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Probabilistic interpretation of the Einstein relation

R. Hilfer
Department of Physics, University of California, Los Angeles, Los Angeles, California 90024

A. Blumen
Physikalisches Institut, Universi tat Bayreuth, D-8580 Bayreuth, Federa/ Republic of Germany

I;Received 8 June 1987)

%'e present a probabilistic picture for the Einstein relation which holds for arbitrarily connected
structures. The diffusivity is related to mean first-passage times, while the conductance is given as

a direct-passage probability. The fractal Einstein relation is an immediate consequence of our re-

sult. In addition, we derive a star-triangle transformation for Markov chains and calculate the ex-

act values of the fracton (spectral) dimension for treelike structures. %e point to the relevance of
the probabilistic interpretation for simulation and experiment.

point 0. Analogously, Too(t) is the first-passage-time
density from 0 to 0 conditioned on not reaching b. %'e
call p the conditional probability that the walker after
starting at 0 returns to 0 without having visited b. With
probability q = 1 —p the walker passes directly from 0 to
b without ever returning to 0. In Markov chain theory q
is called the harmonic measure relative to the boundary
b.

The probability density T&»(t) governing the time be-
tween the start at 0 and the first visit to b consists of two
parts. With probability p the walker will visit its start-
ing point 0 for a second or third time before reaching b.
Upon such a visit he starts anew because of the Markov
property. Therefore, in this case the random transition
time is the sum of the random time for conditional re-
generation governed by T(t) and the unconditioned
first-passage time Tob(t) On the o.ther hand, the walker
manages with probability q to pass directly to site b
without revisiting 0. Thence, we find

Tob(t) =PToo(t) e T,„(t)+T,', (t), (la)

where + denotes convolution as is appropriate for sums
of random variables. Analogously a regeneration at the
origin takes place either without visiting b or via a direct
visit to b snd a subsequent transition from b to 0. That
implies a second relation,

Too(t) =PT(xi(t)+qTob(t)e Tbo(t)

Laplace transforming Eqs. (la) and (lb) we obtain

Tob(u) =PTIxi(u)Tab(tt)+qTob(u),

T~{u)=pT~(u)+qT(ib(u) T„(u) .

Inserting qTob from Eq. (2a} into Eq. (2b) yields

(Za)

(2b)

Too(u) —Tob(u)Tbo(u)
pToo(u) =

I —Tob(u)Tbo(u)
In the limit u ~0 we get, using T(0)= I and

The upsurge of fractal models in the study of trans-
port properties of disordered materials poses the ques-
tion whether the Einstein relation whose derivation de-
pends upon spatial homogeneity is also valid for fractals
or other inhomogeneous structures. ' Recently a gen-
eral probabilistic analogue of the Einstein relation ss a
connection between mean first-passage times and passage
probabilities in general Markov chains was identified. '

Here we present a more compact derivation.
%e will start with a simple probabilistic argument for

the basic relation. %e then interpret the result and ap-
ply it to finitely rami5ed fractals. From these considera-
tions we obtain the so-called fractal Einstein relation.
Finally, we use mean-first-passage times to give the star-
triangle transformation for Msrkov chains snd calculate
exactly the fracton (spectral) dimension of fractal trees.
We emphasize the relevance of our results for simulation
snd experiment.

Let us begin by presenting a simple connection be-
tween first-passage times snd first-passage probabilities
in s finite-dimensional Msrkov chain. A Snite-
dimensional Markov chain can be visualized as a walker
(or particle) moving randomly between a finite number
of states (sites). The transitions of the walker from site i
to site j are governed by s transition matrix 8 whose
elements m,.~ give the single-step transition probabilities.
For simplicity we assume the chain to be ergodic, i.e.,
for every pair of sites i,j there is a minimal integer n
such that ( W");J.~0. Thus, after sufficiently long times,
the chain reaches stationarity where every state has a
nonzero dowelling probability. Our objective is now to
describe the spatiotemporal behavior by studying the
transitions between two predetermined states.

Let Tob(t) denote the probability density that a walker
starting from site 0 at time I; =0 will reach the site b
(boundary} (Ref. 6) for the first time after time t Let.
Tob(t) be the conditional probability density for first
reaching b after s time t under the restriction that the
starting point 0 is not visited. Let the density Too(t) de-
scribe the regeneration time between two visits to the
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the desired result for the mean-first-passage times & T &,

& T~ & =qH Tob &+ & Tbo& j .

This relation may be visualized as follows. One out of
1/q walkers will arrive at b without having revisited 0.
Therefore, launching successively walkers from 0, one
has to wait on the average 1/q times the mean regenera-
tion time & Too& until one of them will return who has

reached the prescribed point b.
We now argue that Eq. (4) is indeed a probabilistic

analogue of the Einstein relation It. is furthermore a
generalization in the sense that it is valid for arbitrary
inhomogeneous (including fractal) geometries. For this
to be valid we have to identify the quantities analogous
to the di6'usion constant and the conductivity.

To identify the diffusion constant we note that the re
lation &r (r) & 0: t for the mean square displacement of a
random walk in Euclidean space is also valid in the form
&t(r)& ~r Here . &t(r)& is the mean first-exit time for
the random walk to leave a sphere of radius r around its
starting point. This is a consequence of the invariance
of the Wiener process under the transformation t~b t,
r ~br with b ~0. If r(t) is a realization of the random
process then also r'(t)=br(t/b ) is a realization. Thus,
the time t, when r(t) exits for the first time a sphere of
radius 1 around its origin defines also the first exit time
t ', =b t, for the scaled trajectory and a sphere of radius
b It follo. ws that the mean-first-exit time scale as
& r(b) & ~ b in regular geometries. With this in mind we
can thus take D(L)=L /& T(L) & as the definition of a
generalized scale-dependent diffusion coeScient in an ar-
bitrary inhomogeneous structure of linear dimension L.

To identify the conductivity we have to look at a
diferent physical situation. %'e need to introduce an
external potential into our random-walk picture. This is
done by assuming that the walker has a probability p of
being absorbed at b and subsequently being replaced at
site 0. This "voltage source" between 0 and b will estab-
lish a probability current depending on the magnitude of
the "potential" p. If N walkers are starting from the ori-
gin then Xq of them will reach b without having re-
turned to 0. On the average there will be

walkers passing through the voltage source between b
and 0. In equilibrium the probability current is thus
equal to n/N and we recognize (0) as Ohm's law if q is
interpreted as the conductance. For a system of linear
dimension I. and cross section A the probabi1istic con-
ductivity is then defined as o =qL/A. This identifies the
probability q as the essential quantity for the conductivi-
ty.

We can now return to the pure-random-walk picture
without external potential. Assuming & Tob & = & Tbo & for
the mean-first-passage time to the boundary at a distance
L from the starting point 0 we get from Eq. (4).

where V is the corresponding volume. We remember
that & Too & is the stationary regeneration time (in the ab-
sence of the external potential) and hence independent of
p. We thus arrive at the Einstein relation o ~D. In-
dependent of us, Gefen and Goldhirsch have recently
developed a similar picture.

%'e proceed to apply this result to a fractal structure.
Consider a finitely ramified fractal lattice such as the
Sierpinski gasket or its extensions. A finite order of
ramification ' can be roughly characterized by the fol-
lowing two necessary conditions: (1) The finite lattice
obtained after n steps of the iterative construction of the
fractal (called stage-n structure) is connected through
only a finite number of "contact sites" with the infinite
lattice. (2} For every n the contact sites of a stage-n-
structure can be mapped bijectively to those of a stage-
(n +1) structure. This implies that a random walker on
a finitely ramified fractal can leave or enter a stage-n
substructure only through a well-defined finite set of
boundary (contact) sites ("bottlenecks" ).

We now decompose the transition matrix „8' of a
stage-n structure according to its boundary sites and its
interior sites as

n ~11 n ~12„8'=
n ~21 n ~22

An index 1 corresponds to interior points, 2 to boundary
sites. We then recall from Markov-chain theory that the
mean-first-passage time for random walker starting at
the interior site i in the stage-n structure is the ith com-
ponent of the vector & T„& given by

&T„&=6 1 =(I—„IV)i } '1 .

Here the second equality defines the matrix 6, called the
Green's kernel, I is the identity matrix, and 1 denotes a
vector whose components are 1.

Our goal is to calculate the dynamical critical ex-
ponent z for the fractal. The dynamical exponent
governs the difrusive behavior on the fractal"' accord-
ing to &r (t)& cct ~' or, equivalently, &T(r)& ccr' in
terms of the mean-first-passage time. In the Euclidean
case one has z =2. If the fractal dimension for the lat-
tice is d =log%/logb then z is related to the fracton
(spectral) dimension by z =2d/d. Here b is the length
scaling factor and N is defined by

X„+1X= lim
n~oo n

S„being the number of lattice points in a stage-n struc-
ture. To calculate z we wish to utilize our probabilistic
Einstein relation, Eq. (4}. For this we consider a random
walk starting at a junction of stage-n structures in the
fractal lattice. If m stage-n structures meet at 0 then the
number of points in this finite sublattice is roughly mX„.
In the long-time limit the stationary probabilities are
thus proportional to 1/mX„. If the walker makes one
step per unit time he spends a fraction of roughly
1/mN„of his steps at the origin. Thus we have
& T„.oo& ccN„ for the regeneration time on the stage-n
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structure. If we now compare a stage-n with a stage
(n-+ 1) structure we obtain from Eq. (4)

x„, q„„,& T„„&
X„q„&T„)

1 —N',

1 —N2

1 —N3

N3 1 —N1 —N2 —N)

Here & T„) is the mean-first-passage time to a boundary
point and q„ is the probability of reaching one of the
boundary points without returning to 0. Since we have
assumed dynamic scaling in the form & T(r)) car' it fol-
lows that a.—:lim„„&T„+,&/&T„& exists and we can

pass to the limit n ~ 00 which yields

(9)

where h —= lim„„q„+,/q„. Equation (9) has been
called the fractal Einstein relation. '" It is sometimes
written z =d+g, where g denotes the length-scaling ex-
ponent for the conductivity. ' This form is obtained
from Eq. (9) by taking logarithms and dividing by the
logarithm of the length scaling factor b.

%'e pause to discuss the signi6cance of these results.
First, we remark that for the case of 6nitely ramified
fractals it can be shown that the probabilities q„obey a
monotonicity property in the form O&q„+, &q„& 1.
This leads to the relation Z (2, expressing an interesting
connection between geometric and dynamic properties. '

Second, Eqs. (8} and (9) give rise to a straightforward
method of calculating z from numerical simulations.
One simply measures directly the mean-6rst-passage
times for two scaled structures. Taking their ratios gives
~ and thus z. %'hile exact calculations are restricted to
finitely ramified fractals one can use Eqs. (8) and (9) on
any network as an approximate method. %e expect that
this method will converge faster than directly recording
&r (t)) and deducing z from &r (r})~t ~'. However,
care has to be exercised because x is de6ned as the limit
n~oo and it is necessary to check in any application
whether a further increase in the size of the structure
will significantly alter the value of ~. Apart from being
easily accessible in simulation and numerical calcula-
tions mean-6rst-passage times can be measured directly
in photoconductivity experiments on amorphous materi-
als, ' while any experimental determination of &r (t))
has to be indirect.

%e conclude this paper with two applications. First,
we derive the probabilistic analogue of the star-triangle
transformation for resistor networks. Second, we calcu-
late the fracton dimension for a fractal tree. Both calcu-
lations depend on the method of using mean-6rst-passage
times.

Consider the Markov chains for a star and a triangle
as speci6ed through the transition matrices,

The mean-first-passage times to a site j are obtained by
eliminating the jth row and column from 8' and 8",
respectively, and solving the linear system of equations
(I —@')&T)=1, where @' denotes a reduced transition
matrix. %e demand that the mean-6rst-passage times
between any two corresponding points i and j
(i,j =1,2, 3) are equal. Solving the resulting systems of
linear equations one obtains the star-triangle relations

—1 —1
3 N2 W3

N
1 4 N1'+N2 '+N3

3
W 2 4 N1

3
N 3 4 N1

—1 —1
N1 W3

+W2 +N3
—1 —1

N1 N2

+N2 +N3
—1 —1

Except for the factor —,
' this is exactly the star-triangle

transformation for resistor networks if one identifies I /m
with ihe resistance R. The factor 4 is a consequence of
the conservation of probability.

As a 6nal application we determine the fracton dimen-
sion of the fractal tree shown in Fig. 1. Because of its
dangling ends this cannot be calculated exactly via the
usual real-space renormalization approach. On the oth-
er hand, using the equations for mean-6rst-passage
times, mentioned repeatedly above, we obtain the exact
scaling factor ~=6 already from stages n =1,2, 3. From
this the fracton dimension follows' as 1=2(ln3/in6)
=1.226. . . .

In this paper we have exploited the intimate connec-
tions between the mathematical foundations of the Ein-

T

1 —N1 —N2

N3

1 —N1 —N3 N3

1 —N2 —N3

FIG. 1. A fractal tree obtained from a Sierpinski gasket.
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stein relation and the theory of stochastic processes. %e
have exerted ourselves for a concise derivation of the
mathematical result in order to focus on its interpreta-
tion and applicability. In a more systematic approach
Eq. (4) is found to follow from a general relation be-
tween generating functions for conditional first-passage
probabilities. ' Here we have established in a proba-
bilistic framework the links between the mathematical
approach and the physical picture, both for the ordinary

and for the fractal Einstein relation. These results could
be used directly in simulation studies and experiments
on transport in inhomogeneous media, regardless of
whether the systems behave fractally or not.
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