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We study the fluctuations in a one-dimensional conductor, coupled to a current source. The
latter produces shot noise at the boundary of the conductor. The conductor is treated as a classi-

cal system of mobile negative charges (with a neutralizing 6xed positive background). The current

source is represented by considering time-dependent boundary conditions for the system. %'e also
assume the existence of dissipation in the system, and describe the interacting particles by a
Langevin equation. The problem is then transformed into an equivalent quantum-mechanical

problem (in an imaginary time) of charged interacting bosons and is solved in the limit of small

density Auctuations. We show how the fluctuations, induced by the source, decay along the wire.

We find that whereas the boundary conditions represent uncorrelated shot noise, the power spec-
trum of the current fluctuations in the conductor has a 1/f tail at low frequencies.

I. INTRODUCTION AND RESULTS

The progress made recently in the technology of sub-
micrometer' devices has brought forward the issue of
quantum fluctuations in small systems. Such Auctua-
tions become important at low temperatures. In addi-
tion to the considerable theoretical interest they raise,
they also have obvious practical implications. As an apt
example let us consider small elements (e.g. , tunnel junc-
tions) coupled to an external current source. Recently it
has been shown that new interesting effects may be
found in such systems. ' It should be emphasized that
all the present treatments of these systems are semi-
phenomenological, and a detailed, microscopic descrip-
tion of a current source does not yet exist. In particular,
the fluctuations within the source are usually neglected
in the treatments of current-biased systems.

More speci6cally, if we consider a Josephson junction
coupled to a dc current source, the standard approach is
to describe such a source by the introduction of a term
—Id, 6 in the effective Hamiltonian of the junction.
Here Id, is the current bias and 6 is the phase difference
between the macroscopic wave function on the left-hand
side of the junction and that on the right-hand side of
the junction. An alternative approach that was suggest-
ed recently consists of representing the bias by a term
—I«tPe in a Hamiltonian which contains an explicit
time dependence. Here the operator Pe is the canonical
conjugate of 6. In either approach the current source
produces a uniform bias on the systetn (junction) and
any fluctuations arising from the source are ignored.

In this work we study the time evolution of source-
induced fluctuations. This may enable us in principle to
evaluate how important such Auctuations are in various
physical systems. It is known that due to the discrete-

ness of the charge carriers any current source produces
shot noise, whose power spectrum is frequency indepen-
dent. One may expect that the interactions among the
charge carriers will produce correlations in their motion
and modify the power spectrum. In order to develop
some physical insight into these processes, let us imagine
that a current source is coupled to an ideal, one-
dimensional conducting lead. %ithin a semiclassical
framework the charge carriers may be viewed as being
emitted from the source at random intervals and then
move along the ideal lead. Due to the interactions
among themselves they tend to rearrange at increasingly
uniform intervals, thus minimizing the interaction ener-

gy. Obviously, a necessary condition for this to take
place is the existence of some dissipative mechanism,
which allows the system to get rid of superfluous
con6gurational energy. Under such conditions we may
expect the correlations to smooth the shot noise.

In the present work we concentrate on the time evolu-
tion of Auctuations which originate at the source. %e
consider here only a system which consists of a source
and a lead, ignoring the effect of any device that may be
coupled to that system. %'e limit ourselves to a classical
treatment of such a system. The metallic lead is
represented by a classical one-dimensional charged plas-
ma. The source (and the fluctuations induced by the
source) are included by imposing the appropriate (time-
dependent) boundary conditions on the system.

The two main results we obtain are
(i) Within our picture of dissipative interacting plasma

the fluctuation at the source decay and, as we go farther
away from the source, the current (and charge-density)
profile of the system becomes more uniform. Thus the
fluctuations along the lead are smoothed, and their effect
on a device that may be coupled to the system is weak-
ened.
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(ii) The fluctuations at the source (i.e., the boundary
conditions) are chosen to be uncorrelated disturbances,
to resemble shot noise. We find that the power spectrum
at an arbitrary point in the lead has a i/to tail at low fre
quencies. The mechanism we find for the noise has some
generality and may explain various cases in which 1/~
noise is found.

The outline of this paper is as follows. The model is
defined in Sec, II, where the dissipative classical plasma
is described in terms of an e8'ective boson Hamiltonian.
This Hamiltonian is analyzed and its energy spectrum is
found. In Sec. III we discuss boundary conditions that
simulate, to some extent, coupling to a realistic current
source. The time evolution of the fluctuations is calcu-
lated, and we show the existence of I leo noise in the sys-
tem. The generality and applicability of our results are
discussed in Sec. IV.

II. FORMULATION OF THE PROBLEM:
AN EFFECTIVE BOSON HAMILTONIAN

x; = —— + ri;(t), —1 aW 1

ax;

where

(rt;(t) ) =0; (ri;(t)rt, (t') ) =y'o5;, 5(t —t')

(2.1)

As was emphasized in the Introduction, we are mainly
interested in the evolution of the current fluctuations, in-
duced by the current source, in a metallic lead. Thus,
we consider here only the metallic lead, ignoring its cou-
pling to another physical system. Within our classical
approach the charge is represented by an ensemble of
classical, negatively charged particles which interact via
the potential W(x „x2, . . . , xz), x; (i =1,2, . . . , Ã be-
ing the coordinate of the ith particle. The source will be
represented later by imposing tine-dependent boundary
conditions on the system. Notice, also, that eventually
we shall consider the thermodynamic limit, where the
size of the system (i.e., the lead) is large. In order for
the system to be electrically neutral we introduce fixed„
immobile, uniformly distributed, positive charges. The
energy due to the interaction of the positive charges
among themselves, as well as the energy due to the in-
teraction of the negative charge carriers with the posi-
tive background, are constants of motion and do not
contribute to the dynamics of the system. Thus one has
to consider only the kinetic energy of the negative
charges and the potential energy due to the interactions
among themselves. To make our picture more realistic,
and to allow for processes that enable the system to get
rid of excessive energy and approach con6gurations with
lower energy, we also introduce dissipation. Our start-
ing point is thus to write down a Langevin equation for
the system:

ap ~ a'p a 1 awat; 2 ax; ax; y ax;i+ p (2.4)

%e now make the substitution

p(X, t)=p!,"q(X,t), (2.5)

where the stationary equilibrium solution of Eq. (2.4) is
given by

2
peq =exp — W

r~
We then obtain an equation for f(X,t):

a@ o a'q
at- 2, ax2

(2.6)

1 aw+
2y cr ax(

1 a w
ax;

(2.7)

This has the form of a Schrodinger equation in imagi-
nary time, with an efFective potential, V, given by

aw' 1 a'w
2y o' ax; 2y

The "Hamiltonian" of this "Schrodinger equation" is
given by

, +V. (2.9)

The associated eigenvalue problem is

it', =Elk, (2.10)

with Eo ——0, gu ——p,'~2. The time evolution of a wave
function, P(t), is given by

y(t)= y (yI
~

y(0))e '
~ y/),

I

(2.11)

where irj(0) is the initial wave function.
To make further progress we assume that the potential

8'has the form

W= —,
' g u(x; —x,. ), (2.12)

where U is a two-particle interaction term. The potential
V then becomes

p(X, t)=5(X —X)= I 2)rt5(X X—(t, fi), j))Pjri, j .

(2.3)

Here X is a vector in the X-dimensional phase space.
One can then obtain directly the associated Fokker-
Planck equation

and y is the friction coeScient.
Let us denote the solution of Eq. (2.1) for a particular

set of Ii);j by X(t, Ii); j). fX is a vector whose com-
ponents are the solutions for each particle, x;(t, (rt; j ).]
Averaging then over all possible realizations of Iil; j
with the corresponding weight P( I i); j ), we define

i 2V ~ jj' (&i)

(2.13)
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p(x) = g 5(x —x; ) . (2.14)

%e then note that

To simplify the analysis, we defIne the particle density in
real space:

A

g u"(x; —x, )
y I j —1

{i~j )

N

(x; —xj ) — ¹
"(0)

I j 1 2y

1
p(x}u "(x —x')p(x')dx dx'—

2y ¹
"(0)

2y

(2.15)

u'(x; —xi)u'(x; —xj')= f dx f dx' f dx "p(x)p(x')p(x")u'(x —x')u'(x —x")
y I jj (+i)

1
dx x'pxpx'U'x —x'U'0+ N U'01

0' 2y 0'
(2.16)

Writing Eq. (2.15) in Fourier space, we have The effective potential (2.13) is then given, up to a con-
stant, by

u "(x;—x~ )

i j =1
(i&j ) ,'P Xq'-u(q) —+1 u( —q)p

q

(2.22)

g q u (q)pqp q
—

¹
"(0) (2.17)

2py

and similarly from Eq. (2.16)

i j j' (&i)
—2

g ( q' q")u(q'—)u(q")p, p,2y cr &N

, Pu'(0) g(q' q, )u(q')p, .p,

The original Hamiltonian, Eq. (2.9), is invariant under
particle exchange, x; -- --xj. This means that it is possi-
ble to choose eigenfunctions which have definite parity
under exchange of any given pair of particles. The
ground state is symmetric [cf. (2.6)]. We assume that the
low-lying excitations are also symmetric. The Hamil-
tonian (2.9) may be regarded, then, as if describing a sys-
tem of interacting bosons, with the potential V. For our
purposes it is convenient to write the boson Hamiltonian
in terms of J(x) and p(x), the current and density opera-
tors. It assumes the form (up to constants)

+ 2
N[u'(0)]

2y 0'

The Fourier transforms are

(2.18) %=—,
' f I'+(x) r(x)dx1

p(x)

+—,
' f f p(x)u(x —x')p(x')dx dx', (2.23)

pq
—— e'q "p(x)dx, 'p(x)= g p e

N
with

I +(x)=J(x)+—,'iVp(x) . (2.24)
(2.19)

u(q)= f u(x)e'q "dx, u(x)= —g'u(q)e'q'" .0 (2.20)

Here 0 is the volume of the system, p is the average par-
ticle density (we assume unit charge per particle)

P =N/0, and qo is a unit vector in the direction of
gradu(x)

~ „o. The second term on the right-hand side
of Eq. (2.18) is zero. If we consider only small fluctua-
tions from a uniform charge distribution, the dominant
contributions from the 6rst term on the right-hand side
of Eq. (2.18) will be those with q'=0, q" =0, or
q'+q" =0. Keeping only these contributions, Eq. (2.18)
becomes, up to a constant,

%e now may write the Hamiltonian in terms of the
Fourier transforms pq and

r+= —f r+(x)e1

If we apply the assumption of small density Auctuations,
we obtain the Hamiltonian

X rq r q+ &PE V(q)PqP-q-
2p

(2.25)

which is quadratic in p. Identifying the second term on
the right-hand side of (2.25) with V of (2.22) enables us
to write

P gq u(q)u ( —q)pqp
2y 0' (2.21) V(q)=q u(q} —+ 2 P

1 u( —q}
0

(2.26)
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Under the assumption of small 6uctuations, the
Fourier transforms p» and I q+ can be written as linear
combinations of Bose creation and destruction operators.
As a result, the Hamiltonian is a bilinear form in Bose
operators and can be diagonalized exactly. The excita-
tion energies are given by

co» =[,'tr —q +p trq~V(q)]'r2 . (2.27)

It is interesting to note that the special form we choose
for the interaction, Eq. (2.13), gives rise to an excitation
spectrum that behaves as q for small q [for small U(q)'s
that tend to a constant as q ~0], which is difFerent from
the usual sound wave spectrum (co —

~ q ~
) found in in-

teracting Bose systems. The same situation was ob-
served before for a nearest- and next-nearest-neighbor in-
teraction on a lattice. ' The interaction considered in
that reference was the analog of our V. While the clas-
sical spectrum obtained was —

~ q ~, it could be shown
that the exact quantum-mechanical spectrum was
bounded from above by constgq .

In the following discussion we shall regard the pq
(rather than the x;) as the basic degrees of freedom in
our problem. Since we are interested in the continuum
limit, the number of these degrees of freedom goes to
infinity (i.e., N ~ oo }.

pq} is real and positive, and p is a probability density. ]
%e will construct a wave function obeying the above

constraint to describe at t =0 a density perturbation lo-
calized at the origin,

exp +Age p ~ito&

Q(0) =
&0o I

exp +) g c,p, I t(o&
(3.5)

(3.6)

Assuming that A, , the parameter describing the strength
of the perturbation, is small,

&p &=+A&it
~ p p ~f &=A, (7+Z ) (3.7)

It may be easily verified that the time evolution of a
weak disturbance at the origin is described by

The expectation value of the q component of the density
1s

&q, ~p, exp '+) yc,p,
p»P(x o}=

p +~&;p,

p(x, t)= f dqp(q)e ' e 'q" dx .
2n.

(3.8)

pq = —(I'q+Zq)(aq+a q),

Jq ——
—,'q( Fq —Zq )(aqt —a

q ),
(3.1)

III. DESCRIPTION OF A CURRENT SOURCE
AND I /f NOISE

Before we continue with the analysis of the current-
current correlations in our system, we recall several rela-
tions which are useful for our purposes. The operators

p» and J may be expressed in terms of a set of opera-
tors [a»] which obey the Bose commutation relations.
Thus within our approximations (of small density fluc-
tuations)

(For simplicity we have dropped & & expectation value
notation. )

It is important to note that the expectation value of
the current, for example, cannot be obtained directly be-
cause it involves velocities in addition to coordinates and
the knowledge of p yields only expectation values for
functions of the coordinates. To obtain the current we
have to use the continuity equation. Equation (3.8) gives
the time-dependent density pro61e in the frame of refer-
ence in which the average current is zero. Transforming
to the laboratory frame of reference, we obtain

Fq= —1+ —q +pV(q) [ ,'o q +crpq V(q—)]

p(x, t)= f dq p(q)e ' e
2K 00

(3.9)

Zq =——1+ q+pV(q} [ ,'—tr q +opq2V(q—)]

(3.2)

where Ud is the drift velocity in the positive x direction.
The continuity equation yields for the current

QUd+&~q —a) t —iq{x —Ddt)J(x, t) = dq p(q) e 'e
27K 00

The Hamiltonian [Eq. (2.25}] is diagonalized in the a
scheme:

(3.3)

Note also that

p, I
~0&= (~q+Zq} I ~q &- (3A)

The "wave function" at a given time, when viewed as
a function of pq must be real and non-negative. [The
reason is that the product of p,'qr (which is Gaussian in

(3.10}

%"hat happens now is that instead of one perturbation
we have a series of perturbations appearing at the origin
at times ]t;]. We will further assume that each pertur-
bation is removed from the system a time T=L /Ud after
it is generated by the source; here L is the length of the
system. The last assumption represents a sink at which
the current is absorbed. If the number of perturbations
present in the system is small, we may still use the linear
approximation to obtain
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1 qud+)Mq —u (t —I,. )

J(x, t)= g I dq p;(q) e

—Iq [~ —vd(t —t. )l
Xe ' 6(t t,—). .

(3.11)

The shot noise in the source is simulated by the fact
l

that the times t, are uncorrelated apart from having an
average difFerence [t;+, t, —]=r, where the square brack-
ets denote averaging with respect to the distribution of
[t; I. Note also that the magnitude of [p; ) can be
chosen from a certain distribution.

Next, we calculate the Fourier transform of the
current-current autocorrelation (which is proportional to
the power spectrum of the noise),

[J(x co)J(x, —co)]= z g(e ' ' ) I dq p(q)
(2m ) oo

e
—lqx

+ lqUd + 1 CO

(3.12)

All the cross terms in Eq. (3.12) (i.e., i&j) will average to zero, so that we remain with

[J(x,co)J(x, —co)]

qUd +EQ)q

dq p(q)
(2m )

Ud T[J(x,co)J(x, —co)]a (3.18)

We find in the region of small co, (co/D)'~ x &&1 (but
still co & u~ /co ), that

e
—iqx

X
Nq + lqUd + l N

Using the relation ~ =Dq, where

v(0)cr pu(0)D= —0 +p 1+
'V

1/2

(3.13)

(3.14)

if, for q~O pq const.
Thus we have obtained 1/co noise' that vanishes

when vd vanishes, has a natural lower cutoff at Ud /D and
is proportional to the size of the system (T=L /ud). The
lower cutofF increases as ud (i.e., the applied voltage) is

increased.

and keeping in mind that p(q) is analytic in the complex

q plane (because p(x) is locahzed), we obtain for positive
x (the lead is in the region 0 &x &I.)

T p(q, )(ud+iDq, )e
[J(x,co)J(x, —co)]=-

T' D(qi —qz)

(3.15)

2
&Ud . Ud—i +4i-
D D2

(3.16)

. Ud—i +L
d
D

2

'2 ' 1/2
. N+4i-
D

(3.17)

v'2 v'2 . co
q2= — +

2 2 D

In the small co regime (co«ud/D) q, = —i(ud/D) and

q2 ——0, so [J(x,co)J(x, —co)] is independent of co. For
co& (ud/D)

r

IV. DISCUSSION

%'e have considered here a one-dimensional system of
classical charges which interact through a short-range
potential. This system is coupled to a current source
and s sink which are represented by time-dependent
boundary conditions. We have shown that the noise
spectrum at a point that is suSciently close to the source
has a 1/co tail. This result may explain, e.g., the mea-
sured noise spectrum of traffic on the roads of Japan. '

In that case the analog of a current with shot noise may
be any disturbance in the traffic. The short-range (self-
avoiding) interactions among the cars are probably
sufficient to produce the 1/co noise similarly to the mod-
el discussed above. In fact, the range of the interactions
is not crucial in the foregoing analysis. If instead of
short-range interactions we use bare Coulomb interac-
tions (i.e., I /r potential in a one-dimensional system, em-
bedded in a three-dimensional world), the spectrum will
be modified by logarithmic corrections and so will be the
noise.

A relevant question at this point is what may actually
be measured. In trafFic measurement it is possible to
measure directly the current Sowing through a given
point. It has been emphasized, however, by Landauer, '"
that for an electron current the reading of an amperme-
ter connected to the electrodes of the sample consists of
the sum of the contributions of all moving charges in the
sample. The measured noise has to be modified by the
factor

~
(e —1)/q,

~

due to an integration over x
—Eq I L 2

[cf. Eq. (3.15)]. Now, remember that our 1/co result for
the noise at a point was a result of the assumption that
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p, (q) is constant in the vicinity of the origin. This is the
case, e.g., for highway traffic. In the case of a lead cou-
pled to an external 3D source (sink) the situation is
difFerent. To guarantee charge neutrality we should con-
sider perturbations p(x) which integrate to zero. Thus,
we may consider, for example, a disturbance which looks
like: a derivative of a 5 function and contributes an addi-
tional factor of q, . This factor cancels the factor of
1/q, that arises from the integration over x (see the dis-
cussion above), and the 1/co tail is recovered again.

Clearly, there is a possibility of other localized distur-
bances that integrate to zero (e.g., higher derivatives of
the 5 function. ) Such higher-order disturbances, when
present in addition to the simplest (derivatives of 5 func-
tion) disturbances, will contribute white noise (plus pos-
sible higher powers of co) to the I/co tail. The presence
of this white noise may affect the observability of the
1/rv tail, because this tail has a lower cutofF at co =vs~/D
(see below) and does not extend down to zero. It may be
expected, however, that this efFect, which depends on the
relative strength of the difFerent disturbances, will not be
very important because the simplest disturbances are the
easiest to create and are expected, therefore, to dom-
inate.

It should be realized that the whole description of our
dissipative system is in a certain sense a low-frequency
analysis. Note, for example, that the ions' positions fluc-
tuate in time, and therefore, our description is not ex-
pected to hold for frequencies larger than the Debye fre-
quency. Furthermore, the correct description of the sys-
tem is in terms of a memory kernel accounting for the
dissipation and force-force correlation rather than a 5
function correlation assumed here. Therefore, our treat-
ment should hold only for frequencies smaller than
1/b, t, where bt is the width of the memory kernel.
Thus, the 1/cv tail may be observed for frequencies that
are small compared to ht ' but larger than v~/D. [For
a current density of 10 A/m and charge carrier density
of 102 cm, vd =2X10 cm/sec, and vz/D =10
Hz (for D =4 cm /sec). Other numbers (which still im-

ply a lower cutofF frequency) apply to semiconductors. ]
The lower cutofF can be varied without afFecting the
upper cutofF, so that our efFect can be observed over a
finite range. Otherwise (when vd is large and D is small),
white noise is expected. The latter should not be con-
fused with the Nyquist noise, which is an equilibrium
noise and may be calculated from the ground state of our
Hamiltonian. The noise we are treating here is the addi-
tional noise generated by disturbing the ground state

(equilibrium). The main idea is that there are two
sources of noise: thermal and the additional disturbance
we generate. The observed correlation is actually the
average over the total noise. This implies that even in
the absence of the external disturbance the right thing to
do is to consider the square of the integrated current and
only then average over the equilibrium distribution.
What we did here was to average the current over a spe-
cial nonequilibrium distribution, take the square of it,
and only then average over the possible (nonequilibrium)
distributions. The two sources for the noise are uncorre-
lated, and the Nyquist noise may always be added by
hand to the noise calculated here.

The physical situation discussed here is very difFerent
from the situation in, e.g., vacuum tubes. ' ' The main
difFerence is the role played by dissipation. In our case
dissipation is important, because the electrons lose ener-

gy to the ionic system; this is represented by a dissipa-
tive term in the Langevin equation. The mechanism by
which the electronic system loses energy in a vacuum
tube is quite difFerent and takes place mainly at the
anode. That is the reason why electrons in a vacuum
tube are not expected to obey a Langevin equation. In
the former, fluctuations are reduced by a frequency-
independent factor due to negative feedback efFects of the
space charge on the current. Here the frequency depen-
dence of the noise is afFected by the dissipation.

The mechanism presented in this paper that generates
the power-law noise is quite different from other mecha-
nisrns that have been suggested previously, including a
wide distribution of trapping times and resistance Quc-
tuations. The basic description presented in this article
can be applied to higher dimensions; it turns out, howev-
er, that the analog of Eq. (3.18) will yield white noise for
d &2. (In fact, for d =2 we will have white noise for
1/r potential and logarithmic noise for short-range po-
tentials). In two dimensions the observation of a 1/u
tail is still possible under certain conditions on the corre-
lations of the integrated power.
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In various cases, the quoted result of 1/~ noise is obtained
after the current is integrated over the volume of the system.

This is not the case here. %'e thank Dr. R. Landauer for his

comments on this point.
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