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Electric-field-induced modulations in photodetachment
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Recent observations of the e6'ects of a strong electric field on the photodetachment of H are

accounted for by a frame-transformation analysis. The only input parameter is the binding energy

of the negative ion. An absolute cross section that includes the effects of the 6eld is derived. The

cross section shows modulations above the detachment threshold. Further, there is no~ a nonvan-

ishing value beloved the zero-field threshold as a result of field-assisted tunneling of the photoelec-

tron.

There has been considerable interest in recent years in
the effects of long-range external fields, electric and mag-
netic, on photoabsorption processes in atoms and mole-
cules. ' A subset of these studies, namely the hotode-
tachment of a negative ion in an electric field, has re-
ceived less attention than photoionization of neutral
atoms in external fields. However, s very recent psper3
has presented the first detailed experimental data on the
photodetachment of a negative ion (H ) in the vicinity
of threshold and in the presence of an electric field
(=105 V/cm). Having just completed a full theoretical
analysis of electric field efFects on negative-ion photode-
tachment, we adapt it to the case of H and present
our results here. The results for this system sre in s par-
ticularly transparent form because the zero-field photo-
detachment near threshold is already well known in a

simple form that involves only the binding energy of the
negative ion. ' The efFects of the electric field enter
through a multiplicative modulating factor given analyti-
cally in terms of derivatives of Airy functions. There-
fore, with no adjustable parameters, we derive an abso-
lute cross section for photodetachment in an electric
field, which accounts well for the experimental data. To-
gether with our more detailed presentation, our analysis
and equations may be used to describe the photodeiach-
ment of any negative ion in an electric field.

%e begin with s brief consideration of zero-field pho-
todetachment of H . For a weakly bound system such
as this, thc zero-range approximation ' can bc used to
describe photoabsorption processes in a particularly sim-

ple form. The large scattering length, which exceeds
substantially the size of the system, implies that most of
the probability distribution is in the exponential tail of
the bound-state wave function. A single parameter, the
binding energy, sulices therefore to describe adequately
the negative ion. The outgoing p electron is also well

described by the wave function for s free particle of an-

gular momentum I = 1, that is,

f, (r)=(2k/n)'~ j,(kr)F, (r) .

This function is normalized pcr unit energy snd we
will use stoIDic units throughout. For a range of ener-
gies near threshold, the above function is entirely sde-

quate, the 1=1 phase shift being very small (even at
k =0.01, the highest energy of interest in this paper,
the phase shift is only 0.006 radians ). Within this
framework, the zero-field photodetachment cross section
is easily worked out:

F p 16sr ~a

3(137) (a' +k~)' (2)

where —,'~z ——0.7542 CV is the binding energy of H
This result compares very well with experiment snd
more elaborate theory for a larger energy range even
than that which is of interest to us.

The critical energy dependence in (2) is in the k fac-
tor (Wigner threshold law ). The remaining factor is
only weakly dependent on k for k &&az. These arise
from the long- and short-range parts, respectively, of the
electron's motion. The latter's insensitivity to the
asymptotic energy is easily understood because at small r
there prevail potential energy terms in the e-H system
that swamp —,'k . Viewing (2) as the product of two such
factors gives a picture of photoabsorption that is partic-
ularly useful for what follows. The first energy-
insensitive factor is substantially constant around thresh-
old (k =0) and can be extrapolated even below thresh-
old. That there is no zero-field photodetachment below
threshold can be attributed to the phase-space factor
that arises from the large-r part of the wave function
which vanishes for k ~0 and rises as k above thresh-
old. As we will see, an external electric field only
modifies this long-range part.

The potential due to s static electric field F in the z
direction is Ez. The atomic unit of electric field being
5. 14X 10 V/cm, generally F && 1. Therefore follows the
key conclusion that, for most field strengths of interest,
the infiuence of F is entirely negligible for distances
smaller than at least 10 a.u. The photoabsorption at
small r is, therefore, unafFected by F. On1y the long-
range propagation of the photoelectron is influenced by
the field. The wave function for this range has to be
adapted from its zero-field form in (1) to the new cylin-
drical symmetry that obtains when I'&0. This "frame
transformation" is accomplished in two steps, following
the pioneering analysis of Fano' and Hsrmin" for the
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similar problem of the photoionization of neutral atoms
in an electric field. The 6nal result replaces the previous
long-range factor k in (2) by a factor appropriate now
to the long-range electric field.

First, still at small distances when the term Fz is small
and the electron essentially free, we transform functions
from spherical symmetry to cylindrical symmetry. The
azimuthal quantum number is common to both schemes
and the eigenfunctions of cylindrical symmetry are (J
is the regular Bessel function)

(r) (2 )
—1/2eim@g ((k2 q2)1/2 )( q)

—1/2

cos(qz), II, = +
X

sin(qz), II, = —.
(3)

The second step of the frame transformation is to
match the energy normalized wave function of the pho-
toelectron in the field Fz, namely, (Ai is the regular Airy
function' )

For any energy —,'k, there are two degenerate solu-

tions of even and odd parity under z~ —z. The energy
—,'k is apportioned into a longitudinal energy —,'q for the
z motion and an energy —,'(k —q ) for the p motion. Ex-
pansion of ttiq~ in terms of spherical eigenfunctions re-
quires in general all spherical waves fi, the counter-
parts of the I = 1 functions in (1):

it'q (r)=X Uq'i='fi (r) '

JT

the summation runs over even (odd) 1 —m for II, =+
( —). Our primary interest is in the l =1 coeIIlcient of
the transformation matrix U I

= . Perhaps the simplest
procedure to obtain this is to examine both sides of (4) at
small values of the distances involved, p, z, r=0. This
gives

(3q/k )'/, m =0 (5a)

(3/2kq)' (1—q /k )' m =+1 (5b)

(3qrlk )'/ (16F)'/ Ai'[ —q /(2F) ], m =0
(3qr/2k)' (4/F)' (1— /k )

&&Ai[ —q /(2F) ], m =+1 .

( lob)

Since, according to our earlier remark about a negligi-
ble I = 1 phase shift, we do not need the corresponding
transformations for irregular functions, we defer that
discussion as well as the more general analysis for photo-
detachment in an electric Geld to our longer paper.
Here it suSces to note that for the cross section in the
presence of the field we have to use (6) for the final-state
wave function and, therefore, given (9), we have

tr (k)=o = (k) I d(q /2)
~ Uqi ~

—=~'=oa'(k) .

The cross section for F =0 is modified by a multiplica-
tive factor HF(k), called the "modulating factor. "
Note that it involves an integration of

~
U,

~

over all
possible values of the longitudinal energy —,'q for a given
total energy —,'k . For F&0, since the potential Fz falls

to —ao at z = —ao, this sets the lo~er limit of the in-
tegral; the upper limit is set by the requirement of posi-
tive transverse energy, —,'(k —q ) &0.

Figure 1 compares the recent experimental data on
photodetachment of H with the result in (11) upon
combining it with (2). The following three features are
worthy of note.

(a) Above the zero-field detachment threshold, cr os-
cillates about the cr

= value. These oscillations de-
crease in wavelength with increasing photon energy.
The amplitude of the oscillations is proportional to I' '

We show the results for m =0. Oscillations are also
present for the other polarization, m =+1, but of much
weaker amplitude and larger wavelength as a result of
the second factor in (5b).

@F (2 )
—1/2 1m'&J ((k 2 2)1/2 )(4/F)1/6

X Ai[(2F) '/'(z —q '/2F) ],
to the F =0 functions in (3) at small z. We have

tt/q ——A tt/ (II, =+ )+Bgq (II, = —) .

Upon evaluating both sides at z =0, we obtain

~ =(~q)'"(~/F)'/s Ai[ q'/(2F)'"], —

8 =(~/q)'/ 22 2F'/6Ai'[ —q2/(2F)2/3]

(6)
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The full frame transformation between the functions in
(6) and (1), obtained upon combining the two steps, gives FIG. 1. Photodetachment cross section of H with [

Eq. (11)] and without [ ———,Eq. (2)] an electric field, com-
pared with experimental data ( & ) for m polarization. The ex-
perimental results are normalized to the theoretical ones at the
point marked by the arrow.
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(b) o is finite at k =0 with a value that is proportion-
al to I'.

(c) 0 is nonzero below the zero-field detachment
threshold and decreases rapidly and monotonically from
its value at threshold.

All these features can be understood on the basis of
the analytical structure of H (k) and in terms of the
simple physical picture that has guided our analysis.
For k2 ~ 0, the integral in (11) that de6nes H~(k) can be
split into two ranges, ( —ao, 0}and (0, —,'k ). The former,
which equals H (0), may be evaluated analytically '
and gives

H (0}=1(—,')I ( —', )(F/mk ) . (12)

The integral from 0 to —,'k, on the other hand, oscillates
with increasing k as more loops of the Airy function or
its derivative are embraced by the integrand. This ac-
counts for (a) and (b) above. Note, in particular, the
1/k in (12) which cancels precisely the sensitive
energy-dependent factor in (2) in the zero-6eld cross sec-
tion. This is as expected because the factor k in (2),
stemming from the long-range field in that situation (the
angular momentum barrier} is replaced now by the fac-
tor appropriate to I'z. ' The point (c) above is also un-

derstood in terms of H~(k) being continuous at k =0 un-
like the zero-field long-range factor which vanishes for
k gO and increases as k for k &O. In fact, for k gO,
we have'5 (with k = —a )

H (a)= f d(q /2)
i

U~i
i

i

=(3F/4a )exp( 2a /3F), a—~~1 . (13)

The above results may conveniently be viewed (Fig. 2)
in terms of our analysis which sphts photodetachment
into two parts. The 6rst, the absorption of the photon at
small r, lifts the electron within the e-H potential well to
the energy position marked c or d, depending on wheth-
er —,k is gO or ~0. This part is entirely insensitive to
the presence or absence of the electric field potential (the
long diagonal line in Fig. 2) and also to small differences
in —,'k . In zero-6eld photodetachment, when the diago-
nal line in the figure is absent, the second part of the
process„namely, the outward propagation of the photo-
electron from r=O to infinity is not possible for c
~hereas it can occur for d. The probability of reaching
infinity is thus nonzero only above threshold and is sen-
sitive to how far above threshold the energy lies. Note
that the electron has to tunnel out through the angular
momentum barrier. ' In the presence of an electric 6eld,
the second part of the process is modified as follows.
Now the photoelectron can escape to z = —00 at all en-
ergies, that is, both for c and d. For the latter, this
long-range evolution is still through the p-wave barrier
but now also against the backdrop of a hnearly falling
potential which impresses modulations on the photoelec-
tron wave function, and, therefore, on the cross section.
For a point such as c that lies below the zero-field de-
tachment threshold, the photoelectron can also escape
from z=O to z = —~, but this requires a tunneling

iC ) ~2

FIG. 2. Schematic of photodetachrnent. For I' =0, reading
only the left half of the diagram, with the abcissa regarded as
the radial coordinate, absorption of the photon within the
short-range potential reaches c (below threshold) or d (above
threshold). Escape is only possible for the latter, and the elec-
tron has to tunnel outward through the angular momentum
barrier. For F&0, the entire diagram is involved, the abcissa
now the z coordinate. Escape to z = —re is now possible for
both c and d, and involves penetration of the combined poten-
tial represented by the p-wave barrier and the downward slop-
ing straight line Fz.

through the electric field's potential barrier. Not
surprisingly, the lower point c is below the threshold,
the larger the barrier and the smaller (exponentially) the
probability of tunneling out to z = —oo. The formulas
above, (12) and (13) in particular, and the results in Fig.
1 re6ect these features of the photodetachment process
at and in the vicinity of the zero-field detachment
threshold.

Finally, it is worthwhile to connect these modulations
seen in photodetachment to the above-threshold reso-
nances in the photoionization of neutral atoms through a
model' that embraces all such phenomena. These phe-
nomena in an electric 6eld, when viewed in parabolic
coordinates, involve motion simultaneously in two coor-
dinates, g=r+z and g=r —z. The former motion has
always a discrete spectrum, the positions and separations
of the energy levels marking the positions of the reso-
nances or modulations. For photoionization near
threshold, these positions are equa/Iy spaced' with a
spacing that is proportional to F ~ . On the other hand,
for photodetachment, the potential for the g motion
reduces to a triangular well. The well-known expression
for the energy levels in such a potential,
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2/3(3n )
( )2g3

2
(14)

marks the positions of the maxima in the modulations
above threshold, in good agreement with the experimen-
tal data.
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