coupled integro-di8'erential equations more nearly analogous to the probability-conserving difkrential equations of
conventional close-couphng theory can be derived from Eq. (4.2), and are probably more convenient as a computation-
al form, especially if the efkcts of escape are deemed to be small in the application of interest.

We define a "decay-free" adiabatic P-subspace propagator Qpp(t 't ):

Qpp(t;t')=— g ~
$[npA, ;R(t)]}exp t f dt "e[np—A, ;R (t")j (P[ny I;R(t')]

~,

n, p„A,

~
$[jpA, ;R(t)] ) exp[ ie, (t —t')](—p[j pA, ;R(t')]

~

J~P~A,

in which the decay factors appearing in Eq. (4.1) are replaced by unity. Within the P subspace, Qpp(t;t ) is unitary,
and

Qpp( t '
tQ ) =Qpp (t ' t )Qpp (t ' to )

Then the "adiabatic interaction picture" propagator 0 pp(t;to) defined by

6' pp(t;to)=—Q pp(t;to)Opp(t;to)

satisfies the integral equation

U pp(t„'to)=Q pp(t'to)Xpp(t'to) —i dt Q pp(t to)[Q pp(t t )Xpp(t't )]Epp(t )Qpp(t 'to)U pp(t 'to)
0

and this may be differentiated directly to yield

t(B/Bt)0'pp(t;to)=ia pp(t;to)+[Q pp(t;to)happ(t)Qpp(t;to)]0 pp(t;to)

+ f dt'Q pp(t', to}a pp(t;t')Epp(t')Qpp(t';to}U pp(t', to), (4.21}

8' pp(t;t') =Q pp(t;t')a pp(t;t')
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[cf. Eqs. (4.17)]. Equation (4.21) is the desired formal equation. The usual interaction picture expansion for the state
vector

~
%t,(t}) is

~
%p(t)) = g ~

$[n}uA;R. (t)]) exp —c f dt'e[nIck;R(t')] a(npA;t. )
n, p, k I 0

+ g ~
$[jIcA,;R(t)]) exp[ ce,—(t —t')ja(jpA;, t);

J~Pi~

hence the ket

~'Iit(t})=Qtt(t;to)
~
+t, (t))=&It,(t;to)

~
4t, (t ))= g ~p[npk;R(t )])a(npA, ;t)+ g ~$[jpA;R(t, )])a(jpl,;t)

is the desired state vector. The explicit representative of Eq. (4.21) is therefore the set of close-coupled equations

c(d/dt )a(npA, ;t)= g (nIcA, ;R(t)
~ kpt ~

k'p'A, ';R(t) )a(k'p'A, ', t )

&( exp —c f dt'[e[k'p'A', R (t, ')] e[npi—,;R (t')] j
0

(4.22a)

for the bound-state amplitudes and

c(d/dt)a(jIcA, ;t)= g (jpA;R(t, )
~ Epp

~

k'p'A. ';R(t) )a(k'Ic'A, ', t)
r

X exp —c f dt'[e[k'p, 'A', R(t'), ]—e, j

+ g f dt'[(bj f2)f'(bjr/2)](jtci, ;R(t')
~
Ept,

~

k'p'A. ', R(t'))a(k'p'I';t'),
k', p', X'

c

x exp —c f dt" [e[k'p'A';R (t ")],—e, j (4.22b)

for the continuum packet-state amplitudes. (In these
equations we have used indices k'p'A, ' to indicate both
bound states and packet states. ) The conventional close-
coupled differential equations are recovered when the in-

tegral terms in Eq. (4.22b) are neglected. If the widths

[bj j are small enough that escape effects are not large
over the time intervals considered, an iterative method
based on the back substitution of successive approxima-
tions to amplitudes [a(k'p'A', t'}j in , the integral terms,
with the decay-free amplitudes as zeroth-order solution,
can provide an ei5cient solution.

F. Discussion

%'e have shown that any attempt to include the con-
tinuurn in a close-coupling computation involves some
sort of discretization process, and that a proper account
of the effects of such discretization leads to a nonunitary
formulation which takes account of the effects of escape
by unbound particles from the region spanned by the
discretized representation. Since we are concerned with
low-to-intermediate collision energies, we have used an
adiabatic or near-adiabatic basis of molecular states with
the resulting complications arising from the fact that an
adiabatic description can never be a valid description of
continuum evolution far from thc nuc1c1. The 1ntcg1 al
equation (4.2) was obtained as a result; we showed that it
does not conserve probability within the spanning basis,
and we also derived the equivalent integro-differential
equations (4.21) and (4.22) which show more clearly the
relation between this more rigorous formulation of

close-coupling theory for molecular-state descriptions
and the conventional formulations in terms of (proba-
bility-conserving) difFerential equations.

While the specific results derived have been rigorously
graven only for the prototype one-electron systems, the
general properties required to establish our major results
are not restricted to those systems, but may be valid for
a broad class of model problems. VA'th this in mind we
presented the generalized integral equation (2.14), and
provided certain general conditions are satis6ed by the
continuum of the (partly diabatic) model Hamiltonian
8o(t), generalized close-coupling equations analogous to
Eq. (4.2) and Eqs. (4.21) and (4.22) may be derived,
which permit the discussion of more complicated prob-
lems involving coupling to a molecular electronic contin-
uum. For the present, however, we restrict our attention
to the simpler prototype problems.

Nothing in our formulation dictates the selection of
widths [b,~. j for the packet-state basis describing the
continuum. Different interpretations or coIDputational
implementations of the formulation we have developed
can be made, depending on the principles used to select
these widths. It is useful to discuss two somewhat
different approaches here, since they illustrate some
practical aspects of the problem.

1. "Convergence limit" approach

By taking suSciently small packet widths, the spatial
region spanned by the corresponding packet states is
made very large and the decay times vJ

——m. /hJ very
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long. A calculation based on this approach could then
follow the evolution of the system within the region
spanned for a prolonged period, including the time evo-
lution of the continuum electrons, either without includ-
ing the escape eff'ects or including them only in the "per-
turbative" fashion suggested by approximate solutions to
Eqs. (4.21} and (4.22). If one interprets the amplitudes
associated with these narrow adiabatic packets at "late"
but still finite times as ionization amplitudes, an estimate
of the total ionization probability and possibly also the
6nal energy distribution of the ejected electrons can be
obtained. Of course, the diSculty with this approach is
the computational effort required; as pointed out in Sec.
III, in addition to the rapidly increasing basis size result-
ing from smaller widths, the nonadiabatic couplings be-
tween neighboring close-coupled channels become much
stronger. Ultimately, it is more practical to study the
evolution of the continuum using a different zeroth-order
description than is given by the adiabatic basis. Never-
theless, such studies, if feasible computationally, provide
valuable insight about the actual physical mechanisms in
speci6c problems.

2. "Interaction region" approach

A somewhat different interpretation of the theory is
based on the idea that the physical processes involved in
continuum excitation are localized in a certain interac-
tion region. In this case the entire set of packet widths
Ib, I to be used is dictated by the region size; in Ref. 6
we present tables of such widths for several choices of
region size in the prototype H2+ system. This approach
continues the viewpoint, almost implicit in close-
coupling calculations with bound states, that excitation
processes are localized (for example, the assumption that
Rydberg states above a certain principal quantum num-
ber are not important). In applying the same idea to the
continuum the focus of attention is on processes leading
to continuum excitation, rather than attempting to fol-
low the subsequent evolution of the continuum itself.
%hile coupling among the continuum packet states is in-
cluded, the fact that the widths I 6 I are typically larger
means that (1) escape effects are relatively much more
important and (2) the details of continuum evolution are
not followed beyond the preliminary stages. Such a cal-

culation by itself would permit an estimate of total ion-
ization probability (from the loss due to escape) but
offers no direct account of spectral energy distribution,
angular distribution, etc. This method assumes that the
detailed evolution of the continuum after the initial exci-
tation process is a secondary process, to be followed us-
ing a difterent zeroth-order description from the adiabat-
ic one. In work to be presented later we develop ap-
proaches to this secondary problem.
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APPENDIX A: NONADIABATIC COUPLINGS
AND HELLMAN-FKYNMAN RELATIONS

FOR CONTINUUM STATES

Nonadiabatic couplings between two degenerate con-
tinuurn states are singular. For the one-electron proto-
type system the explicit structure of these couplings, in-
cluding analytic coefficients of singular terms, can be de-
rived by a generalization of the Hellmann-Feynman
theorem.

j.. Integral evaluations

Let
~ P, ) and

~ Pz) be two adiabatic continuum states
of the one-electron prototype system,

~ P, ) =
~
P(epA, ;R)) =X,(g)S, (ri)e'+&2m,

~
$2) =

~

P(e'p'A, ', R)) =X2(g)S2(ri)e' v'/&2m .

Matrix elements ($2 ~
8.

~ P, ) for the operators 8 of in-
terest are de6ned using a convergence factor,

(Pz
~

8
~ P, ) =(8/2) lim f dge ~ f dr)(g ri ) f dt's/2m—[Xz(g)S2(ri)e ' ~]8[X,(g)S, ( )}7e~~),

a-0+ —1 0

where the limit a~0+ is taken after all integrations and
other computational operations are done. Singularities
in the integrals arise from in6nite-range contributions to
the integrals over g (and not, for example, from in-
tegrand singularities at (=1). Since the radial wave
functions X (g) have the phase-amplitude form [Eqs.
(3.5a) and (3.5b)]

X (g)= [2/[mR(g —1)]'~ I[pj„(g)] ' sinHJ(g),

where pj„(g) and 8J(g') are the corresponding quantal
momentum and phase functions, all the required in-
tegrals can be reduced to terms which are Pnite, plus
terms containing radial integrals of the form

lim f d g e ~g [p2„(g)p &„((}]
a 0+

(A2)
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where k &0, E~(g') = sin8 (() or cos8, (g), and G(g) is a
function which tends to a constant as g~ oo, and is such
that the integrand is nonsingular for all g. The quantal
momentum and phase functions have asymptotic forms

p, (g)~lz„(g')=c+(q/2c)g '+0(g ),
8(g ) =8(()=cg+ (q/2c) ln(cg)

+5(elzA, ;R )+0(g '),

hence the integral (A2) diff'ers from the asymptotic ap-
proximation

lim J dge ~g "[Pz„(g)p,„(g)]

XFz(g)Pi(g)G(g) (A3)

by terms which are at most 6nite, since integrals of the
forms

lim e ~ "'I'2 I'
&

a o+

converge absolutely for k'&2. %'g therefore have the
possibly singular integrals

1im exp —o, +s 82+
a o+

where k &0. Since

Hz+8, =P~g+yP~ in/+ h~,
where

where 5(e)uA, ;R) is the phase shift, c =eR /2, and

q =(Z„+Zs)R; also,

G(g) =G(g) =Go+ 6 i /(+0(g ');

and U(a, b;x) is the conffuent hypergeometric func-
tion. From the known properties of this function under
suitable limiting conditions, we may then obtain the fol-
lowing results.

(1) For P&0, the integrals Vl, (P;kyP) are finite for all
k &0. Since P+ ——(cz+c, )&0 in any case, and

P =(cz —ci)~0 only when (ez —e, )~0, all the re-
quired integrals are finite if ez&e, .

(2) For k & 2, it is easily shown that
Pk (0;0)= 1/(k —1).

(3) k =0. In this case the limiting singularity in Vo is

just (a —iP) ' and hence in the neighborhood of the
singular point e2 ——e, =e,

Po[cz —cl ', —3 (cz —c i )]

=(4c/R ) Im5(ei —ez) —iP[1/(ei —ez)]I, (A5)

where 5(x) is the Dirac 5 function and P(1/x) means
the Cauchy principal value is taken in integrations over
the singular point.

(4) Case k =1. 9'i(P; —yP) has a logarithmic singular-
ity at the isolated point P=O. The "strength" of this
singularity can be de6ned in comparison with the Dirac
5 function, as the integral under the singular function in
an infinitesimal neighborhood —i'z &P & +i'z of the point
P=O; this is proportional to (ii lnh ) and tends to zero in
the limit. Hence the strength of this singularity is zero,
and we can discard contributions from integrals of type
7, to singularities at degeneracy.

9'k (P;+yP) = lim I d g exp[ —(a —iP)g](g)
a o+

[( P )
k —1 + ~yge (a—rP—)

a o+

x U(k + iyP, k +iyl3;a iP)) (A4)

&*=cz+ci y =q/2cicz

6,+ ——(5z+5, )+[(q /2cz ) lnzh(q /2c, ) inc, ],
these integrals reduce to

lim f 1g exp[ a/+ i(8z28—, ) ]ga-o+
= exp(i, h+)Vk(P+, +yP+),

2. Singular couplings

Using these results we can derive explicit formulas for
the singular nonadiabatic couplings between degenerate
continuum states. For radial couplings,

+g(1 —g )8/Bg];

I d riSz(ri)S, (ri) RXO+ I d q S(gz)[B S( ) riM/]„RX1+—1 —]

where - . represents 6nite terms,

RXO—=(R /2m ) lim f dge ~[pz, (g)lzi„(g')] '~ sin8z(g) cos8, (g)[(88i/BR )&
—(g/R )(88, /Bg)],

a o+

RX1=—(R /2m) lim f dge ~[pz„(g)p„(g)] ' sin8z(g) sin8, (g) .
a o+
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Both these integrals have the form (A2) with k =0 and are singular if e'=e .We therefore find, as (e—e')~0,
&P(e'p'A, ;R}

~
(8/M ),

~
$(epA, ;R) & =[(1—5„„)$„"„cosh„"„]5(e—e')

+(1/m) I(1—5„„)4'„.„sinb,„.„—5„.„[85(epA,;R )/M ]IP[1/(e e'—)],
where 5(epk;R ) is the scattering phase shift for state

~
P(epA, ;R) &,

&„„=[5(ep'A, ;R )—5(epA, ;R )],

(A6a)

(A6b)

@„".„=—f '
d~s(ep ~;~)[aS(cps;&}/aR]„;

note that this vanishes if p'=p. The integrals g„".„are easily computed using the relation

$„.„=[eR/( A&i —A„.i )] f drlS(ep'A, ;g)rl S(epk, ;rl) .
—1

For angular couplings,

(A6c)

(A6d)

&P(e'p'A+1;R)
~
Lz

~
P(epA, ;R}&=(R/2) lim

o,~o+
f"dye ~g(g' I}-'"X (g)X (g)

1

X f dg Si(rl)L f (A, )S, (rl)

+ "d e- &X, 1.&~ g,

X f drlrl(1 vp)' S—(rl)S, (n)

where

and

L g(X)= ~ ( I —q')'"[(8/Bq) ~~q(1 —q')]

L~+(A)=+(g —1)'~ [(8/Bg) +&g/(g —1)] . and

g„=5(ep'A, +1;R ) —5(epA, ;R ) (A7b)

As (e—e') ~0,
& P(e'p'A +1;R)

~
L+ ~

P(epA, ;R) &

f dg S2(rl)L $ (A)Si(q) AXO

1f de il(1 —il')S, (rl)S, (rl) AX 1

where represents 5nite terms,

AXO=(R /2n. ) lim f dge ~[p2„(g)p„(g)]
a o+

X sin82(g) sin8, ((),

and these again have the form (A2) with k =0 and k =1,
respectively. Hence we obtain the result

&P(e'p'A+1;R)
i L~ i

P(epA, ;R) &

=S+„I cosh, „+—„5(e—e')

+(1/n ) sinb, „*„P[1/(e—e')] I, (A7a)

AX1=(R /2m) lim f dge ~g '[p2„(g)p, „(g)]
a o+

X sin82(g) cos8, (g)(88, /Bg),

4„*„:—f 1 AS(ep'A %1;rl )L $ (A, )S(epA, ;g) . (A7c)—1

3. Generalized Hellmann-Feynnan relation

If
~ P, &,

~ $2 & are two continuum states and 8 is one
of the coupling operators (8/BR )„Lz,

&Pz I l», 11((}i& =(e—e') &4'21 I &i &

+t&H, ~ i0i~ &

—&4 IHlk &I

where integral norms are defined as in Eq. (Al}. It fol-
lows that the Hellmann-Feynman relations, Eqs. (2.9a)
and (2.9b), may be extended to two continuum states if
(e—e')+0 and the expression in curly brackets above
vanishes, i.e., if the Hamiltonian H, is Hermitian with
respect to the kets

~ Pz&,
~ 8$, &. When (e—e')=0, the

Srst term in the above equation vanishes, but the term in
curly brackets is Snite, and yields a connection between
the commutator matrix elements and analytic
coefficients of the principal-value terms in Eqs. (A6) and
(A7).

The term in curly brackets can be reduced to the ex-
pression
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—(8/4) lim a f dge ~' f dt) f (dq/2~)[(BPfl&g)(gi) —Pf&/&g(Pi)]
a 0+ —1 0

Except for the additional inserted factor of a, the in-
tegrals in this expression again have the form of Eq.
(A2). Since all such integrals converge to finite values
when (e—e')&0, the above expression vanishes in the
limit and the usual Hellmann-Feynman formulas (2.9a)
and (2.9b) are valid for couplings of nondegenerate con-
tinuum states. When (s—e') —+0, the only terms in the
above expression which do not vanish are those which
would yield a Dirac 5 function if the factor a were not
present, and these now give a finite factor (1/it) instead.
We find, as (s —e')~0,

(P(ep'A, ;R) (dH, /M ), l P(epA, ;R) )

(P(ep'A+1;R)
l [L+,H, ] l

P(s'pA, ;R) )

= ( 1/m. )4„—+„sinb, „+—„(A9)
for angular couplings. This proves Eqs. (2.10), since
these are just the coef6cients of the principal-value terms
in Eqs. (A6) and (A7).

APPENDIX B: REPRESENTATION OF RAPIDLY
VARYING CONTINUUM OPERATORS

Here we given representative details of some results
cited in Sec. IV for P-subspace representations of opera-
tors E(t) and Q(t;t'), which vary rapidly with energy
over a packet width 6, .

= ( 1/m ) I ( 1 —5„.„)Sq q sin b q q

—S„,„[agua;~ )/a~])

for radial couplings, and

(A8)

1. Nonresonant terms in E«
As in Eq. (4.10) we break up the principal-value in-

tegrals into contributions associated with cells j',j and
consider the nonresonant terms (j'& j ); the contribution
for a particular pair (j'p'A, ', jpA, ) is then given by

+~, , » +t, » (~, +x',p'X'l Jt(l e, +x,pX)
P f, '„dx' f, '„dx ly(e, .+x',p', a')) ' ' ', '

(P(e, +x,pX)
l

.
J' J J J

In this expression, we approximate the slowly varying matrix element by its value at the packet centers and„assuming
that operands to left and right are also "slowly varying, "we insert the P-subspace projector on both left and right; the
result is then

(j p ~
I ~l Jp~)

J j
where we have "renormalized" the matrix element as in Eqs. (4.6) and

E'J —6'( +b(/2 +b, . /2
P f f dx[(e, —et)+(x —x')]

the principal value being taken at any singularities. Evaluation of this integral leads to Eqs. (4.11). A similar method
leads to the results cited in Eqs. (4.7).

2. Resonant terms in E«
The contribution of a given resonant term (jp'A, ', jpA, ) in the principal-value part of Ecc amounts to an enhance-

ment of the effective coupling between neighboring cells. To propre this, we introduce explicitly the (hypothetical)
slowly varying operands which appear to left and right of this part of Acc', then the effect of such a resonant term is
given by an expression like

+~, » +a, iz & e, +x',p'X'
I
~

l ~, +x,p~)P dx c*(e,+x',p'A,'), b(e +x,pA. )—h. /2 —b . /2
4,
'x —x ')

where c'(e'p'A, ') and b(epA, ) are the expansion coefficients in these operands. To evaluate the integral set
z =(x +x')/2 and y =(x —x')/2; the Jacobian of the transformation is 2 and the double integral over the cell j (for
given indices p'A, ', pA. ) is given by

+(6, . /2 —z)
P f dz f d(y1/ y)[c*(e, +z y)(e, +z —y l

JVl e, + +yz)b(e, + +yz)]
J

0 +(5./2+z )

+P f dz f dy(1/y)[c*(e, +z —y)(e, +z —y l
JV

l e, +z+y )b(e, +z+y)]
J J
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where indices not referring to energy have been suppressed. Now we expand the slowly varying numerator in each in-
tegrand in a Taylor series about y =0 and do the principal-value integrals, with the result (to lowest order)

/2 d
2 f '

dz(b, /2 z—) [c'(e +z —y)&ej+z —y I JVI ej+z+y &b(ej+z+y)]
, y=O

0+ Z 6J 2+Z C 6) +Z —g 6J-+Z —p 6J +Z+g b 6.+Z+g
J

the result of the integrations over z is

y=0

[c'(e, +z —y ) &e, +z —y I
JV

I e, +z+y &b(e, +z+y)]
dg y=0

[c'(e —z —y)&e —z —y I
A

I
e —z+y &b(e —z+y)]

y J J J J
, y=O

where the z-dependent derivative has been replaced in each integrand by an appropriate mean value.
It remains to interpret these derivatives. A reasonable estimate of the derivative at "+z"is given by

( ej + i 6J) —['c ( eJp A)& e,p, , 'A, '
I
A

I el +,p A, & b ( e +,pA. ) c' ( si—p'A. '
) & e p'A, '

I
JV

I ejpk, & b ( eJpA )]
—(ej+i —e', } 'Ic'(e, +ip'~')&e, +ip'~'

I
J(I

I e,p~&b(e, p~) —c "(e,p'~')&e, p'~'
I
~

I e,p~&b(e, p~)l
=(e +,—e ) '[c'(e p A, ) &e~p A,

I
JV

I e,pA, &b(s,pA)].
+(e, —e, +, ) '[c'(e, +,p'A, ')&e, +,p'A, '

I
JVI e,pA, &b(e,pA)] . (82a)

and, similarly, that at "—z" is equal to

'[c'(eg —ip'~')&e'i —ip'~'
I ~I ejp~&b(ejp~)]+(eJ i e'J ) 'fc—'(e,p'A, ')&ejp'A'I ~I ei —, ip~&b(e'i —ip~)] .

(82b)

Using the normalization rules to interpret both the coeScients and the matrix elements in terms of their subspace
equivalents, we Snd the resulting contribution of resonant terms is represented by Eqs. (4.12).

3. Decay factor gj „(r) for [Q co( ri )]pp

The same procedures as are used above to obtain results for nonresonant terms in Ecc and Eca lead to Eq. (4.14a),
with g~'„(r} given explicitly by

e(iipA) e' +A—J&2 e ix~

gj „(r)=—(s,"„) dX
b J

f i j ~z [—e(n pA) e, x,]— —

and Eq. (4.14b) results from the substitutions P~'=BJ r/2 and aj'„defined by Eq. (4.7c). The integral can be expressed
in closed form in terms of the cosine and sine integrals, but a more useful formula is

g) „(&)=sj„' g ( —iaj'„/2)"fk(pj ),
k=0

where

(83a)

fk(p): (d Idp)"— (83b)

in general, this function decays more slowly than the usual function fo(13}=(sinP)IP, but reduces to it when a '„&&l.

4. Decay factors for nonresonaat terms in 9'~~( t; t')
The function gi "(r) given explicitly by Eq. (4.15c) can be expressed as follows. Defining Pi b ir/2, ——

ttjl.=~, /
I e, —ei I

ciij'=~i/
I e) —ei I

we «d «r Iej+1 (w«h«ji a«ni Jare b«h sm»1 compared «1)
r

g, "(~)=(a, )
' a, 'in[(1+a, -, /2)/(1 —a,v/2)]fo(Pi)

+ g (1/k)[+iaij/2]"[(1+aii/2) —(1—aji/2) "]j'k(pi) (84a}
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where fk(p) was defined above. For the near-resonant terms I =jul, the formula resulting is

gj*i,j«)=XR

/

NR2h. sc.~)-
25J+AJg)

fo(P}+(i/2P)(cosPSi(2P) —sinPCi(2P)ki[cosPCi(2P)+ sinPSi(2P)]I
jul

+ g (l/k)[+i&, gi/(Mj+&, gi0)]"fk(P) (84b)

where "P"=Pj~i and Si(x),Ci(x) are the standard functions

S,( ) I sint
d

—. x (cosy —l)
Ot ' '" —

0

5. Reso~~~t terms im 9'«

Following the same procedure as was used to study the resonant terms in Ecc, we now find the effect of the term
for given (j,p'A, ', jd, A, ) is given by

f &;+x,i'~ l ~l e, +x,i.~&
dx exp[ —i(e +x')g] c'(e +x', fi'A, ') j b(e. +x,~g)(x —x'} J

after transforming to the new variables z =(x+x')/2, y =(x —x')/2 as before, this becomes

+LE. /? +(hj /2-s)
e ' P f '

dz e "'f ' dy(e'~'/y)[c'(ej+z —y)&ej+z —y l
JVl e, +z+y &b(e;+z+y)]

J
0 +(AJ /?+z)

+ j dze "'f 1 ( y/eye)[ ( e+e)yz)(e, +z —y )/)/(e+/+z)y( be+)z+ )y]
J e

where, as before, indices not referring to energy are suppressed. Strictly, we should retain the exponential factor
exp(iyr} as a "rapidly varying factor" in the integrations over y, but for our present purpose this much detail is not
justified. A reasonably good first approximation is obtained if we include the exponential factor in the y integral as
part of the "slowly varying" factors in its integrand. The rest of the derivation is then quite similar to that for the
resonant part of Ecc, the result of the y integrations is

—c~~
' +~j/2 „, 0

2e ' f dh(d, /2 —zle "'D„(z;0)=I dz(6, /2yz)e '*'D (z;0)
J

where D {z;0)is the derivative of the "slowly varying" part of the integrands.

Dy(z;0) —= [e'~'c'{e +z —y)&ej+z —y libel e +z+y &b(e, +z+y)]
y=0

Approximating D (z;0}in each of the two terms by a suitable mean value, we do the z integrations and obtain the re-
su1t

,'bj~e ' [f (Pi—)Dy(z;0)+f+(Pj )Dy( —z;0)],

where the new decay functions f+(P) are defined

1f~(P)—=2 I da(l —id)e '~"=(2/P )[(l—cosP)ki(P sinP)]—
and, as before, pj =b r/2. By analogy with the computation for Ecc, the derivatives D„{kz;0} are given by

c'(ej)&ej l
JV'l ej+i &b(el+i},(. . .), c'(ej+, )&ejii l JVl e &b(e )

D (z 0)= ' +e
2+1 J Ej —6J+)

(85)

Dy( —z;0)=
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After introducing packet states and their normalized matrix elements, the result can be represented as the matrix ele-
ments of the operator

J j+ j+ PJ (~(. ,~)) —& (JPA,
~
JV)J+1PJ() (~(.86.5.+I j+]—Ej

&,'f, (p, )+&,',f (p, )

+ ~~(J+l&~)) ' (p(jpk)~
6'j —E

~
y(J& g. ) )e

"' JP I I J —i (y(J
Ej I

—Ej'

~

P(J' 1&'g )) ")- ' J i I I JP~ (y(
E'j —6'j

(indices in the sum run over all j,pA, ,p'A, '). But this is simply an enhancement of the near-neighbor (jr+1) terms in
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