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A model layered feed-forward neural network is studied and solved exactly in the thermo-

dynamic limit. Layer-to-layer recursion relations are found and analyzed as a function of the
relevant external parameters. Stochasticity is introduced by a "temperature" variable. A region
of good recall is found, separated from a region of no recall by a first-order line terminating at a
critical point. The exact time evolution of mixtures of patterns is given as well.

I. INTRODUCTION

There has recently been much interest among physi-
cists in the field of neural networks. ' " One reason for
this is the availability of powerful tools that had been
developed independently for the study of the related but
different subject of spin glasses. ' The problem in spin
glasses is usually phrased in the following form: Given a
probability distribution for a set of quenched random
variables (for instance, the couplings between spins), find
the stable (or low-lying) states of the system and from it
the thermodynamics of the model. In the case of neural
networks that model a memory the problem is reversed:
Given a desired set of stable states, one seeks those pa-
rameters which will indeed make these states stable.
The models studied usually consist of a highly intercon-
nected system of spins, whose couplings are constructed
("learned" ) in such a way that a set of given states be-
come local minima of a Hamiltonian, or more generally,
the attractors of the dynamics. These "memories" are
associatiue; that is, a learned pattern is "recalled" on the
basis of incomplete or erroneous information. The asso-
ciative nature of such memories is due simply to the fact
that many initial states which are "close" to one of the
stored configurations will How to it or to a nearby pat-
tern. One of the main problems of these models has
been, however, the existence of many metastable states
which are uncorrelated with the patterns. In fact, the
number of such spurious states is usually exponentially
large. On the other hand, these memories are robust:
Destroying even a finite fraction of the learned couplings
does not destroy the network's ability to recall. This
robustness is due to the fact that the stored patterns are
spread over the whole network, and do not occupy a
prescribed site as in the digital computer; memory is dis-
tributed.

The various neural network models that have been
proposed over the past few years can be divided into
several broad classes.

The first class of models was spurred by the work of
Hopfield which, in turn, draws on earlier work of Lit-
tle. ' The Little model was formulated in a dynamical
language, i.e., the dynamics of the model was specified
without reference to an underlying Hamiltonian. The

Hopfield model, in contrast, is based on the existence of
a Hamiltonian, which implies a relaxational type of dy-
namics. This in turn implies that the couplings between
the spins must be symmetric. The problem addressed
here is that of using the stable states of a spin-glass-like
system for storing and retrieving information. Recall of
an embedded pattern is equivalent to relaxation to a
nearby stable state. This system was shown to possess
desirable attributes in its capacity as a content-
addressable memory. The thermodynamics of the
Hopfield model has been solved by Amit et ai. , and the
complete phase diagram has been obtained. The struc-
ture of the metastable states of this model has been ana-
lyzed by Gardner. ' The nature of the dynamics of the
model, which is a more diScult issue, has recently been
addressed by Gardner et a/. ,

' who studied the zero-
temperature limit. They were able, however, to obtain
an exact solution only for the first few time steps of the
dynamics. It should be noted that studying the dynam-
ics is usually a more complicated problem than that of
statics. For example, the statics of the Sherrington-
Kirkpatrick (SK) model, within the Parisi solution, ' is
well understood, ' while the answer to dynamical ques-
tions such as remanence is still open.

Various modifications to the Hopfield model have
been proposed since it was first suggested. These in-
clude, among others, modification of the learning
rules ' ' " which eliminate some of its undesirable
features, such as the catastrophic deterioration of perfor-
mance above a critical number of patterns and the con-
straint of random patterns. '

The second class of models deviates from the original
one by introduction of nonlocal learning rules. ' This
work was spurred by earlier work of computer scientists
on the mathematical construct called the pseudoinverse
(see a detailed description in Ref. 16). By local rule one
usually means that during the learning phase of the net-
work, the change in the coupling J"; depends only on the
activity of spins i and j. Here, the locality of the rule is
sacrificed with the bonus of being able to store correlat-
ed patterns, something which is impossible in the origi-
nal Hopfield model. These models may be of interest in
the fabrication of neural networks but seem implausible
from a biological point of view. More recently, Dieder-
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ich and Opper have introduced a local learning algo-
rithm which is capable of embedding correlated patterns
in a network. The learning procedure is of the percep-
tron type.

A third class of models eliminates the restriction of
symmetric bonds. This makes sense biologically, but
makes the problem much harder mathematically. The
reason for this is that once the bonds are made asym-
metric, there no longer exists a Lyapunov (monotonical-
ly decreasing) function which governs the dynamics.
The sophisticated tools developed by workers in the 6eld
as spin glasses cannot deal with such non-Hamiltonian
systems. Results concerning the behavior of such sys-
tems have been obtained recently by Hertz et al. ' (us-
ing Langevin equation methods), by Sompolinsky and
Kanter 0 (using such networks for generating and recog-
nizing time sequences), and by Derrida et al. ' (for a di-
luted version of the Hopfield model). Interestingly
enough this last model is actually solved rather easily be
cause of its asymmetry. Note that the bonds in these
models are asymmetric but the network is functionally
symmetric.

A fourth class of models introduces layered architec-
tures. This type of model, on which we will focus in
what follows, has been studied extensively by computer
scientists over the past few decades, but little progress
has been made concerning analytic results. ' The main
feature of this class which distinguishes it from the pre-
vious classes is the existence of "hidden units, " These
systems usually consist of an input unit, an output
unit, and intermediate hidden units that do the process-
ing. Contact with the external world is made only via
the input and output units. Such a system confers the
immediate advantage of being able to use the hidden
units to one's bene6t. No external constraints are placed
on these units, and they are used in order to construct
good "internal representations" of the environment. Re-
cently, Linsker has studied the self-organization of
feature detectors in such feed-forward networks.

The protype of these models was the perceptron pro-
posed by Rosenblatt' many years ago. This system was
shown by Minsky and Papert' to be of limited value.
However, in recent years there has been much work on
multilayered systems (as opposed to the single-layered
perceptron), and ingenious methods have been proposed
to circumvent some of the limitations of the perceptron.
Notable among these systems is the 8oltzm ann

machine and various elaborations on it, which use
ideas from statistical mechanics to de6ne their operation.
These systems are capable of performing a multitude of
tasks such as learning to read aloud, recognizing sym-
metry groups, learning the past tense, and more. The
performance of these systems has been studied mainly by
computer simulation. The 6rst appearance of related,
multilayered models in the recent physics literature is
through the work of Hogg and Huberman, folio~ed by
a. number of other groups.

We have recently introduced a class of multilayer
neural networks. Here we concentrate on the detailed
analytic solution of the version of the model that we pre-
viously called "simple. " The main results of this paper

were presented previously ' without detailed deriva-
tion.

The network consists of layers of linear threshold
units, similar to the perceptron. %'e impose full connec-
tivity between adjacent layers, but no connections exist
within each layer (see Fig. 1). Thus the network is of
the feed-forward type. The couplings between units in
different layers will be given by a Hebbian rule (see
below). The novelty in this model is that it allows self-
organization of the internal (hidden) and output repre-
sentations. This represents the fact that only the 6rst
layer of a network is in direct contact with the "external
world, " and hence only on the first (input) layer are the
representations of the key patterns externally dictated.
On all subsequent layers the system is free to "choose"
an internal representation of any key pattern. For exam-
ple, in the context of pattern recognition this translates
to realizating that even though the input pattern may
correspond to an actual physical image on the retina or
on the reading unit of the network, there is no such
meaning for the "image" produced in any internal (or
the final) stage of the network. If final visual display of
the recognized pattern is required this can be achieved
by a simple switching mechanism that reads the 6nal
pattern, and if it corresponds to a key pattern, the
desired display is generated. Moreover, the system can
use its freedom to rede6ne the key patterns on subse-
quent layers. With proper self-organization of internal
and output representation, obtained in an iterated learn-
ing procedure, we have shown that the network is cap-
able of perfect recall of key patterns and excellent recog-
nition of noisy input patterns. No such iterated learning
is allowed in the network considered here. We focus on
a version where the representations on all layers are
fixed. This is the case which we have solved exactly. By

FIG. l. Network with layered architecture. State of cell i in
layer I + l is determined by the states of all cells of layer /. In-
put patterns are presented to the first layer, output is read out
from the last. Each cell contains a binary variable S =+1 that
defines its state.
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exact solution we mean that given any initial condition
we can follow the evolution of the state on each layer ex-
actly for any number of layers. In particular, we obtain
the asymptotic (number of layers goes to infinity) behav-
ior of various parameters, which will be defined below.
Our results can be summarized as follows.

(i) There exists a region in the a, T plane where the
system performs well as a content-addressable memory.
Here ct p/N, where p is the number of patterns to be
stored and X is the number of sites in each layer. T is a
temperature variable; for T =0 the dynamics of the net-
work is deterministic, with the degree of stochasticity in-
creasing with T. The value of the critical a above which
no recall is possible ' is given at T =0 by a, =0.27. In
addition, we find that recall is not possible above
T =1, as in the Hopfield model. The transition between
the region of no recall and that of good recall is first or-
der (see below}. The full phase diagram of the model is
calculated, and is given in Fig. 3.

(ii) The relaxation time to the asymptotic behavior r
defined below, is seen to diverge near the transition line.
Divergence of r is usually characteristic of a second-
order transition. We find that at T =0, ~-(a, —a)
as cE~ ls approaclmd.

(iii} The response of the system to an initial state
which is correlated with a finite number of stored
memories is studied. The system is found to be dynami-
cally unstable to a mixture of two patterns. That is,
starting with an initial state that has a finite overlap
with two patterns, the final state has a vanishing overlap
with the state of smaller initial overlap. Above a certain
a the final state has zero overlap with either of the pat-
terns.

The paper is organized as follows. In Sec. II we define
our model and explain its operation (i.e., dynamics). The
analytic solution of the model is given in Sec. III in the
form of layer-to-layer recursion relations. These recur-
sion relations are analyzed in Sec. IV which also con-
tains comparison of the analytic results (valid for infinite
systems) with computer simulations. The reader, if not
interested in the technical details of the solution, may go
directly to Sec. IV. Our findings, as well as future work
are discussed in Sec. V.

II. DEFINITION OF THE MODEL

The model we studied is the following. Consider L
layers; each contains N cells (spins), with a binary vari-
able S =+1 associated with cell i of layer 1. Each cell is
connected to all cells of the neighboring layers {see Fig.
1). The bonds are, however, unidirectional; the state of
layer i+1 is determined by the state (at the previous
time step) of layer l according to a probabilistic rule.
The dynamic process is one which sets the layers sequen-
tially; input corresponds to setting the first layer in an
initial state S;. At the next time step the second layer is
set in state S; and so on. The probability that the ith
spin in the (1+1)th layer has the value S +', given that
on the previous layer I the cells are in state S; is taken to
be

pS.'+'~h.'+
t t

P(Sl+I)
2 cosh(PS'+ 'li '+ '

)

N

i I+ i y Jl Sl
J=1

(2)

is the field produced by the spins of layer I at site i of
layer I + 1. The parameter

P= 1/T

governs the stochasticity of the dynamics, which is
deterministic for T~O (or P~no) and becomes more
stochastic as T decreases. The couplings or bonds J
are chosen by the popular prescription, '

1
aN

(3)
v= 1

where g,
' „with v=1,2, . . . , aX are the stored key pat-

terns.
It should be noted that each key pattern carries a lay-

er index. This is a central feature that characterizes the
class of model neural networks studied in Ref. 29; it has
conceptual as well as technical significance. The concep-
tual novel aspects are discussed in the Introduction. The
main point is that while the input representation of the
key pattern v, i.e., g,'„ is externally dictated, the network
is free to choose the internal as well as output represen-
tations g,

' „I y 1.
In all our studies we assume that the input, internal,

and output representations g,'„of the key patterns are
randomly chosen; all g', „=+1 with equal probability. It
is precisely this fact, of the independent choice of repre-
sentations on di8'erent layers, that technically allows an-
alytic solution of our model. Note that since g,'„de-
pends on l, the couplings J,' also vary with layer index.
Since the layer index also corresponds to (discrete) time
steps, our layered model can be viewed as one with a sin-

gle layer of cells, but time-dependent couplings.
By exact solution of our model we mean that given an

initial state with overlap rn i with a key pattern (say pat-
tern number 1), we have a recursive formula that yields
the average overlap on any subsequent layer or time
step, averaged over all key patterns g. The overlap m„'
is defined by

(4)
i=1

As an example of an important question answered by
our solution, consider an initial state that has a finite
overlap m,' with key pattern v = 1 but vanishing
[O(1/&N )] overlaps with all others. Dynamics result-
ing from such an initial state produces average overlaps
m', on subsequent layers. If, as l~~, m', ~m*&0, the
network "remembers, " and we have finite recall. How-
ever, if rn'=O(1/&N ) there is no recall. From our
solution one can calculate how m ', depends on I, the re-
laxation time to m', as we11 the dependence of m' on
the parameters a, T and the initial overlap m&. %e
derive the solution using the same methods as applied to
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the Hop6eld models' stable states, ' and to dynamics of
the Sherrington-Kirkpatrick and Little models. '

III. EXACT SOI.UTIGN

Consider a random assignment of v=1,2, . . . , aN key
patterns gI on each of L layers of the network. Choose
an initial state on the Srst layer S such that its overlap
with one key pattern (say, v= 1) is m'=O(1), and with
the other patterns v&1, m„'=O(1/ N ). The question
we ask is the following: What is the probability
P(m 1 ~

m,') that the dynamic rules (1) and (2) produce
on layer 1. a state S that has overlap m =O(1) with
key pattern g~, [and O(1/v'N ) with the others]? Note
that we must average both over the random assignment
of the ps and over the probability distribution given in
Eq. (1). The conditional probability to get a configura-
tion

Sl+1 (Sl+1 Sl+1 Sl+1)

on layer 1+1, given the configuration S' on the previous
layer, is obtained by taking the product of Eq. (1) over
all sites,

Pgl + ll 1+1
i

P (S'+'
i
S')= (5)

2 cosh(PS, '+'ht+')

where h +' is given in Eq. (2). The subscript g denotes
the dependence of P& on all the key patterns g", ,. A se-

quence of configurations S', . . . , S will be generated by
our dynamic rules with the probability,

p,(s'(s')=
S2 SL —I

P (SL
~

SL' ') P (S2
~

S') .

Finally, averaging this quantity over the probability dis-
tribution of the random variables g, we obtain the proba-
bility P for S given S' for a random realization of the
Ps,

p(s'~ s')=&&p (s'~ s"&& .

The double averaging sign indicates an average over the
Ps. Anticipating that this quantity depends only on the
initial and final overlaps m ' and m, respectively, we ex-
press the probability as a function of these overlaps,

P(m',
~

m')=e ' ' P(S'~ S')

Here exp[¹(m, )] is the number of states S that have
overlap m, with g'„. This number is given by'

N
exp[¹(m)]=,N(1 )2

For large N one has

s(m)= ——,'(1 —m) ln —,'(1 —m) ——,'(1+m) ln —,'(1+m) .

In order to evaluate P(s
~

S'), given by

p, (s', s', s')=p, (s'~ s' ') p (s'~ s')

In order to obtain the probability for a configuration S
on layer L, given the initial state S, we must sum this
over all intermediate layers;

ll +1 I +1 l g l

~
s, . . . , s '=

2 h pl+I l+1 l gl
i p ip j jp j

we first have to decouple the sums over the patterns and over the sites. To do that we introduce a set of variables m„'

for p, = 1, . . . , aN and I = 1, . . . , L —1 through the following relation:

Note that the variable m, (corresponding to 1M=i =1) is not included here; i.e., it is not an integration variable. With
this de5nition the equation for I' becomes

exp Py„s,' 'g,'+'m„'.
(12)

2cosh Pg S'+'pl+'im'

In order to perform the average over the g's it is convenient to introduce additional variables which bring them to an
exponential form. These are introduced through the following definition:

L —1 d '+'d-'+'
1= g f" dq'+'5 'q'+' —yS'+'g'+'m' = g f"

QQ
p: l, l 2m

exp 1+1~1+1 l~~l'+1 y Sl+1gl+1 l

P

With this relation inserted in (12) we obtain
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r. i-dm' dm & L-i d &+id@!+i

2m

L —1 L —1r
)( exp i—g rn'g' S' i—y q",'+'S'+'g'+'m' ~1

j l=2 j 1=1
l+1

jlt L —1 i
xI(m„', m„',g,',S'}g g

, 2 cosh(PgI+')
(14)

In the expression above we have separated the terms with p & 1 from the term with p=1. In this equation and in the
remainder of the paper whenever (ti appears it will only take values p, & 1. F is given by

q(ql(
((

egp ( x pQ I)I 5 ( j x q(l+ 1@I+ if(+lpg f

= exp g lncosh(irn „'+i/'m„' ')+ glncosh(im „')+g lncosh(i@ m„')
.P'Jql PqJ PqJ

The second equality is obtained by a simple gauge trans-
formation g,'„S -+o,'„. Technically, the reason why the
model can be solved exactly while the Little model can-
not' is that here the patterns carry a layer index and so
the above sum can be simply done. In the Little model,
the g's do not carry a layer index (i.e., one has g,'„=f,'+'
if I~t) and so the sums over g and S do not decouple.
In our model the variables 0,'„are independent; hence,
the summation over g,'„, implied in F can be performed
separately from the remaining sums (over S) in (14}.

To proceed we make an ansatz concerning the vari-
ables m„', m „'. Since the initial condition was a state S'
that has a 6nite overlap m 1 only with pattern number 1,
we assume that for all times (layers) the only finite over-
lap is with pattern 1, m', , and for all the other patterns,
p&1, m„'- 0(1 &/N). So, we rescale the integration
variables for p g 1 as follows:

L —1
11=g f" dp'5 p aX „

d 'd"'= g f" exp tan'P'' iP' y ik„'Z„'—2m/aN'

L —1 did lI exp iaNqg' ig g—(A,„')—~ 2m/aN

(18)

lm~= ~ A~,

Expanding the expression for F to lowest order in X
g1VCS

F= exp ——,
' g(Ri }2+—g gik„k„' gi.g),'

p, , l l p i

The order parameter q' introduced above is the analogue
of the variable r in the solution of Amit et al. , which
measures the mean-square, random overlap of a
configuration with the patterns p g 1.

At this stage we go back to the expression (14) for the
probability distribution. We still have to calculate the
average over the patterns g,

' „and the sum over

S, . . . , S ', keeping two constraints in mind: On the
first and last layers neither g,'„g, , nor states S',S are
summed over. %e assume that the corresponding over-
laps are fixed: rn i and m i with g,'. i and g; i, respective-
ly. Doing this we get the contribution of the first pat-
tern,

'

y (gl }2
'

y (@I+i }2
2X exp 'y In[2cosh(urn I+iq,'m/ '}] i y e,'g-Lm—

~i

In order to separate variables A,„that carry a pattern in-
dex, from the y,' that carry a site index, we need to in-
troduce additional variables using the following identi-
ties:

where e; is +1 for —,'(1+m, )N sites and —1 for the
rest.

Combining all the above manipulations into a single
expression we obtain
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L —1 dm dm I
L —1 dql+f~ 1 L —1 d 1+/'1 L —1 dip. + de . + l L —1

X exp aVym ', m', + pic„'X„' exp iaeyP'p'+ialiiyq'q'+ yiq, '+'q,'+'
1 p, l 1 1 i, l

X exp
' —giP 'iU„X„' ' y—iy'(X„')' ——,

' g(k„')'
1 p 1 p, 1 p

X exp

asap'+'iq,
'1+' ——gq'{(p,'+') exp gln[2cosh(im I+i@,'mI ')] i—+8, ip, m,

i, l i l
'

i 1

(+1
iV L —1 e ~&i

X
2 cosll(Pqi; )

(19)

The integral over the variables m 1 can be done.
Suppressing the index 1 on m', we finally obtain

I. —1 L —1

P(mL~ m')=C f g dq'dq' f g dp'dp'dm'e"F,
1=1 1=2

(20)

where

x stands for any one of the integration variables. %e
supplement these equations with BF/Bm L =0 corre-
sponding to determining the value of m~ at which
P (m

~

m ') is maximal. The saddle-point equations thus
obtained are

L —1 L —1

F=ia g q'q'+ yP'p'
1=1 1=2

+alnZ(q ', . . . , qL ',P', . . . , PL ')

@I+ I

1 aq
aq'

1

(25)

+ g [s (m ')+f ']
1=2

(21)
Il Il
Il +Il

and

f'= ,'(1 —m') lnI' + —,'{—1+m')lnI'

X 1+ expt —2p[(aq' ')'~ y

(22)

In these equations the symbol ( )z stands for
averaging with respect to the weight function Z. In the
Appendix we show that these equations have a solution
with ig =O,p'=0 for all l. Using the results given in
the Appendix we Snally obtain the solution for the over-
laps m in the form of the following recursion rela-
tions:

+ m
'-' —ap'] I (23)

+1 3' —y'/'2t h 1 1/2 + 1

&2ir

Note that the integration variables rn' are the overlap on
the intermediate layers. The function Z is given by

(26)

Z= f g exp i g )1,%' i g q'(A')—
1=1 2m 1=1 1=1

XP[{aq')'"y +m ']
I

I.—1—i y. p'ik'X'
1=2

(24)

These recursion relations, to be used with q
' = 1 (see the

Appendix) and the initial overlap m'=m', , constitute
the solution of our dynamical problem.

At zero temperature these equations reduce to

In the limit X—+ cc we can calculate the integral (20) us-
ing the saddle-point method. This corresponds to
evaluating the derivatives of the form BF/Bx =0, where

m'+'=erf[m'/(2aq')' ],
exp[ —(m') /aq'] .
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IV. ANALYSIS OF THE SOLUTIGN

The recursions presented in Eq. (26) constitute the
solution of the dynamics of our network. The first {in-
put) layer is set in some state that has a finite overlap m '

wltll oiie key patteril, say, g; i. The resulting dyllailiics,
given by Eq. (1), produces a sequence of states S' on the
subsequent layers. These states will have overlap m'
with g i the "image" of g', on layer 1. Our solution de-
scribes how m ' depends on 1 for various values of the pa-
rameters a and T, and the initial overlap m '.

The most important question one wants to answer
concerns the asymptotic value of the overlap. That is,
whether for long times (large 1) the sequence of overlaps
m' converges to a nonzero limiting value m'. lf so, the
system is capable of recall; if, however, m ' =0, all traces
of the initiaBy finite overlap with key pattern 1 are lost.
The limiting value to which the dynamic process de-
scribed by (26) converges is determined by the stable
fixed points of the recursion, and by their domains of at-
traction.

Analysis of the fixed point equations [obtained from
(26) by setting m'=m'=m'+' and the same for q'],
yields the following results. %e find that m'=0 is a
stable fixed point for all a and T. For T&1 and
a &a, (T) additional fixed points exist. In Fig. 2 we plot
the fixed points m'(a, T) as a function of a for various
temperatures in the range 0& T &1. Each line of fixed
points has a stable branch (solid curve), which may serve
as the limiting value m' of the dynamics, and an unsta-
ble branch (dashed curve). The two branches merge at
a, (T). Observing that on the stable branch m'-1 for
low enough T, we note that the system is characterized
by high recall in a range of temperatures around zero.

For a fixed value of T & 1 and a & a, (T) the system
converges to one of the stable fixed points, either with
m'&0 or m'=0. To which one it actually goes de-
pends on the value of the initial overlap m ', there exist

critical values m,'(a, T) such that for m ') m, ' the limit-
ing overlap is finite, while for m' gm, ' the system Aows
to m ' =0 This de6nes a surface in the three-
dimensional phase space (a, T, m') that separates a re-
gion of finite recall from one of vanishing limiting over-
lap. This surface is depicted in Fig. 3.

Cuts of this surface at Sxed temperatures T yield Fig.
4, which gives the critical value of m below which no
recall is possible. That is, for m ') m,'(a, T) the limiting
overlap m'&0, while for m'&m, '(a, T), m'=0. As the
curve m,'(a, T) is crossed, m' jumps discontinuously to
zero; the transition is first order. For example, as we de-
crease m ' from 1 (for fixed a & a, and P, eventually the
limiting rn* jumps to zero. Such behavior was seen in
another model recently.

Such discontinuous change of the limiting overlap ap-
pears to be a fairly common feature of various neural
network models. In many instances it is not easy to see
this in numerical simulations. One may find that for a
finite-sized system the average m' (averaged over the
various patterns g, for example) is a smooth function of
some variable. However, as the size is increased, the
function may (slowly) become steeper. This behavior
can be seen in Fig. 5(a). In such cases it is more reveal-
ing to consider the histograms of m ', as demonstrated in
Fig. 5(b). As can be clearly seen, especially for N =100,
even though (m"), the auerage limiting overlap, is a
smooth function of m', the historgrams reveal a pro-
nounced bimodal distribution, with the weights of the
two peaks varying relatively slowly with m '. This, how-
ever, is a finite-size effect; as the system size increases,
the "jump" from the distribution centered on m '=0 to
that near 1 becomes sharper. Finite-size efects are rela-
tively unimportant away from the transition region; in
this regime (see Fig. 6), excellent agreement with the ex-
act solution (valid for N ~ 00 ) is obtained, even for N as
low as 200. As discussed above, finite-size effects be-
come important as the phase boundary is approached.
This can be seen to some extent in Fig. 6; while the
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FIG. 2. Fixed points m of the dynamic recursions Eq. {26),
vs a, for various temperatures T. The upper branches and the
m =0 line I,'both heavy Bnes) are stable, the lower branches
(dashed) are unstable fixed points. For each T~1, the two
branches merge at a=a, ( T), which is plotted in Fig. 1.

FIG. 3. Three-dimensional phase diagram. The surface
shown separates the region of Snite asymptotic overlap (above
the surface) from that of vanishing final overlap (below the sur-
face).
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upper two curves (corresponding to initial overlaps m'
well within the m'&0 phase) exhibit perfect agreement
with simulations, development from m '=0.2 does devi-
ate slightly from the exact solution. This is due to the
fact that near m,' some members of the simulated ensem-
ble flow to the "~rong" phase. However, as X increases
the relative weight of these "errors" decreases. The
lower curve of Fig. 6 shows another interesting e8ect.
Even though the final overlap is 0, initially the overlap
increases. Similar increase was found for the first time
steps of the Little model. '

Another representation of the phase boundary is given
in Fig. 7 which is the projection of the transition surface
onto the (a, T) plane (see Fig. 3). It presents a curve
a, (T) that can also be obtained from Fig. 2 by plotting
for each T the highest possible value of a for which a
fixed point with m '+0 can be found.

Even though the fixed point equations derived from
(26) are solved numerically, some information can be ob-
tained analytically. For example, in order to calculate
the shape of the phase boundary near the critical point
we have expanded Eq. (26) (taken at the fixed point) for
small m, a, aq and t = 1 —T. We obtain the phase
boundary equation T-1—(&g/3)&a. Similar square-
root behavior was obtained by Amit et al. for the
Hopfield model.

In a similar way we may express the deviation of
m'(a, T) for small a from its value at a=O. For T ~0
the value of a=0 is given by the solution of the equation
m 0 = tanh(Pm 0 ). The solution for small a deviates
linearly from this, i.e., m =mo —F(mo, P)a. Hence, the
m'(a) curves of Fig. 2 have finite slopes (for T pO) at
+=0. At zero temperature, however, the deviation from
m*= 1 is exponentially small;

The relaxation rate v is determined by the recursion rela-
tions (26), linearized near m'. Since as a~a, two
branches merge, one stable and one unstable, the fixed
point at c, must be marginally stable, and hence, ~ must
diverge. Indeed, we find that at T =0,

r-(a, —a) —1/2

For T =0 we have extended the calculations to states
which are a mixture of several patterns. That is, the ini-

O. S o N=1Cl0

N-300

0. 4

0. 2

0. (
0 0. 2

I
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is first order, the model exhibits "critical slowing down. "
Relaxation to the limiting value of m ' is exponential,

m' —m' —exp( —I/~) .

m *= 1 —&2a/m exp( —1/2a ) .

It is interesting to note that even though the transition
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FIG. 4. The two phases, one with high remanence (memory)
and one with m =0 are separated by a first-order line. For
initial overlap m'~m, '(a, 7) vanishing limiting m* is ob-
tained, even for a ~a, . In the phase with m &0 the limiting
overlap is given by the upper branch of Fig. 2. %'e plot m,'(a}
for various values of T.

FIG. 5. (a) Average asymptotic overlap vs initial overlap.
The exact solution predicts the step function shown, while nu-
merical simulations yield the continuous curves plotted. We
note that as the size of the system increases from N =100 to
%=300 the curves approaches the step function predicted
from the theory (a=0.10). (b) Histograms of the number of
members of the simulated ensemble which end up with a given
asymptotic overlap. For an initial overlap of 0.24 (larger than
m,' of Fig. 4) most members of the ensemble How to 5nal over-
lap near 1, and this number increases as the size of the system
increases. For initial overlap of 0.08 {less than m,') the "false"
peak at m —1 shrinks as the system size increases (a=0.10}.
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FIG. 6. Overlap m' as function of layer index (or time) I (for
T=0). The initial overlap for the two upper curves is above

m,' of Fig. 4; the circles represent simulations {with N =200)
that agree perfectly with the analytic curves. The lower curve
starts at an initial overlap of 0.2, below m, . Deviations of
simulations from the analytic curve are due to Anite-size
e8'ects.

tial configuration has finite overlap with v=1,2, . . . , K
patterns and an overlap of order 1/&N with the others.
For example, consider a state with initial overlaps
(m i, m z, . . . , mx, 0, . . .0). In order to present our
solution for m'„+', we first define 2 quantities Mk, with
k =1,2, . . . , 2 given by

FIG. 7. Projection of the transition surface plotted in Fig. 3
onto the (o., T) plane. m =0 (no recall) for (o;, T) above the
transition line, and m ~0 below it.

ffows to no recall (m i mz ——0——} or (b) the larger initial
overlap wins; in this case, if m

& p m 2, w'e get m» 0 and
m2 =0 (and vice versa). Which of these limiting behav-
iors is realized depends on a and on the initial overlaps.
Thus, states having a finite overlap with two key pat-
terns are dynamically unstable in our network. Note
that as o, increases towards a„ the region of no recall
grows. We have also solved the recursion relations (29)
for initial states which have finite overlaps with three or
more patterns. The results we obtain in these cases are
very similar to those obtained by Amit et al. in the
Hopfield model. (We are indebted to Professor H. Gut-

K

Mk ——g rj„km„.I (28)

Here the coefficients ql'„i, ——kl, with k denoting one of
the 2 possible assignments of +1 as coefficients of m'„.
%ith this notation, using similar techniques to those de-
scribed above, we obtain the recursion relations,

m'„+' =,g 5(r)', k, 1)erf[M//(2aq')'~ ],2E —1

0. 8

0. 6

q'+'=1+
zz g exp[ —(Mk ) /2aq']

Here 5 is the Kronecker 5. For the case of finite initial
overlap with two key patterns, i.e., E =2, it is con-
venient to de6ne new variables: m+ ——m&+mz and
m ' =m ', —m 2, and Eq. (29) take the form

0.2

m '+' =erI[m+ /(2aq')'"],
m'+' =erf[m' /(2aq'}], (30)

0. 2

1 —(m+ ) /2aq —(m Pl2eq
q

+ =1+ e ' +e
2')ra

The result of these recursions are presented in Fig. 8.
For a system whose initial state has finite overlap m

&

and mz with two kep patterns we find that it either (a)

FIG. 8. An initial state with 5nite overlaps with two key
patterns (m &, rn&) will "Sow" to one of three "sinks, " (0,0),
(O,m ), or (m, 0), depending on the initial conditions. The
boundaries of the three regions are indicated for a=0.06, 0.12,
0.20.
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freund for drawing our attention to this point. ) Sym-
metric mixture states (i.e., states which have the same
finite overlap with each of the E patterns) are stable for
odd L and unstable for even E.

In this paper we have considered a layered feed-
forward neural network, with full connectivity between
neighboring layers. The case of random key patterns on
each layer, and corresponding Hebbian couplings, is ex-
actly soluble. Such networks do not have an underlying
Hamiltonian (or energy-Lyapunov) function. Operation
of the network is defined in terms of the dynamic rule
that governs the response of the network to the various
inputs presented to it.

By solving the model we mean that in the limit of
large N (cells per layer), given the overlap of the input
with one key pattern (or more) we can calculate the
overlap on all subsequent layers. In fact, we calculated
the average of these quantities over all random key pat-
tern assignments. Ho~ever, since the dynamics are self-
averaging, we expect (and this expectation is confirmed
by numerical simulations) that the results for a single
large system will agree with the average value.

One should note that so far we have solved the dy-
namics of the operation of the network. There is no dy-
////mic learning (i.e., change of the couplings during the
learning phase} in the present model. We plan to
present results on a version, in which the dynamic learn-
ing does occur, in a future publication. 33

One can view our model as a cellular automaton with
probabilistic evolution rules. These rules themselves are
random functions of "time." Viewing the Little model in
a similar way we note that the difference between the
two models is that the random rules in the Little model
are fixed in time. Another way of viewing the difference
is to say that our model is, in some sense, an annealed
version of the quenched Little model. The equivalence
between certain properties of annealed and quenched cel-

ACKNOWLKDGMKNTS

We thank H. Orland, S. Levit, and B. Derrida for
most helpful discussions, and B. Derrida for communi-
cating his results prior to publication. This research was
supported by the U.S.-Israel Binational Science Founda-
tion, the Israel Academy of Sciences, and the Minerva
Foundation.

APPENDIX

In this appendix we present a solution to the saddle-
point equations (25). To do this we look for a solution
with

ig'=0 for all 1 . (Al)

We will proceed with this assumption and show finally

that it is self-consistent. Now, the equation for p
' as

given by (25) is p '= (i A, OA, ' )z, which is given by

lular automata has been recently demonstrated for the
case of the Kauhan model. We do not expect this
equivalence to hold in our case because of the infinite
connectivity (see Ref. 34). Another model whose dy-
namics has recently been exactly solved is a diluted ver-
sion of the Hopfield model and extensions to other
learning rules. In these models it was found that the
transition from the region of good recall to the region of
no recall is second order. In our model (as in the
Hopfield model ) the transition is found to be first order.

On the technical side we note that using entirely
diferent methods, we have obtained rather similar equa-
tions to those obtained by Amit et al. Since our model
is dynamic in nature we obtain an additional order pa-
rameter p which is related to linear response.

We have generalized our model in two directions. (a)
Learning of biased patterns' and (b) difFerent learning
schemes. We have obtained exact results in both these
cases.

Z in the above expression is given in Eq. (24}. Assuming
q '=0 and integrating over /(,

' gives 5(/t, '). In
the last term of (A2) A,

' multiplies k; hence, if
'=0 and g =0, there remains only one term

with A, , and the integral over A, also yields
5(A, ), and so on, until I =lo is reached, for which

one gets J A, '5(A, ')d/'(. '=0. Thus/'=0 yields

p'=0 for all l .

However, for p'=0 it is easy to see that I+ of Eq.
(23) satisfies the relation

q/ 1++q/ —/(y /)2 (A5)

For / = 1 the above calculation yields q
' = 1 which serves

as the initial condition for the cariable q'.
Now we must evaluate /J/

' from Eq. (25). Using the
expression for f given in (22) together with the last of
Eqs. (25) and (A2) we get

The equation for q' is obtained from calculating the
average ((/(, ') )z appearing in Eq. (25). A straightfor-
ward evaluation of this integral, similar to that of Eq.
(Al), yields

/~p / )y/ +y/
Qp

(A6)
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It should be noted that (A4) holds for p'=0; in (A6) we

must first take the derivative and then set p =0. From
(23) it is easy to see that

BII, aII
I @~=0 g I

and we find

(A7)

m '= 1 —2I'

Using Eq. (23) for I'+ (with p'=0) yields the first of Eqs.
(26).

Finally, in order to check self-consistency of the solu-
tion we must demand that indeed g =0. To show this
we need to evaluate Bf'+'/Bq' which can be shown to
yield

I ~q ! (II+ I +II+ I
)+

Substituting this into (A5) yields the recursion relation
for q', the second equation of (26). As to the recursion
for m', we use (A4) and the last of Eq. (25) to get

Using this result it is simple to check that indeed q '=0,
and our solution is consistent with the starting assump-
tion that led to it.
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