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%e establish a basis set of atomic orbitals suitable to describe molecular wave functions at arbi-

trary magnetic field strengths and for an arbitrary orientation of the molecule relative to the mag-

netic field. A simple calculation for the hydrogen atom demonstrates the superiority of such an

orbital over common orbitals. All types of matrix elements of the Hamiltonian of a molecule in a
strong magnetic field are evaluated within our basis set of atomic orbitals.

I. INTRODUCTION

The astrophysical discovery of strong magnetic 6elds
on white dwarfs' (=10 G) and on the surface of neu-
tron stars (=10' G) motivated many studies on the be-
havior of atoms in strong magnetic fields. Of special
interest were the ground state snd 6rst few excited states
of the hydrogen atom, which were studied with increas-
ing accuracy '" and with methods valid over the whole
range of magnetic 6eld strengths. ' ' The parameter
which characterizes the high snd low magnetic field re-
gion is given by the ratio of the cyclotron energy and the
Coulomb binding energy. This means that already at the
available laboratory magnetic field strengths (=10 G)
typical strong field effects can appear. Examples are the
Rydberg atoms or the excitons in a semiconductor' for
which, because of the small effective masses and large
dielectric constants, the Rydberg energy is very small.

In contrast to the numerous studies on the hydrogen
atom, the information about the behavior of many-
electron atoms snd, in particular, about molecules in
strong magnetic fields is very scarce. In the case of mol-
ecules the knowledge is, in general, restricted to the H2+
ion. ' Already for the H2+ ion in the ground state
one encounters s richness of phenomena, like the con-
traction of bond distances, the enormous increase in
binding energy, snd the new nuclear equation of motion
resulting in s kind of pendulum oscillation of the molec-
ular axis. ' Many more phenomena are to be expected
for other molecules, in particular for those with
electron-electron interaction. For the ground state of a
molecule at equilibrium distance significant effects will
appear only for strong magnetic 6elds. For the first few
excited states (non-Rydberg) the typical strong-field
eftects will arise at some lower field strength.

The lack of s general method for calculating molecu-
lar electronic wave functions motivated us to search for
a basis set of functions, suitable to describe electronic
wave functions for every field strength, being guided by
the common variational basis-set calculations of molecu-
lar systems in the absence of s magnetic field. In Sec. II
we discuss the requirements a basis set of one particle
functions should fulfill in a magnetic field. In the
remaining part of the paper we present s method of cal-

culating all kinds of matrix elements of the Hamiltonisn
within this basis set.

II. THE HAMILTONIAN AND THK SUITABLE
ATOMIC ORBITALS

The Hamiltonian of a molecule in a strong magnetic
field contains, in addition to the kinetic energy and the
Coulomb-interaction operators, terms which are linear
(i.e., which describe paramagnetism) and quadratic (i.e.,
which describe diamagnetism) in the magnetic field
strength. One possible starting point for the calculation
of molecular electronic wave functions is the choice of s
suitable basis set of atomic orbitsls. The next step is
then the calculation of the matrix elements of the Hamil-
tonian with these atomic orbitals. With the aid of these
matrix elements one subsequently constructs in the usual
wsy the Hamiltonian matrix, the eigenvectors snd eigen-
values of which are the approximate F-particle molecu-
lar wave functions, and the corresponding energies, re-
spectively.

In the following we will carry out the first two steps,
i.e., we will establish in this section a basis of atomic or-
bitals for rnolecules in a magnetic field and in Sec. III we
will calculate the matrix elements of the Hamiltonian.
The nonrelativistic electronic Hamiltonian in the infinite
nuclear mass limit takes on the fo11owing appearance:

where p;, r, are the momentum and position of the ith
electron, m snd e are the mass snd charge of the elec-
tron, A(r, ) is the vector potential at the position of the
ith electron, and Rz stands for the position vector of the
kth nucleus. The potential V( I r; j, I Rk j ) contains all
the Coulomb-interaction terms. The trivial Zeeman-spin
terms have been omitted. A frequently used gauge for
A(r) in Eq. (1) is the symmetric or Coulomb gauge
A(r) = —,'8 && r, where 8 is a homogeneous magnetic field.
This symmetric gauge can be obtained from the more
general mixed gauge,

A;(r) =(1—p, )B,xI„. x,pkBt, , —
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by setting the parameters (pi, p2, p&) all equal to —,'. In

Eq. (2) the notation r =(x„xi,xi) is chosen for con-
venience and (i,j,k) are cyclic permutations of (1,2,3).

Although the fixed-nuclei electronic Hamiltonian (1) is
well defined, a few remarks concerning the range of its
usefulness are in order. Equation (1) is formulated in
relative coordinates to the center of mass. An exact sep-
aration of the center-of-mass motion cannot be carried
out in general for the case of a molecule in an external
magnetic field. Nevertheless, there exists a symme-
try of phase-space translations which leads to a "new"
conserved quantity called the pseudomomentum k,

p; ——A(r; )+ —(8x r,. )
l

ek
A(Ri )+ (&xR„) (3)

Pk and ej, denote the momentum and charge of the kth
nucleus. In coordinates related to the center of mass,
the terms of the Hamiltonian depending on the total
pseudomomentum look, for a neutral molecule, as fol-
lows:

with arbitrary A=A(r, ). We will now discuss the conse-
quences of the gauge degrees of freedom on the varia-
tional principle and on the choice of atomic orbitals.
The expectation value of the Hamiltonian (1) with
respect to an arbitrary trial wave function depends in

Rk Ak+ ( —e) Bx ga, r,
J

where M is the total mass of the molecule, a some real
constants. The negligibility of the coupling of the total
pseudomomentum to the internal degrees of freedom can
be fully justified by a special experimental preparation
which prefers k=0 states. In the general case of k&0
states one can show the negligibility of the inAuence of
these couplings by their estimation through perturbation
theory. For ions there exist some recent calcula-
tions, ' which indicate that for hydrogenic atomic ions
the center of mass motion can be neglected below a mag-
netic field strength of 10' G. As usual the efFect of
finite nuclear masses can be included in (1) by replacing
the electronic mass m by a reduced mass p. This efFect
becomes important only above a magnetic field strength
of 10' G. Finally, we mention that the use of a pure
electronic Hamiltonian such as (1) is only meaningful if
the Born-Oppenheimer approximation, which separates
the electronic and nuclear motion, is valid. The Born-
Oppenheimer approximation for molecules in a magnetic
field will be discussed in detail elsewhere. '

In the following we concentrate on the Hamiltonian
(1). The Schrodinger equation with the Hamiltonian (1)
is invariant with respect to the gauge transformations

A(r, )~ A(r, ) —V, A(r, ),.

4( Ir; j )~exp — g A(r, ) 'I'( [r; I ),

general on the gauge of the vector potential. If one cal-
culates the current density with this trial function one
obtains that the equation of continuity for charge con-
servation is, in general, not satisfied. ' The gauge
dependence of physical quantities such as magnetic sus-
ceptibilities and magnetic shieldings lead historically to
the construction of the so-called "gauge invariant"
atomic orbitals given by

+(r R)=exp + A(R)r 4(r —R},
Pic

(6)

where 4 is some trial function independent of A. How-
ever, the function 4 does not ensure gauge invariance in
general. The purpose of the phase in Eq. (6), rather, is
to enforce the gauge centering of the atomic orbital (6)
on the atom with the nuclear position R. As a conse-
quence atomic orbitals of the type (6) describe the
correct diamagnetism in the dissociation and united-
atom limits. Nevertheless, functions of the type (6) still
provide different energy expectation values for different
gauges of the Hamiltonian (1).

To obtain the gauge-invariant energy one has to carry
out a functional variation of the energy-expectation
value with respect to A, i.e., one has to minimize the en-

ergy with respect to A. ' The general variation with
arbitrary A is only practicable for certain special Hamil-
tonians. In the following we discuss the necessary
modifications of the ansatz (6) to obtain atomic orbitals
which ensure at least approximate gauge invariance.
The first step is to use the functions

%(r;R,C)=exp + A(C)r 4(r —R),
Ac

(7)

where C is a vector of variational parameters, deter-
mined by minimizing the energy-expectation value. The
new gauge center C, in general, does not necessarily
coincide with the nuclear position vector R&. The set of
functions arising from (7} is able to describe minimal en-

ergy values with respect to the restricted class of gauge
transformations

A(r) ~ A(r)+ V( A(d)r), (8)

~here d is an arbitrary constant vector. The correct di-
amagnetic energies in the dissociation and united-atom
limits are guaranteed by the fact that C coincides with
the nuclear position vector in these limits, i.e., C~R for
infinitely separated or united atoms.

So far we have not specified the gauge of the vector
potential in Eq. (7). For the special case of a molecular
system with cylindrical symmetry in a magnetic field (for
example, a diatomic molecule with the nuclear axis
parallel to the magnetic field direction}, one would
choose the symmetric gauge, because it provides the
minimal, i.e., gauge-invariant, energy value. In the
general case one has to take the mixed gauge (2) for A
in the ansatz (7) and minimize the energy with respect to
the parameters (p„pz, pi). There exist indications that
the obtained energy is very near to the gauge-invariant
one. ' After having presented the part of our atomic
orbitals which depends explicitly on the magnetic field
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by Fq. (7) together with Eq. (2), we are now left with the
determlnatlon of 0 ln Eq. (7).

A frequently approved set of atomic orbitals for the
calculation of electronic spectra and wave functions in
the zero-field case is the spherical Cartesian Gaussian
basis

n„n n
x "y 'z ' exp( —ar )

with r =(x,y, z) and where u is a variational parameter
and n, n, n, are non-negative integers. In the presence
of a strong magnetic field the spherical symmetry of the
exponent of the set (9) provides an insuScient descrip-
tion of the wave function. If one takes, for example, for
a hydrogen atom the magnetic field direction parallel to
the z axis, then in the limit

~

8
~

~ 00 the wave function
in the x,y plane becomes a pure two-dimensional isotro-
pic harmonic-oscillator function. This cannot be repro-
duced by the exponent of the set (9), i.e., one has to
choose different variational parameters for the x,y, z
components of the exponent. For an arbitrary direction
of the magnetic field also the mixed terms of the kind xy,
xz, and yz may be needed, For the atoms mixed terms
can be discarded, but for a diatomic molecule in an arbi-
trary oriented magnetic field, for instance, these mixed
terms are indispensible. Here the nuclear axis and the
magnetic field axis provide two distinct axes. This leads
us to the following choice of 4:
4(r) =x "y 'z ' exp( —a„„x —a ~y' —a„z'

—2II„xy —2a„,xz —2a~,yz), (10)

with variational parameters a,~,o.'~~ „a„,axy cx+z cxyz.

For convenience we write the quadratic form of the ex-
ponent of Eq. (10) in matrix representation and obtain
(atomic units are used throughout)

+„(r;Lz,R,C)
n Pl n

=exp[ i A(C)—r](x —R„) "(y —R~) '(z —&, )
'

&&exp[ —(r —R) LI(r —R)],

where the triad n =(n, n, n, ) is used as an index. a is
a real symmetric matrix of variational parameters

O! y 0!yy Q.'

A tX

(12)

The elements of the matrix o. are a priori arbitrary
within the normalization conditions on O'„. In the case
of a diatomic molecule and arbitrary direction of the
magnetic field 8, two of three oft-diagonal parameters of
a can be taken to be zero by a special choice of the coor-
dinate system.

To facilitate somewhat the choice of atomic orbitals,
we present in Table I the ground-state energy of the hy-
drogen atom obtained by diA'erent trial functions. Three
different trial functions have been used: (1) a Slater-type
function exp( —P r

~
); (2) a single ls Cartesian

Gaussian-type function exp( —ar ); (3) a single function
of the form (10) with n„=n =n, =0, i.e., exp( —r ar).
The quantities a,P and the elements of the matrix a are
variational parameters which have to be determined for
each magnetic field strength B. For weak magnetic
fields the Slater-type orbital is in excellent agreement
with the best available variational results. ' ' For

~

8
~

&1 a.u. the spherical Gaussian orbital gradually
improves and for

~

8
~

&2 a.u. becomes superior to the
Slater-type orbital. For

~

8
~

& 5 a.u. the Slater-type and
spherical. Gaussian-type orbitals are not able to describe
the distorted wave functions anymore, whereas our wave
function (10) for n, =n =n, =0 is valid over the whole

range of magnetic field strengths.
It is clear that for excited states, where even weak

fields produce remarkable e6'ects, the number of basis
functions out of the set (9) needed for getting accurate
results would be very large and, therefore, the calcula-
tion no more practicable. In contrast to this the set of
atomic orbitals (10) should provide accurate results also

for excited states within a "reasonable" number of basis
functions. %'e remark that for every field strength the
set (10) is better adapted to the molecular problem than

TABLE I. Ground-state energy of the hydrogen atom for diferent trial functions and arbitrary directions of B. The energy and
magnetic field strength are given in atomic units, i.e., 8 =Pi~/R, where R is the Rydberg energy and m is half of the cyclotron fre-
quency; 8 =1 a.u. corresponds to 8 =2.35X10' G. a, p, and the elements of the matrix a are variational parameters. (Negative
energies mean an unbound state. )

Trial functions

Magnetic field
strength 8 I'a.u. j

0.0
0.1

1.0
2.0
5.0

10.0
100.0

exp( —

Piro'

)

0.500
0.548
0.809
0.933
0.989
0.726

—12.2

0.424
0.472
0.757
0.928
1.17
1.27

—3.97

0.424
0.472
0.762
0.953
1.31
1.66
3.57

Best available
variational

energies I',a.u. ) (Refs. 13 and 14)

0.500
0.547
0.831
1.022
1.380
1.747
3.786
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the set (9), because the function with n =n =n, =0
from (10) contains higher-order functions of the type (9)
and is able to reproduce a cylindrical symmetry. The
basis set defined by (10) and investigated here could be
useful for computations on molecules even in the ab-
sence of a magnetic field.

III. THK MATRIX KI.KMKNTS
OF THK HAMII. TOMAN

In the zero field case and for the choice a =al, where
1 is the unit matrix, Eq. (11) reduces to the ordinary
spherical Cartesian Gaussian atomic orbitals. The ma-
trix elements of the Hamiltonian in this basis set are well
known analytically. The matrix elements calculated
with a Cartesian Gaussian basis set extended to different
exponential coefBcients for x,y, z were presented ex-
tensively in the literature. They were used for develop-
ing Slater-type orbitals in a series of Gaussians. For the
case of a general quadratic form in the exponent the ma-
trix elements of the n=0 function in the zero-field case
were calculated in Ref. 40. In the following we will

present the integration of the matrix elements of our
basis (ll) for general n and including the position-
dependent phase factor due to the vector potential. It
should be noted that the basis function (11) is complex in
the finite-field case. Before explaining the method of in-
tegration we describe the different terms of the Hamil-
tonian (1) more explicitly. Separating the Hamiltonian
into field-independent and field-dependent terms one ob-
tains

;,k lr-R

~here the bracket is the commutator. The first four
terms are the kinetic energy, electron-nucleus attraction,
electron-electron repulsion, and nucleus-nucleus repul-
sion, respectively. The following two terms give the
paramagnetic energy and the last one the diamagnetic
contribution. For the mixed gauge (2) of our case, the
commutator vanishes.

Before going into technical details of the integration
of the individual matrix elements we present a simple
fofn1ula

+ 3nI g dx; exp( —x Ax+b x)
i=t,

3n /2

i&2 exp(+ —,'b A 'b), (14)
(deta )'"

where A is a real, symmetric, nonsingular matrix and b
is an arbitrary 3n-dimensional complex column vector.
The identity (14) will be helpful in the construction of
the matrix elements.

A. Overlap integrals

The overlap integrals to be evaluated are of the form

I,„(n„a,,R, , C, ;n2, a~, Rr, C2)

= f iP„' (r;a„Ri,C, )%„(r;a2,Rz, C2)dr, (15)

where the atomic orbitals 4„(r;a,R, C) are defined in

Eq. (11). These overlap integrals can be determined
starting from

I,„(O,ai, Ri, Ci', O, a2, R2, C2)J

PQ rycK]yR]AC) %Q rpcpyR2y

+ g +—g [V;, A(r;)l1 1

k, l k l l i

k&l

+—g A(r, )V;+ —,
' g A'(r;),

l

(13)

Xexp[+J (r —R, )]dr . (16)

From Eq. (16) one obtains the general overlap (15) by
multiple differentiation with respect to the components
of J and finally setting J equal to zero,

I,„(ni, ai, Ri, Ci', nz, a2, Rr, Cr )

1x

BJ„

ly g
"1z 2x 2f

+( i
—Rr)„+(Ri—R2)

z X 8Jy

a
X

~
+(Ri —Rz), I,„(O,a„R„C,;O, a2, Rz, C2)r l r

In Eq. (16) one could have chosen two external sources Ji and Jz and the terms J, (r —R, )+Jr(r —R2) instead of
J (r —R, ) in the exponential. The differential operator in Eq. (17) would then simplify to

1x

Jlx

1z

BJ2

2x

BJ2

2'

BJ2,

"2Z

However, the overlap (16) with J, and Jz would be more complicated to difFerentiate and therefore we prefer to take
only one external source.

The calculation of the overlap (16) is easily performed by combining the quadratic forms of the two wave functions
in Eq. (16) and the use of formula (14). The result has the following structure:
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I,„(O,g/, R/, C/,'O, Lz2, R2, C2)J= m' {detLz) '~ exp( —2R, a,R, —R2rLz~R2)

Xexp[+(b, A+2R)rR, +-,'(b, A+ J+2R—2aR, }ra-'(b, A+ J+2R —2aR, )],
(18a)

a =Q1+a2,

R=a1R1+a2R2,

6 A=+i [ A(C, ) —A(C2)] .

(18b)

The general form of the overlap (15} can be obtained by substituting Eq. (18a) into Eq. (17) and performing the
differentiations. It takes on the following appearance:

Iov n/&+I~R/~C/&n2~22'R2~C2 Io& 0~+l~R/~C/&0~+Z~R2~C2 ~(nl~n2&R/ R2&~ A+ R 2RRl& z (19)

We note that the function 9' has the symmetry property

&(n/, n2;R/ —R2;~ A+2R —2RR/;R ) =&(n2 n/, 'R2 —R/,'~ A+2R —2LzRq', o' (20)

which arises from the fact that neither of the two centers R, and Rz is distinct. 9 can be generated by the equation

2x Zp 2,z

P(n„n2;R, —R2;1; A )=
v„=Ov =Ov=0

~zz

1 2 x(R —R)'"
z

X(R,—R~) " '(R, —R2)," 'ap( +n„'1;A ) (21)

(22)

with the notation v =(v„,v~, v, ), n, =(n &„,n &,n „). b and A are an arbitrary column vector and a real symmetric
matrix, respectively. The function Q& is given by

v

Qgv;b; A ) =exp( ——,'1 Ab) exp(+ —,'1 Ab) .

The explicit form of the function 6&, which is a polynomial in the components of the vector 1 and the matrix A, is
given in the Appendix. As can be seen from Eq. (22) Q& can be considered as a generalization of the Hermite polyno-
mials to several dimensions.

Another possibility to calculate the function 6&, i.e., the general overlap, would be to diagonalize the real sym-
metric matrix A in Eq. (22) by an orthogonal transformation. Although the exponential function in this case is a sim-

ple product of generators of Hermite polynomials in three dimensions, the calculation is by no means easier, because
one has to transform the derivatives with respect to b with the same orthogonal transformation. It is left to the
reader which method he prefers to generate X Finally, we remark that for atomic orbitals with not too high polyno-
mial exponents, it is more convenient to use Eq. (22} than the explicit expression for Q& in the Appendix.

8. Kinetic energy

The matrix elements of the kinetic energy as well as of the paramagnetic and diamagnetic terms can be expressed as
a linear combination of overlaps. The general matrix element for the kinetic energy has the form

EK(n1 +1 R/ C/ n2 +2 R2 C2) ( ) f + (r +/ R1 CI )~ + (r +2 R2 C2)~ {23)

The result of the difFerentiation is written as a linear combination of polynomials with diferent exponents, i.e., as a
linear combination of overlaps

E/r(n/ L/ R/ Ci'»2 &2 R2 Cz)

=( —
—,') I,„(0)[—2Tr(~z) —A (C2)]+2 g I,„(—ek)(n2)k[ i A(C2)]k-

k=1

3 3

+ y I,„(—2e„}(n~}„(n~—1)k+4 y I,„(e/, )[[/ A(C2)] [g2)]I/,

—4 g I,„(e,—e, )[[n,],[Lx2]/-, ]+4 g I,„(e;+e,)(g, );,
ij =1

(24)



37 MOLECULES IN STRONG MAGNETIC FIELDS: PROPERTIES. . .

where lr=(1, 1, 1) and fr means the trace. te, I are the unit axis vectors of the orthogonal Cartesian coo«ina«sys-
tem. Furthermore, we have used the abbreviation

I,„(v)=I,„(n&,a„R„C&,nz+ v, az, Rz, Cz) .

In Secs. III C and III 0 we give the results for the matrix elements which involve the magnetic 6eld.

(25)

C. Paramagnetic energy integrals

The matrix elements, arising from the term linear in the magnetic field of the Hamiltonian (13), ".an all be obtained

by linear combination of matrix elements of the following type [for convenience we use r =(x „xz,x3 )]:

8
IFM(nf al Rf Cf nz az Rz Cz)'j P (r a] R] Ci 4'

~
q (r az Rz Cz)dr

BXj.

where i &j Th. e result, written in terms of overlaps, is

IpM(n, ,g, , R„C,;nz, Lxz, Rz, cz) j =
I (nz)j[I,„(e,—ej )+(Rz),I,„(—ej )]—2(az)jj[I,„(e,+ej)+(Rz);I,„(ej)]

+ [—~' A(Cz)], [I,„(e;)+(R,);I,„(0)]—2(a, );,[I,„(2e,}+(R,);I,„(e;)]

—2(az)kj[I, «+el, )+(Rz);I.,(ek)]}

(26)

(27)

with the notation of Eq. (25) and where (i,j,k) is out of
the permutations of the numbers in the triad (1,2,3). In
the case of the symmetric gauge the paramagnetic terms
can be expressed by the components of the angular
momentum, whose matrix elements can be obtained
from Eq. (27) through antisymmetric linear combination.

E. Electron-nucleus attraction integrals

The general three-center integral to be evaluated has

the form

INA( n i„a],R 1,C j,R3;nz, az, Rz, Cz )

D. Diamagnetic energy integrals

The matrix elements of the diamagnetic term of the
Hamiltonian (13) are the most easiest to evaluate. They
have the following form:

DM n) & a l & R1 & cl & nz& az& Rz& Cz )ij

= f 'P„*(r;a,, R, , C, )x;x, %„(r;az,Rz, Cz)dr (2g)

and the result in terms of overlaps is

14„' (r;a„R,,C, ) %„(riaz,Rz, cz}dr .

(30)

To evaluate this type of integral we follow Singer and

use the transformation

'i f exp[ —u zf (r)]duf (r)

v du

1 —u (1—u)z z3iz .

IDM(n, ,a|,Rt, cl;nz, az Rz Cz}„

1 1

g I,„(pe, +vej)(Rz),' "(Rz)j . (29)
p=o v=o

In Secs. III E and III F we calculate the electron-nucleus
and electron-electron matrix elements.

In our case we have f (r) =
i
r —Rz i

. The second in-

tegration in Eq. (31) can be performed more easily, be-
cause of the compact integration interval. The introduc-
tion of the additional integration enables us to perform
the three space integrations. The basic matrix element
to be evaluated is then

2 ] 2

INA(O, a,R„C,;R,;O,a, ,R, , C, },= i/2 0 0 70'0(r;a„R„C,) exp —[r—Rz] %u(r;a, Rz, cz)
(1—u')

Xexp(+J [r—R|]) dU

(1 z)3/z
(32)
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From Eq. (32) one obtains the general form (30) in analo-

gy to Eq. (17) by differentiation with respect to the com-
ponents of J.

The calculation of the matrix element (32) is per-
formed analogously to the overlap integration in Eq.
(16). One just combines the three quadratic forms and
uses formula (14). The result reads

X&,
1 —U

g~ =0!)+4K2+ U

R„=a&R&+g2R2+uR3 .

(33c)

1

INA(0 al Rl Cl R3 0 Q2 R2 C2)J —Tl T2(u)du

(33a)

T, =2m exp( —R, a,R, —Rza2R2+ b, A Rl ), (33b)

From this form one obtains in analogy to Eq. (19) the
general matrix element (30)

IN A( n 1,a 1,Rl, C1 ', R3', n2, Q2, R2, C2 )

1

Tl T2(u)
I J=P(nl n2 Rl R2

0

+2R„—2Q„R„'a, ')du,

(deta )
—1/2( 1 u 2)—3/2

X exp( —R3uR3 —R, Q„R,+2R„R,)

Xexp[+ —4'(b, A+ J+2R„—2a„R1)

Xa-„'(b, A+ J+2R, —2a„R,)),

and the abbreviations

where 9' was already discussed in Sec. III A in connec-
tion with the overlap integrals. The remaining single in-
tegration must be performed numerically. This causes
no problems because the integrand is smooth and the nu-
merical integration converges very fast.

F. Interelectronic potential energy integrals

This type of matrix element involves at most four
centers [R„R2,RJ,R4I. The general matrix element is
given by

IEF (0» a 1 s R 1 s C 1 s 0» Q2» R2» C2s 0» a 3 » R3» C3» 0» Kls R4» C4 )J

1
11 al, R1 Cl 0 (r2', Q2 R2 C2) p ( 1 Q3 R3'C3 + r2,'Q~, R,C4)drldr2 '

(35)
~e introduce two external sources J, and J2 for the two electrons and use transformation (31), thus arriving at the
basic integral

EE(nl, al, R1,C1', n2, +2, R2, C2', n3, QJ, RJ, C3, 4, Q~, 4, C4)

U
2

= „,f f +o(rl'al. R1,C1)qo(r2,'a2, R2, C2)exp —(r, —r2)
1 —U

X'po(rl, 'a3, 3, 3)0'o(r2', a~, R4, C4) exp(+ Jl [rl —Rl]+J2[r2 —R2]) d rid r2 .T T dU

u 2)3/2

To evaluate the integral (36) it is useful to go to a six-dimensional representation The new. variables now read

(36)

0 O, 2

lx34 =
0

A(C, ) —A(C3)

A( C2) —A( C4)

r) R]
R)2=

r2 2.

R3 J)
J J2
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Rewriting the integral (36) in these variables, we arrive at

IEE(0,a, ,R, ,C„O,az, R2, C2;O, a3, RJ, C3;O, a~, R4, C„)J

T Texp(+&«) exp( —[r—R„]a„[r—R„]—[r—R34] a34[r —R34] —r u lr)

Xexp(+J [r—R,z]) dr .T dU

( 1 2)3/2 (38)

Combining the three quadratic forms with the matrices a~z, a34, v 1 and using formula (14) gives the following final re-

sult for the basic function which contains a single integration only:

1

IEE(O, a&, R&, C&,'O, az Rz Cz 0 a3 R3 C3 0 a4 R4 C4)J T3 T4(u)du
0

(39a)

with

T3 =2~'" exp( —R»a»R» —R34a 34R34+ R )g[& A+ 2R]),

T4=(deta„) ' (1—u ) exp( —R~za„R,2)exp(+4[5A+J+2R —2a„,R,z] a„'[4A+J+2R—2a, R,2)),
(39b)

and the notation

Q~ —CK )2+@34+U

+12R12+&34R3g
(39c)

The ge"eral matrix element (35) again is obtained from the matrix element (39a) by differentiation with respect to
the components of J. It takes on the following appearance:

IEE(n, , a, , R, ,C, ;nz, az, Rz, Cz, n3, a, , RJ,C, ;n4, a4, R„C4)

1= T3 T4(u)
~ J pJV(n~, nz, n3, n4;R, —RJ, Rz —R4;b, A+2R —2a„R,z, a, ')dv . (40)

0

$n analogy to Eq. (20) there exists a symmetry of A

~(nl&nz&n3&n4~RI R3&rR2 R4~~ A+2R 2a R)2 a„)=(n3, n4, n), nz', R3 —R), R4 —Rz;6 A+2R —2a, R34,a„')

&(n3 nz n J n4 R3 —Rt, Rz —R4', & A +2R —2a, R32 a„)
(41)

& can be generated by the equation

&(n„nz, n3, n4;R) —RJ, R2 —R4;b; A )

=X X X X X X
p&

——0 p2 ——0 p3 ——0 p4 ——0 p&
——0 p6

——0

n4 , n4

P2 P3 P4 Ps

"3x +3y &3z n4x

x(R —R. )
'" "'(R,—R, )," "'-(R. —R )" "'(R —R )"'" "'

X(R2 —R4)y" '(Rz —R4)," 'X6~(n+p;b; A ), (42)
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=exp( ——'1 Ab)4 Bb,

Pl ~ P6

X ' X

Xexp(+ —,'b Ab) . (43)

The explicit form of Q~ is given in the Appendix. We
remark here only that Q& is just the six-dimensional
analogue of Qz.

%'e have presented a basis set of atomic orbitals suit-
able for the calculation of molecular electronic wave
functions in a magnetic 6eld of arbitrary strength. This
basis set contains the spherical Cartesian Gaussian basis
set as a special case and enables one to calculate molecu-
lar electronic spectra and wave functions in the usual
way from the Hamiltonian matrix elements.

One part of our atomic orbitals is a vector-potential-
dependent phase which ensures the correct gauge center-
ing and the correct diamagnetic energies in the dissocia-
tion limit. The gauge of the vector potential, occurring
in the phase of the atomic orbitals and the Hamiltonian,
is the so-called mixed. gauge whose parameters are fixed
by minimizing the energy. As a consequence the ener-
gies calculated with our atomic orbitals should be very
near to the gauge-invariant ones, independent of the
orientation of the molecule relatively to the magnetic
field axis.

where the notation n =(n, , n, ), p =(p„. . . , p6) was

used. 1 =(1,,12) is an arbitrary vector, A a symmetric
matrix. The function Q~ is a polynomial in the com-

ponents of the vector b and the matrix A and given by

Q&(Ik;b; A )

The field-independent part of our atomic orbitals is a
Cartesian Gaussian function with a general quadratic
form in the exponent. This enables us to reproduce any
anisotropy, necessary to describe the wave functions of
molecules in an arbitrary oriented magnetic field. A cal-
culation of the ground-state energy of the hydrogen
atom with only one function of our type shows most
promising results over the whole region of magnetic field
strengths.

%e have evaluated all the matrix elements of the
Hamiltonian of a molecule in a magnetic field with our
atomic orbitals. Most of them are given analytically,
only the electron-nucleus attraction and the electron-
electron repulsion still contain a single integration to be
performed numerically. This integration converges rap-
idly.

%e note that our atomic orbitals should provide
better results also for the zero-6eld case, as, for instance,
the spherical Cartesian Gaussian basis, because it is
better adapted to the anisotropy of the molecular wave
function. It is now left to future investigations to calcu-
late the electronic and in consequence vibrational prop-
erties of molecules with the provided method.
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APPENDIX

In the following we present the explicit formulas for
the functions Q& and Q~. This explicit form can be ob-

tained by carrying out all possible di8'erentiations, for in-

stance, in Eq. (17). Q& and Q~ are special cases of the
general formula

Pl

Q~(p;1;A )=
Pl

——0

+ kl~ kl ~k
/=I

x II ( —,
' A; ) '(v; )! (Al)

wh re Xl = i (1+5kl )vk, =pk, appearing under the sum-
mation sign, restricts the summation to run over all

I vkr j which fulfill these N equations (k = l, . . . , N). 5kl
is the Kronecker symbol. The indices vk) form a sym-
metric matrix, i.e., vkl

——vlk. b and A are an arbitrary
column vector and a symmetric matrix in X dimensions.
The notations 1 =(b, , . . . , bN), p =(p„. . . , p~) were
used.

Q7, occurring in the overlap and the electron-nucleus

attraction integrals and Q~, occurring in the electron-
electron repulsion integrals, are now simply given by

Qs(p, ;b; A ) =Q3(p;b; A ),
Q+(p;b; A ) =Q6(p, ;b; A ) .

In the case of n„+n +n, &2, i.e., the analogue to the

s,p, d functions in the spherical Cartesian Gaussian basis,
the expressions for Qz and Q& in Eq. (A2) reduce to a
few terms only.
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