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The Hopfield model of neural networks is extended to allow for the storage and retrieval of
hierarchically correlated patterns. The overlaps between these patterns form an ultrametric tree.
Intermediate states, which serve as ancestors for the following levels, are generated at each level of
the tree. The states belonging to each level are stored, by a modified learning rule, in a series of
identical networks, one for each level. The retrieval of a particular pattern is preceded and assisted

by the successive retrieval of its ancestors. The performance of this scheme is studied analytically
and numerically.

I. INTRODUCTION

The binary version of Hopfield's standard model for
associative memory' consists of a system of N Ising spins
whose dynamics is governed by the Hamiltonian

H= ——,
' g J SSJ,

I,J
(j&i)

where 5, =+1 represents the two possible states of the
ith neuron, and the interactions JJ, which connect pair-
wise all the neurons in the network, represent the synap-
tic eScacies between them. A set of p patterns (PI
(i =1, . . . , N; p= 1, . . . ,p), in which P is either +1 or
—1, is embedded in the J;.'s, via the "learning" rule

(1.2)

((P&)=a,
((pg)) =a for ls&v . (1.7)

of the J;J's on the stored patterns.
A modified version of Hopfield's model, which incorp-

orates the storage and retrieval of patterns with a finite
bias, and hence with finite correlations between the pat-
terns, was proposed recently by Amit et al. (to be re-
ferred to as AGS). The main virtue of this model is that
it retains the simplicity of the learning rule. Every ele-
ment P of the learned patterns is chosen independently
with probability

P(P)= —,'(I+a)5(P —1)+-,'(1 —a)5(@+1), (1.5}

where —1&a &1. For patterns generated in this way
one gets

These patterns are the "memories" stored in the net-
work. A fair amount of understanding of the properties
of this model as an associative memory has been
achieved by analytical analysis supplemented by numeri-
cal simulations. '3

One of the restrictions of the model represented by
(1.1) and (1.2) is that each P is +1 or —1 with equal
probability. Thus, in a large network, the average bias
or magnetization" of the learned patterns vanishes,

—„y.p=«g;&) =0.1 (1.3}
l

Moreover, there are no correlations between the pat-
terns, namely,

((gg)) =0 for p&v . (1.4)

This is a very unsatisfactory situation. More realistic
networks should be able to store correlated patterns. A
model proposed recently by Personnaz et ah. and stud-
ied analytically by Kanter and Sompolinsky is free of
such restrictions and has the capability to store any set
of linearly independent patterns. However, the price one
pays there is a more complicated, nonlocal, dependence

Such biased patterns can be stored in a neural network
by modifying the synaptic efficacies [Eq. (1.2)] to

J, =—g (P—a)(gl" —a) .1

With this modification the stored patterns are retrieved
with a small fraction of errors, up to a storage level of
p =a, (a}E. However, the storage capacity, character-
ized by a, (a), decreases sharply with a, roughly as
(1 —

~

a
~

) . In addition, one finds that the energy
landscape becomes dominated by spurious states which
have finite overlaps with several of the learned patterns.
As the bias a increases, the number of such states in-
creases, they become the absolute minima of the energy,
and, for rather low values of a, the critical storage level
o., of the spurious states becomes significantly higher
than that of the stored patterns. Finally, and related to
the previous problem, one finds that, although the
learned patterns themselves are stable below a, (a) (up to
a small fraction of errors), their basins of attraction, and
hence the fault tolerance of the network, decrease sharp-
ly with a. All these problems are overcome in AGS by
also modifying the dynamics, so that it becomes con-
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sistent with the bias of the stored patterns. This is done
by constraining the dynamical process to states with an
overall magnetization Xa. Such a constraint may be im-
posed rigidly by requiring that at each state

—gS, =a,

or by adding a penalty term for deviations from the rigid
constraint to the Hamiltonisn

&=—
—, g J~)s;SJ+ QS; Na —. (1.10)

/, J l

For large values of g one recovers the rigid constraint.
The model studied by AGS is suited to treat the

minimal correlations induced by the constant bias of the
patterns. In the present paper, I generalize this ap-
proach to a set of hierarchically correlated patterns.

The organization of objects with well-defined relations
of similarity into a hierarchical (ultrametric) tree arises
naturally in many cases of data classNcation and
analysis. Several proposals to incorporate such s struc-
ture in a neural network have been made before. One of
the main goals of the "selectionist" approach, promoted
by Toulouse et al. , is to make use of the ultrametric
space spanned by the ground states of the SK
(Sherrington-Kirkpatrick ) spin-glass for the storage of
hierarchically correlated patterns. Two different models
for storing a hierarchical tree of memories in a neural
network were proposed by Parga snd Virasoro and by
Dotsenko. ' Both models are motivated by the recent
understanding of the detailed microstructure of the ul-

trametric properties of the SK spin-glass. " Parga and
Virasoro propose a learning rule which is closely related
to the form of the couplings in the SK model found in
Ref. 11. Dotsenko, also following in the footsteps of
Ref. 11, describes the hierarchy of patterns in terms of
spin clusters with given magnetizations, and proceeds to
assign a hierarchy of connections —first within a cluster
and then between clusters at higher and higher levels of
the tree. The performance of these models with respect
to the storage capacity, quality of retrieva, speed of con-
vergence, and size of the basins of attraction has not
been demonstrated. In fact, numerical simulations'i'
of the last two models indicate a very poor storage capa-
city. This can be anticipated from a signal-to-noise
analysis (similar to that performed in Sec. III A). An in-
teresting extension and generalization of the Parga-
Virasoro scheme hss recently been suggested by Feigel-
man and Ioffe. '

The scheme proposed here is different from the above
both in the learning rule and in the dynamics of re-
trieval. It retains the simplicity of the J, s, which are
only modi6ed to indicate the cluster to which a psrticu-
j.ar pattern belongs. The paper begins with the descrip-
tion of a particular procedure for generating a hierarchi-
cal tree of patterns (Sec. II). The patterns produced at
the highest level are the memories to be stored in the
network. Analysis of the proposed learning rule (Sec.
III) reveals the same problems encountered in AGS be-
fore the introduction of constrained dynamics. To avoid
these problems in the present case, I propose s hierarchy
of dynamical constraints which are implemented in sn

architecture based on several networks —one for each
level of the tree (Sec. IV). The retrieval of a particular
memory is achieved in the last network and is assisted
by the retrieval of its ancestors at the various levels by
the preceding networks. The analysis of Secs. III and IV
is supplemented by numerical simulations in Sec. V.

Although I do not want to venture a neurobiological
interpretation of the proposed scheme, I believe that a
succession of networks, each of which plays a partial
role in performing s certain task, has neurobiological ap-
peal.

II. GENERATION OF A HIERARCHICAL TREE
OF PATTERNS

One can derive many procedures to generate a set of
hierarchically correlated patterns. Two such procedures
are described in Ref. 9. They are similar to the pro-
cedure described below. There is, however, one
difference. In Ref. 9 only the patterns themselves, name-
ly, the points at the highest level of the hierarchical tree
have any significance, while the branching points remain
formal constructs and play no role in the model. In con-
trast, in the model studied here the branching points sre
represented by real states, which serve as ancestors for
the subsequent generations and appear explicitly in the
learning rule and in the dynamics of retrieval.

The hierarchical tree of patterns is constructed as fol-
lows. At the erst level of the hierarchy one generates p &

patterns {P},p, =l, . . . ,p„where every component P
is chosen independently with the probability given by
Eq. (1.5). These patterns serve as ancestors for the next
level. At the second level a new correlation parameter b,
Og b ~ 1, is speci5ed. One then generates from each pat-
tern {P},pz descendents {P"},v=1, . . . ,pz, choosing
their components with the probability

P(P")=—,'(1+Pb)5(P" 1)+—,'(1 P—b)5(P"+1—) .

This rule implies that a component g, in a pattern be-
longing to the group descending from the pth ancestor
has a higher probability to be equal to P than to —P
(since b &0). This process can be continued by specify-
ing at the kth level of the hierarchy s correlation param-
eter ak, and using each of the pk, patterns {g;

' " '
}

generated at the previous level to produce pk descen-

dents {g;
' "},using the probability law (2.1).

The correlations between the patterns in the second
generation are given by

=a b (p~p') .

Thus, the patterns are grouped into clusters with high
correlations between patterns within the same cluster
and lower correlations between patterns in diFerent clus-
ters. The correlations of the patterns with the ancestors
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gll gll(1 glgllb)(1 b2)

=a b (tulip')

and the average bias of the patterns is

(2.3)

+g'„. (g",
" P—b)

(2.4)

In the case a =0, there is no correlation between pat-
terns in di8'erent clusters (lM&lM') and only patterns
within the same cluster are correlated. Moreover, in this
case, the patterns have on the average the same number
of +1 and —1 bits.

The generalization of Eqs. (2.2} and (2.4) to a hierar-
chy of k levels is

(3.2)

where the apostrophe indicates that the term tu= 1,
v=1, which appears separately, is excluded from the
sum. The first term represents the signal. It is of the
same sign as g,

" and hence stabilizes the pattern. The
second term constitutes the destabilizing noise. The par-
ticular choice of the synaptic eScacies implies, through
Eqs. (2.2) and (2.3), that the average of the noise term
vanishes. The mean square of the noise term is

(& —1)(p,p2 —1)
R =

2
(1—b ) =a(1 b) .—(3.3)

(2.6)
The lowest value of the signal term is S = (1
—b )(1—

~

b
~

), and thus the signal-to-noise ratio is

where a is the correlation parameter at the jth level.
Equation (2.5} represents a set of overlaps typical of the
ultrametric clustering of the generated patterns

S (1—ib j)
Q

(3 4)

III. THE LEARNING RULE

The treatment will henceforth be restricted to a
hierarchy of two levels. The generalization to any num-
ber of levels is straightforward. The correlations be-
tween the patterns are determined by the parameters a
and b The numb. er of patterns is p =p,p2 (p, clusters,

p2 patterns in each cluster) and the storage level is
characterized by the parameter a p/X. The following
learning rule is proposed to store the patterns in the net-
work:

(I2=1, . . . ,p, ; v=1, . . . ,p2) . (3.1)

Note that the model discussed in AGS [Eqs. (1.5) and
(1.8)] is a special case of the present scheme, in which p
patterns are generated from the single ancestor
Ig", ) =(1,1, . . . , 1).

A. Signal-to-noise analysis

Let us 5rst examine the conditions for the stability of
the stored patterns as derived from a signal-to-noise ra-
tio analysis. The local 6eld on neutron i in configuration
IgIl) is

Following the arguments of Ref. 15 one concludes from
the probability distribution of the noise that the patterns
are perfectly stable for

2 in%
(3.5)

(1—ab)(l ab )—
p2 ——(1 ab)+-

(b ab )—
which, for a =0, reduces to

(3.6)

(3.7)

This restriction to a 6nite, usuaBy small, number of pat-
terns within each cluster is independent of the size of the
network.

This is the storage capacity for perfect retrieval. It de-
pends on the total number of patterns and not on how
they are grouped into the diferent clusters. It does not
depend on a, and is determined only by the parameter b,
which represents the strongest correlation among the
patterns. In its form, Eq. (3.5) is identical to the corre-
sponding result in AGS.

The most important feature of Eq. (3.1) is that it en-
sures that the noise term in Eq. (3.2) has a zero average.
Note that this term does not average to zero if one
naively follows the prescription of AGS and subtracts in
Eq. (3.1) the bias of the patterns ab instead of gb.
Analysis of this case shows that the patterns become
destabilized when p2 exceeds
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B. Mean-Beld analysis

The properties of the network for finite a=@/X are
derived from the free energy associated with the Hamil-
tonian

&(p&s &)& —=—„yp(s, )
f

= (( ptanhp[v'arz+m""(p p—b)] )) .

g (P" P—b)(Pj" P—b)s;S, . (3.8)
1,J )M, V

Ii&j )

The replica method is used to perform the quenched
averaging over the Ps. Thus, the free energy is comput-
ed from

(3.15)

To compare the mean-field equations, obtained here,
with the results of AGS, I shall now take the zero-
temperature limit. Performing all the averages, one finds
that as p~ ao, Eq. (3.10) becomes

((Z n )) = puNn—( 1 b)—

Tr pexp "; —;"b S~
P, , v,

m =—,'(1 b)[e—rf( A+ )+erf( A )],
where the superscript (p, v) has been dropped, and

m (1+b)
v'2ar

(3.16)

(3.17)

(3.9)

where p is the replica index. The calculation follows in
the footsteps of AGS. The quadratic term in the ex-
ponential is linearized by a Gaussian transformation.
One or several patterns are singled out as candidates for
condensation and the g's of the remaining patterns are
averaged out. This average must, in the present case, be
performed with some care because the components P of
the ancestors of the condensed patterns couple to the un-

condensed patterns belonging to the same cluster.
%'ithout repeating the details of the calculation, I write
down the resulting saddle-point equations for the order
parameters, for the case of a single condensed pattern
IP"]
m""= (((P" Pb)tanh—P[&arz+m""(P" Pb)])),—

(3.10)

q = (( tanh p[v'arz+m""(p" pb)] )),—

q(1 —b )i

[1—P(1 —b')(1 —q)]'

(3.11)

(3.12)

Now (( . . )) denotes averaging over P', P, and over
the Gaussian variable z. The average over P" and P is
performed with probabilities, Eqs. (2.1) and (1.S), respec-
tively. The order parameters q and r are the same as in
Refs. 2 and 6: q is the Edwards-Anderson spin-glass or-
der parameter and r is related to the random overlaps
with all the uncondensed patterns. The retrieval order
parameter m"" is given by

Equations (3.11) and (3.12) become

( 1 b2)2

[1—(1 b)C]—
where

(3.18)

C—:lim P(1 —q)
P~ oo

v'2m ar
[(1+b)exp( —A + )+(1 b)exp—( —A )] .

(3.19)

The general conclusions derived previously from the
signa1-to-noise analysis follow also from the mean-field
theory: (a) The properties of the network are deter-
mined by p =pip&, and not by pi and p2 individually; (b)

they depend only on strongest correlations in the system,
characterized by b; (c) with the redefinition of the order
parameter m" [Eq. (3.13)] the mean-field equations are
identical in form with those obtained in AGS (this is
true at all T).

The implication of point (c) is that one encounters
here all the problems found there: (i) low storage capa-
city, decreasing with b roughly as (1 —

~

b
~
); (ii) domi-

nance of the energy landscape by spurious states; (iii)
very small basins of attraction.

IU. CONSTRAINED DYNAMICS

Finally,

(((S)) = —,'(1+b)erf( A ) ——,'(1 —b)erf( A+ ) . (3.20)

m~'= y(P" Pb)(S—, ) . — (3.13)
ln the attempt to retrieve a particular pattern tp ], it

is natural to restrict the dynamics to configurations
which, like the pattern itself, satisfy

The quality of retrieval is characterized by the overlap
of the equilibrium state I (s, ) j with the stored pattern,

—g gPS —b
1

—ygP&S, ) =m~"+ yP&S, ) . —1 „6
l

(3.14)

To calculate this quantity, one has first to solve Eqs.
(3.10)—(3.12) and then to compute

The problem with such a constraint is that one has to
first identify the ancestor pattern [P ] . This can be
achieved in the following scheme. Assume a succession
of identical networks, one for each level of the hierar-
chy. In the case of a two-level hierarchy there are two
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such networks. The ancestor patterns are stored in the
first one, using the learning rule (1.8}, and the memories
are stored in the second network with the learning rule
(3.1). An input pattern j P"I, possibly with a fraction of
wrong bits, is "shown" first to the first network, For a
wide range of parameters a and b the input pattern will

be in the basin of attraction of j P) and will (low, usual-

ly very fast —after 2-3 updatings per site —to a station-
ary state in the close neighborhood (a small Hamming
distance} of jPI. Roughly, the requirements are that b

is not too small, so that the overlap with jgI is

suSciently large, and that a is not too large, to ensure a
clear separation from the basins of attraction of the oth-
er ancestor patterns. The lower bound on b depends on

p, /N, which will usually be well below the saturation
level. For example, for p, /%=0. 05, one Snds' b «0.2.
The simplest case is when a =0. Otherwise, especially
for low values of b and high values of p, /X, one has to
impose, during the retrieva1 process at this level, the
constraint «S; &) =a.

Once jPI has been retrieved, that information is
transferred to the second network as an external field (or
threshold bias) h, on each neuron,

h;=hP . (4.2)

Note that to this end only S connections between the
two networks are required. The input pattern is now
used to start the dynamics at the second level, which
proceeds in the presence of the external field h;. The
efFect of this field on the mean-field equations (3.10),
(3.11), and (3.15) is to add the term PhP to the argu-
ment of the hyperbolic tangent. The T =0 equations
remain the same, provided that Eq. (3.17) is modified to
read

m (1kb)+h
&2ar

(4.3)

V. NUMERICAL SIMULATIGNS

The dependence of the size of the basins of attraction
on the various parameters was studied by numerical

There is one value, h =ho, for which Eq. (3.20) is

equal to b. Equations (3.16}-(3.19}with h =ho were ob-
tained in AGS. There, the parameter b (a in the nota-
tion of AGS) represents the bias of patterns and the
equations describe the effect of the rigid constraint
((S;}}=b En the p. resent case, of a diff'erent type of
correlations between the patterns and modified J;, the
same equation describes the rigid constraint, Eq. (4.1).

Figure l sho~s the storage capacity as a function of h

for several values of b. The maximum is reached at
h =ho. The value of ho depends on b; however, if one
operates below maximum storage there is a fairly broad
range of values of h which are appropriate for a range of
values of b. This is demonstrated in Fig. 2. At a storage
level of a=0. 1, all the learned patterns can be retrieved
for all values of b and h within the hatched area. For
example, when b =0.5 the stored patterns are stable for
0.24&h &0.62; however, their basins of attraction de-
pend on h.

0
I.O

FIG. 1. Storage capacity a, as a function of the external
Aeld conjugate to the ancestor state, for several values of the
correlation parameter b.

S;=sgn g J,"S +hP (5.1)

where JJ is given by Eq. (3.1). The initial configuration

jS,'"I has an overlap g with one of the patterns belong-

ing to the cluster p,

—g S,'"g"=i} .
1 (5.2)

0 0.5
h

FIG. 2. Range of values of the external field h and the
correlation parameter b, which ensure the stability of the
learned patterns for a level of storage. (a) a=0. 1, the hatched
area; (b) a =0.05, the area between the dashed curves.

simulations. In the simulations it was assumed that the
ancestor pattern jPI had already been retrieved. This
defines the external field acting on the spins in the
second network, in which p =p &p& patterns generated
with the procedure described in Sec. II have been stored.
The dynamics is defined by
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FIG. 3. Results of numerical simulations of the effect of h
on the size of the basins of attraction. Successful retrieval is
defined as convergence to a pattern with less than 2% error
compared to the target pattern; q is the overlap of the initial
configuration with the target pattern. Each entry is a result of
500 trials.

The spins are updated sequentially using Eq. (5.1) until a
stationary state is reached. A successful retrieval is
defined as the case when the final state is identical to the
pattern Ig") up to 2% of error.

Figure 3 shows the results of such simulations for
several values of h in the case of N =500, p, =5, p2

——10,
a =0, and b =0.5. Each entry in the figure represents
an average over 500 trials. The optimal (for storage
capacity) value ho is close to 0.45. When h increases
above this value the basin of attraction decreases. It is
clear why large values of h imply smaller basins of at-
traction. There are three contributions to the local field
on spin i: a random disorienting field due to the overlap
with the uncondensed patterns, a field which tends to
align the spin configuration with the stored pattern, snd
the external field h;, the effect of which is to align the
spin configuration with the ancestor pattern. The latter
is necessary to overcome, together with the other order-
ing field, the disorienting effect of the random field. In
the present case this happens for h &0.24. The two

aligning fields now compete, and for large values of h the
overlap between the initial configuration and the stored
pattern has to be suSciently large. Otherwise, the exter-
nal field is dominant and the spin configuration Rows
away from the target pattern. At h &0.62 this happens
even when the initial configuration is the stored pattern
itself. Figure 4 shows similar results for N =1000,
p& ——10, p2 ——10, a =0, b =0.7.

Extensive simulations have been performed for various
combinations of the parameters a and b, and various
pairs of p, ,pz for a given p. It was found that the be-
havior of the system does not depend significantly on a
or on the grouping of the p patterns into separate clus-
ters. One also finds that for h =0.3, one gets roughly
the optimal basins of attraction for 0.2&b 58. Thus,
the value of h can be a property of the system, and does
not have to be tuned in each case, provided that the data

I I

¹ I000
-0/t x

I I I I

p, =lO, pz=lO, O=O, b=0.7

V)
V)
uJ

V)
Q.8—

4o

CD

tXl 0.6-o
CL
CL

Q4
I.Q

h=
& 0.3

0.4
x 05

I

0.6 OA

FIG. 4. Same as Fig. 3, for a different set of parameters.

are characterized by a correlation parameter b in this
range. The typical size of the basin attraction for
p =0.1S is characterized by an initial overlap g=0.6.
This is comparable to, though slightly worse than, what
is found in the standard model with uncorrelated pat-
terns, ' where for a=0. 1 one gets g=0. 55 for the same
requirement on the quality of retrieval adopted here (less
than 2% of error).

VI. DISCUSSION

In this paper I have outlined a particular scheme for
storing and retrieving s set of hierarchically correlated
patterns. The learning rule is a simple generalization of
the one described in AGS. The new element is the re-
trieval process based on a series of networks, each one
imposing dynamically a threshold bias on the subsequent
network. Although the model was analyzed in detail
only in the case of a two-level hierarchy, the generaliza-
tion to any number of levels is straightforward. The
model can also be extended to treat a more general
hierarchical tree with different numbers of patterns in
each cluster at each level, and also with a distribution of
correlation parameters in each generation.

The model presented here depends on a hierarchical
organization based on global relations between the pat-
terns (a difFerent type of a hierarchical organization is
described below). Section II specifies a particular pro-
cedure for generating such a tree of patterns. In general,
one faces the inverse problem. Suppose that s given set
of patterns has an underlying ultrametric structure of
Hamming distances. To store this set of patterns in the
scheme proposed in this paper, one has to know the
properties of the hierarchical tree, namely, the grouping
of the patterns into the clusters at different levels, the
correlation parameters, as well as the intermediate states
at the branching points, which are not part of the given
set of patterns. There exist classification algorithms for
grouping data into a tree structure. They are referred to
in Ref. 7. Once such a grouping is accomplished, one
can easily deduce the correlation parameters from Eq.
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(2.2). The ancestor pattern of a given group at the kth
level of the tree is then labeled by a, . a„,, and

given by

Coming back to the proposed structure, in which the
states belonging to each level are stored in a series of
identical networks, one should point out that this
scheme is very uneconomical. The same size of network
is required to store the p &

ancestor patterns at the Srst
level as is used at the highest level to store the

p,pz p„memories (in a k-level tree). It is possible to
modify the present model so as to make more eScient
use of the available storage capacity at each level. One
way to achieve that suggests itself in the case of several
difFerent sets of hierarchically correlated patterns. Each
of them will be stored in a separate network, but they
can share the same network for storing their ancestor
patterns. This model will, in the general case, result in a
hierarchical tree of networks. Without carrying the
analogy too far, such a structure is reminiscent of the
hierarchical organization of cortical areas in the visual
system of the owl monkey, ' where neurons in the lowest
areas (Vl, V2) respond to several domains of information
such as shape and motion, while the response in the
areas at higher levels is more specific.

The implementation of such a scheme of a hierarchy
of networks requires a distinction between meaningful
and meaningless activity of a neural network. Imagine
that the ancestor states of two hierarchical trees, A and
8, are stored at the first level, and suppose that respond-
ing to a particular stimulus, the network at this level
converged to a pattern P„. The descendents of this pat-
tern are stored at the next 1eve1 in network A, and one
of them wiH be retrieved by the mechanism described in
the present paper. But network 8, which stores the des-
cendents of the second tree, is exposed at the same time
to the same external stimulus as A, and it will also con-
verge to some fixed point, which is in general one of the
exponentially many spurious states and docs not corre-
spond to anything that has been learned before. How
does the system "know" that the fixed point in network

is meaningful and the one reached in network 8
should be ignored as meaningless? Several schemes for
such a distinction have been suggested. They are dis-
cussed in detail in Ref. 18. The simplest such scheme is
based on the difference in the time required to reach a
learned pattern starting within its basin of attraction,

and the time needed to converge to one of the spurious
fixed points, starting with a random input. An alterna-
tive scheme was proposed by Parisi. ' Adding asym-
metric connections afFects very slightly the stability of
the learned patterns, but has a drastic effect on the
spurious states. In asymmetric networks, random in-

puts, which are not within the basin of a stored pattern,
in general, lead to chaotic behavior and do not converge
to fixed points.

Another model which makes better use of the avail-
able storage capacity at all levels of the tree is based on
a different type of organization of the patterns into the
respective clusters, when the correlations between pat-
terns belonging to the same cluster are localized in a
specific part of the site space, and not distributed over
all the spins, as before. The extreme case is when all the
patterns which belong to the same cluster have, say, the
first N& bits in common. The remaining strings of
N —X& bits characterizing the difrerent patterns are un-

correlated. Likewise, there are no correlations between
the vectors of Ni bits defining the clusters. If there are
more than two levels, then all the clusters, for which the
6rst N2 of these X, bits are identical, belong to the same
supercluster. This classification can be extended to any
number of levels. Such a hierarchy of patterns can be
stored (with a difFerent and even simpler learning rule) in
a series of networks along the lines described before, ex-

cept that now the ancestor states are shorter than the
patterns at subsequent levels, and they are assigned to
smaller and smaller networks. The retrieval of a partic-
ular pattern proceeds as before. First the ancestor pat-
tern is detected in the smaller network and then an
external 6eld conjugate to this pattern is applied to the
first N, spins of the full network. The retrieval of the
target pattern is now assisted by the presence of an
external 6eld acting on a 6nite fraction of the spins. The
details of this model will be described elsewhere.
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