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The first Born approximation corrected for the boundary conditions is used to compute total
cross sections for charge exchange in H+-He, H+-N, and H+-O collisions at intermediate and
high energies. An independent-particle method is employed with a one-electron orbital for the
target. Two sets of computation are presented in which the initial state of the active electron is
described by the Roothaan-Hartree-Fock and hydrogenlike wave functions. These two approaches
yield noticeably difFerent results for the cross sections. Excellent agreement with existing experi-
mental data is obtained at energies ranging from 50 keV to 50 MeV by using the Roothaan-
Hartree-Fock wave function as a linear combination of normalized Slater-type orbitals.

I. INTRODUCTION

Charge exchange in collisions between bare projectiles
and multielectron atoms has been the subject of many
experiments over the years. The most numerous are the
early measurements on total capture which could not
isolate any specific shell of the target. ' At low ener-
gies, the dominant contribution to total capture is pro-
vided by electrons from the outermost target shells. The
situation is reversed at high energies, where the inner-
shell electrons yield the most significant fraction of the
total capture. In the intermediate-energy region, inner-
and outer-shell capture are of equal importance. In-
terference between these two contributions is responsible
for an appreciable change in the curvature in the total
cross sections. ' ' This is in contrast to the collision of
bare nuclei with genuine single-electron atoms, for which
the cross sections relating to a given target state vary
monotonically at all energies.

Capture from an inner shell of complex atoms is ex-
perimentally diScult to isolate and the available data are
scarce. " Multiple scatterings preclude the coincident
detection of charge exchange and E vacancy produ-ction
for large values of the projectile nuclear charge Zt.
Nevertheless, in this case, electron transfer from the E
shell of multielectron targets to the ground state of the
hydrogenlike atom can indirectly be determined. This
has customarily been done by subtracting the Zp-scaled
ionization cross sections from experimental data on the
It.-shell vacancy production. ' At lower Zz, however,
multiple processes are less efFective and the measurement
becomes feasible. The coincident detection of newly
formed hydrogenic atoms and Auger electron signals
provides the ratio of the cross sections for capture and
total vacancy production from an inner sheH of the tar-
get. These recently measured ratios, together with
the earlier recorded data for the total inner-shell vacan-
cy production, have been used to extract pure electron-
capture cross sections for a specific inner sheB of mul-
tielectron atoms.

An interest in electron capture by ionized projectiles
from multielectron atoms arose with regard to the pro-
duction of inner-shell vacancies. It is now well estab-
lished that the deviation from the Zi, -charge dependence
of the total inner-shell vacancy production can be ac-
counted for by inclusion of a charge-exchange chan-
nel. 9'2' Electron transfer is also crucial in thermonu-
clear fusion devices using neutral beam injection heating
and refueling of magnetically confined plasmas. 's

Processes employing atomic oxygen to produce x-ray
lines involve charge exchange between low-energy cos-
mic rays and interstellar gases.

Recent experimental data on electron capture from a
particular inner shell of multielectron atoms at high en-
ergies " have prompted much theoretical work. 6'2

Computations based upon inclusion of electron correla-
tion efFects in perturbation potentials and wave functions
are not yet available. However, this seems to be un-
necessary since a wide separation of binding energies for
the inner-shell electrons of heavy targets justi6es the use
of an independent-particle model. 2s In this approach, all
the target electrons interact independently with the pro-
jectile, and the transition probability for a given electron
is unaltered by the presence of the remaining electronic
core. These nonparticipating, passive electrons merely
screen the target nuclear charge seen by the projectile
and the active electron. The screening has most fre-
quently been introduced by considering the Coulomb po-
tential with an e8'ective charge accompanied by the hy-
drogenlike wave function for the target. . The bind-
ing energy of the active electron was subsequently
chosen from the experimentally determined ionization
potentials. The rationale for this was the substantial
di8'erence between the hydrogenic energy and the actual
inner-shell binding energy. ' However, elimination of
this energy deviation has been achieved independently of
the effective charge selection. Hence, the additional
problem of the "post-prior" discrepancy arose despite
the use of exactly known hydrogenic orbitals.

Previous theoretical studies, with the exception of
Refs. 6 and 28, have ignored the boundary conditions
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which account for the correct asymptotic behaviors of
the scattering wave functions at large interaggregate sep-
arations. The asymptotic convergence problem, treated
in an exact theory, becomes irrelevant for protons in-
cident on neutral multielectron targets. However, in
practice, resorting to approximate descriptions becomes
inevitable and neutral heavy atoms are usually treated as
one-electron systems with an effective nuclear charge.
Such s model is, however, no longer free from the
asymptotic Coulomb interactions between the colliding
particles. Therefore, the unperturbed channel scattering
states must exhibit distortions even when protons are
used as projectiles. Hence, the Coulomb wave functions,
or equivalently, their eikonal phase factors, should be
employed instead of the plane waves for the relative
motion of heavy particles. This departure from plane
waves has often been assumed to be "minimal, " but this
assumption has not been substantiated. On the contrary,
it has recently been demonstrated within the first Born
approximation that the boundary conditions are essential
for charge exchange. In particular, the sole intro-
duction of the Coulomb phase into the exit channel
within the Jackson-SchifF (JS}matrix element for H+-Ar
charge exchange reduced the calculated cross sections by
about 200 times, so that the first-order theory and exper-
iment are now in agreement.

In the present paper a first-order theory is formulated
for charge exchange between completely stripped projec-
tiles and arbitrary multielectron atoms. The usual first
Born approximation is corrected for the boundary condi-
tions in both entrance and exit channels [hereafter called
corrected first Born (CB1) approximation]. In general,
these corrections refer to (i) the Coulomb distortion of
the unperturbed channel states and (ii) the perturbing
potentials. The two modiScations are consistent with
each other. Hydrogenic and Roothaan-Hartree-Pock
(RHF) models are investigated by approximating the
nonlocal atom potentials with an efFective Coulomb in-
teraction. In both of these independent-particle methods
the efkctive charge of the target nucleus is chosen in
such a way that the hydroIlenic energy relation is
satisfied, i.e., Zr' =(—2E; 8"}~ n', where E,"H" is the
RHF orbital energy and n' is the principal quantum
number of the orbital occupied by the active electron.
In this way the present model with the hydrogenlike
wave functions does not exhibit the post-prior discrepan-
cy. The RHF orbital energy E;" ", which is computed
by means of a self-consistent-field (SCF) technique, s is
known to be in close agreement with the experimental
binding energies. In the RHF model, the initial target

state is described by a linear combination of the normal-
ized Slater-type orbitals (STO) with the parameters ob-
tained by Clementi and Roetti. Such a wave function
is not exact and, therefore, the "post" (T&+) and the
"prior" (TI ) transition amplitudes are unequal. The
post-poor discrepancy can be avoided by j.ntroduc&ng s
new transition amplitude as an arithmetic average of T,&
and T,&. This procedure is adopted in the present work,
which reports the results of detailed computations on
charge exchange in H+-He, H+-N, and H+-0 collisions
at intermediate and high energies.

Il. THEORY

Consider a rearrangement scattering in which a bare
nucleus of charge Zp impinges upon an arbitrary mul-
tielectron atom or ion X»'+, i.e. (atomic units will be
used throughout unless otherwise stated),

Zp+X»'+ -+(Zp, e)~+X, (2.1)

TI(»i)= f f dRdrr@& V 4+,
T~I+(v])= f f dRdrp@I VI@+

where q is the transverse Inomentum transfer, snd

(2.2a)

(2.2b)

The target of charge state q possesses N + 1 electrons in
the initial state (i). The electronic state of the hydrogen-
like bound system (Zp e)& is described by the usual set
of quantum numbers n I m =f. A s—imple model for
process (2.1) has been proposed by Belkic et al and.
was subsequently implemented by Belkic and Taylor 5 in
the first Born approximation with correct boundary con-
ditions (CB1). In this model the set of N noncaptured
electrons is considered to be "passive, " such that their
interactions with the active electron e do not contribute
to the capture process. It is also assumed that these pas-
sive electrons occupy the same orbitals before and after
the collision. As a consequence of such s simplification,
an explicit introduction of N passive electrons into the T
matrix for reaction (2.1) is avoided. Furthermore, it is
taken that the perturbing potentials V; and V& in the en-
trance and exit channel contain only Coulomb interac-
tions. In this way the pure three-body nature of the
rearrangement collision is preserved. It is within this
model that we impose the correct boundary conditions
to the scattering wave functions. Then we can introduce
the appropriate prior and post forms of the transition
amplitude for process (2.1) as follows:

(2.3)

4+=y, "(rT)exp ik, r, +
Zp(ZT —1) Zp(ZT 1)—

ln(uR —v R)—:4.exp i ln(uR —v.R)
U

(2.4a)
I

Zp ZT (Z~ —1) Z;ff(Z, —1 )

pI ( p)rexp—l kI ——rI —l ln(uR +v R) =4Iexp i-ln(uR +v.R)
U U

(2.4b)



k, r;+kf rf ——v rz —a R,
= —v rp+P R,

(2.5a)

(2.51}

zI =(zi cosP„,zi sing„, O)

a=a, v+zi; a, = —u/2+5, E/u,

P=P, v zi; P,—= —u/2 b,E/u—,

(2.6a)

(2.61)

6E Ej Ef Ef (Zp In f)zl2 = —af—l2 . (2.6c)

Capture process (2.1) can, at least formally, be compared
with the pure three-body problem of the type

Zp+(Zz, e); ~(Zp, e)f +Zr, (2.7)

where Z& is the target nuclear charge. In this case there
is no post-prior discrepancy and the transition amplitude
can be calculated from either of the two following ma-
trix elements:

zp Zp
Tf (zi)= f f dRdrrpf (rp}

ZP

Here v is the incident velocity vector, k; and kf are the
initial and final wave vectors, R is the relative vector of
the target nucleus with respect to the projectile, and rP
and r& are the vectors of the active electron relative to
the projectile and target nucleus. Functions p, "(rz-)
and yf (rp ) are the orbitals of the active electron in the
initial and 6nal state, respectively. Furthermore, in the
usual eikonal mass limit, we shall have

(gk ) gk + {k)
;(rr)=Nk rz e F&, ,(rz') (2.9b)

where F&, ,{rr) is the usual spherical harmonic, n'k' is

the orbital number, and A, 's are variational parameters,

k [(2g )I+2n "
l(2 (k))l]1/2

electrons into the transition amphtudes (2.2a) and (2.2b).
Nevertheless, these passive electrons are implicitly
present in the SCF technique used to compute both the
RHF wave function for the multielectron target X(~'+
and the associated RHF orbital energy E;" ". Hence,
the present theory for process (2.1) represents a substan-
tial impovement over the customary hydrogenic mod-
el. In this latter model, the inethods available for
process (2.7) have been extended to reaction (2.1) in a
straightforward manner by simply using certain Zz in-
stead of Zz and by employing the pure hydrogenic wave
function for the initial state of the multielectron tar-
get. ~ 6 Moreover, such a hydrogenic model violates
its own boundary conditions for process (2.1) in the same
fashion as has customarily been done for reaction (2.7).

We shall presently choose an analytical form of the
RHF wave function which has been obtained by
Clementi and Roetti with the help of the SCF tech-
nique, i.e.,

N,.
(Ak )(rr ) =q '$' {rT} y c/j~ (k)l

' '(rr ) ' (2 9a)
k=1

Here, c's are the coelFicients associated with the normal-
(kk )

ized STO's g, k,,;;(rr },

Xexp(ik; r, +ikf r )fC(R),

z
Tj+(v])= f f dRdrppf (rp)

(2.8a)

Upper summation index N, in Eq. {2.9a) represents the
total number of the STO's used in describing a given
shell of the target from which capture is taking place.
Parameters ck, A,k, E," ", and N, are given in a tabular
form in Ref. 38. In the present study, we shall choose
the following value for the erective charge ZTr, as sug-
gested by Belkic et al. :

)& exp(ik; r, +i kf rf )8(R), (2.8b) Z efl'
n i( 2E RHF

)
I /2=Pl (2.11)

Zp(Zz —1)
C(R)=exp i ln(uR —v R}

Zz. (Zp —1)
+i In(uR +v.R) (2.8c)

where y; (rr) is the hydrogenlike wave function for the
target system (Zz, e), . It then follows that Eqs. (2.2) and
(2.8) difFer from each other in three important aspects:
(i) the introduction of an effective charge Zr in place of
Zr, (ii) the appearance of the RHF wave function for
the target instead of the hydrogenlike bound state, and
(iii) the replacement of the hydrogenic energy
E, = (Zz /n') /2 by the—appropriate RHF orbital ener-

gy E; . As we have already emphasized, the present
theory requires that the three-body nature of charge ex-
change for process (2.1) be preserved. This has alleviat-
ed an explicit introduction of the dynamic of X passive

where n ' is the principal quantum number of the target
initial orbital from which the active electron is
transferred to the projectile.

Setting R=p+Z, where

p =(cosP„,sing„, O),

and Z =R v, we shall have

T&(zi}= f f dRdr&(pu) elf'V 4(uR +v R.)

(2.12a)

Tf+(zi)= f f dRdrp(pu) ~4f'V&4;(uR +v R)

(2.121)

with vtl ——Zp(Zz —1}lu and g=(Zz —Zp)/u. Transi-
tion amplitude (2.12a) yields difFerent cross sections from
those obtained by means of Eq. (2.121), and it is advan-
tageous to eliminate this post-prior discrepancy. Hence,
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the following symmetric form of the arithmetic average
transition amplitude will be used in the present compu-
tation (see also Ref. 35):

where
z&f(p)= —,

' f f dpdZq)f (r }(V,. +Vf }qR""(rr)

T,f(ri)= ,'[T—f(ri)+T;f+(vi)] . (2.13) X(pv) s(UI«+v R)

The total cross section for process (2.1) is introduced . hE
+exp —iv-r —i Z

V
(2.16a)

2
T,f (ri)

cr;f(a0)=n0 dpi 2'
T;f(ri)

no (2.14)

where n0 is the number of electrons in the target shell
from which the capture is occurring. We shall be con-
cerned with a nonrelativistic approximation in which the
target electrons are treated as distinguishable. Cornputa-
tions will be carried out for capture of one electron.
Within the nonrelativistic theory, the total cross section
is multiphed by the number of electrons in the active or-
bital. This is because each of the electrons occupying
the active target orbital can be captured with equal
probability. Inserting Eqs. (2.12a), (2.12b), and (2.13}
into Eq. (2.14), it is readily verified that

&;f(ri) = —,'[Jf(vi)+&+f(ri)],

Sf(vl)= f f dRdr O'V 4.(uR +v R)

(2.16b)

(2.16c)

III. CALCULATION OF MATRIX ELEMENTS

Introducing the Fourier transform f(q) by

f(q) =(2m ) f dr e'q'f (r), (3.1)

and r =(r~+rr )/2.
Thus, it follows from Eqs. (2.15a) and (2.15c) that the

2« vpterm (pu) ~ can be omitted from transition amplitudes
(2.12a) and (2.12b) in the computation of the total cross
sections. This enormously simplifies the evaluation of
matrix elements.

T;f(vl}
(T,f(a~~)=n0 dpi

2&U
(2.15a)

CT,f (a 0 )=n0 f dp2

2

;f(p)
2&V

(2.15b)
Sf(9)=ZT, I'f'0 ('9) If')—— (3.2)

S;f(ri)
(T (/( a () ) = Tl () d ri

2&U

g+(~ ) =Z elf1(1'0) (~)—Z e(rl(0'0) (~ )

(2.15c)
where

(3.3)

I'"' '( )=(2 )' f dRZ -'( Z .R. -'«f d -' R (3 4)

and

(v,- } v,. —1 RHFit,.
' (rT)=rT' q),. (rr),

¹

v,. —1 (Ak}g ckrr' X„(k),;;(rT)
k=1

(3.5a) 2m.2

C'+' (X /Qq'+X')
X )+I' (n+„+)/v2 ™;(q),

q +"k
(Ak, , }
n(")l'n'( ~) '

k=1
(3.5b)

-~~k }
Normalized STO's in momentum space 1 (k)l, ,(q) can
be expressed in terms of the Gegenbauer polynomials
and spherical harmonics (Belkic ). The most con-
venient representation of these Fourier transforms,
which is required for the calculation of integral (3.4}, is
the power-series representation. Thus, using formula
(22.3.4) of Abramowitz and Stegun, we deduce

(n, +v, )/2 q/ . .(q)
=(2m ) JV~"i ' g c

(q +A,„) '

/i/ /(q)=(2m) Nf i' g c f 2 2 P +1f+2(q'+af ) /

(3.7)

(3.9)

—(A,k, v,. }(q)= g ckl „(kI, ;(q),
k=1

where 9'l (q) is the solid spherical harmonic and
[(n, +&; )/2] is the integral part of the fraction
(n, +v;)/2. Further,
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Zp P f161TZ [(af/nf)(nf+1 )(]'f lf((4af )'

f (21f+ 1)!

JVg" ——16m(n, +v; )!2' Nk",

( —nf) (nI+ if+1)r Py Pg

(lf+ 3/2) gf!
I

( —1) "(2&k) " '(p;2+v; —1)!

P;('(P 2+v;)'

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(a)„=Ha +n)/&(a),
(3.10e)

+i 1 ++i2=~ ~ ~i I, +Pi'2 =~r

Pw =~Pi].~ "i=Pu+~i
(3.10f)

Auxiliary integral (3.4) can now be written in the follow-
ing form:

I;I" f (vl)=i ( i) Ng —g dI,
k=1

[(n +v, )/2]

p ~ 1=0

n~

p~
—0

(3.11)

where dI, =ck JVj

&„'„' f (a,P)=(2m) f dRI1. '(uk+v R) '&9 ' f( —R),

lm q+
9„'„f(R)=

2
dye'q'"

q —a '+a~ "&" q+

(3.12a)

(3.12b)

(3.12c)

nr pf+lI——+vf+1 .

The final result of integral (2.12a) is given by,

(3.13)

( „) ) l' lf + I') + l
l (2n„)!i'"f (a P) y g y y g(2)( 1)(2+1)/2 " '

f1 ( ((1 v)nn~u lcm'
l'l ——0 l) ——0 m )

———ll m
1
———ll l =I'

( n„)p- p+1 2
X g )F2 —n, —l(.(, —nq+p; —nq+, nq+ ——;1

u( 2n )p
— ' ' " ' " 2' " 2 ' p.

(cr, 5)., +(f Gp(' «v)
x dtt f '(1 —r) '

0 g2n (k+() p —i— — (3.14)

where the upper index (2) in Eq. (3.14) associated with symbol g( ' indicates that the summation over 1 must be per-
formed in steps of two (see Appendix). Here, we have

Q=at —P(1—r), LL =2u(2r1 t)+a&r +A2, (1—r),—v= —a —P,
and

0(,','(l, v)=(1'Im', (1'm')(lf(m,
(
lfmf)(l', m',

~

lf(mf(
~

lm ) P('f f(v)P(, , ( —v), (3.15a)

I
G-', ' '(Q, v)= g g X'((r)L), '(Q, v),

a =0 l l
——0

ll x —I +2+Q2
X,'(o )=ab,I 2 —,—,1 iy„a+1+—1, —p. —1;P 2 2

+ l
1

D(' (Q, v)= g (l,m,
~
lm)P( ~ (Q)(/( ( iv), —

m l
———l l

(3.15b)

(3.15c)

(3.15d)



DZEVAD BEI.KIC

(2/f+1)(2/(+1) (I, +mf)!(If+mf)! {If m—f)!(If m—f)!
' 1/2

2l +1 (I +m)! (I —m )!
I ™4~(2/)+l)(2/2+1) (/)+m))!(/2+m2)! (Ii m! )!(12 m2)!

(3.16a)

(3.16b)

(21', +1)(2lf+1)(21+1){I', m ',
~

lfm f
~

lm ) =( —1)
4m O 0 0 —ill ) tB )

—Pl
(3.16c)

a =Pl —ig)(/+l)p
(2b, )

Prr 2 2 P +(+1 (3.16d)

'Pi (44 ( —/) ) (iy ) (1 / )&

//2 (/ +1)„a!
2

{v/) iQ v—}, y =U/b, ,Q2++2

(3.16e)

(3.16f)

IJ +IJ —/J~

tnax(
I
f'

max(

A, =l ) +lf),

mI+m2 ——m, —12 &mz &+/j (j =i,f); m =m! —m', ,

/
/I —lf /, /

m
/

) if inax(
/

/', —/f /, /
m

/
)+A, even

f
/', —lf /, /

m
/
)+1 if inax(

/

I', —lf /, /

m
f

)+A. odd,

l&+l2 ——l, m&+m2 ——m; —l2 &m2 &+12,

n, =n —l —1, n =n;+nf+1; v =p —a, p =p+o,
)'!=(+I/) 'Y2=4

p+1n+&—2, S

K~ —I Q2+Q2+l+1
J

1 ( —)! /2)„( —~ /2+1/2)„(1 iy )„)—g 2+g 2

(a+I +1)„(—p —/)„u!

The Claussen generalized hypergeometrical polynomial 2F2 occurring in Eqs. (3.14) and (3.15c) and defined
r r

rtun( (,n„—p)
( ) ( g ) ( +

2F2 n, ——A,&, n„+/2; n„—+—, n„+— ; 1

s=0

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e}

(3.18a)

(3.18b)

where [a. /2] is the integral part of the fraction!r /2.
Thus far, the quantization axis has been kept arbitrary in the derivation of the general result (3.14). However, the

angular momentum algebra can considerably be simpli6ed by choosing the quantization axis along the incident veloci-
ty vector v. Such a choice is adopted in the present paper, so, that

I„„"f(a,p)=8 „'„' f .(a v, p v)4' f{p. )@;((/!Ii), (3.19)

with 8 being independent of azimuthal angles P and P&,

(2/vr)'~ 8 „'„' f (a v, P.v)

gr If ; (2n„!)y(2) ( 1 )(A. +()/2 —m ' " film
pg, flag I

Im'~ If= ImfI I =I'f

( n„)„— p /)+1
&F2 n, —A&, —n„+/—); n„+,——n„+;10( 2n )p

— ' ' " ' " 2' " 2

p —2' '( .v)
x dhr '(1—r) '2 " ! nf +l2 n,. + )f2 gplm

pI g2n —(A.+ I)—p —1
(3.20)
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where m =m' —m,f
1l

0'; f(u)=(1',
(
I'm')(If

(
Ilmf)t, l', m'[ Ifmf

)
Im }u '( u—) ',1t1f (3.2 la)

(3.2 lb)

~ ' (Q )=(I, (I )( —' )'Q 'Pi (Q"), (3.21c)

(I',
~

I'm')=

(Ii (
Im)=

2Ii+1 (IJ+m J)! (Ii—m J)!
2IJ +1 (Ij+m I)!1$!(IJ —m J)!Ij!

' 1/2
2I +1 (I +m)! (I —m)!
2I +1 (I +m}!I,! (I, —m}!I!

' 1/2

(m =m' —mf),

(3.22a)

(3.221)

where Pi (z) is the normalized associated Legendre
1

function of the first kind, i.e.,

2I, +1 (I, —m)!
P (z)=( —1)~ i i

(1—z2yn/2
2 (I, +m)!

X (m &0),
2'I i

(3.23a)

(3.231)

(3.23c)

(3.23d)

This completes the calculation of the transition ampli-
tude for process (2.1) in the most general case of arbi-
trary initial and final quantum numbers i and f. Total
cross section (2.15c}is obtained by carrying out the dou-
ble integration over t and ri with the quantization axis
along vector v. The integral over Pv is performed
analytically with the result equal to 2n This is i.mmedi-
ately apparent from Eq. (3.19). In practice, a change of
variable is made in the integral over ri, such as

I

suits reported in the present paper are exact to within
three significant digits.

We have written a program for both reactions (2.1)
and (2.7), which exactly reproduces the numerical results
obtained by partial difFerentiation for all possible transi-
tions between n'I'm' and n lfmf with n', nf&3 and
0(l' (n'f 1, ——I'f&m'f&+I' . Further, a driving
subroutine was written in order to detect numerical in-
stabilities due to round-of error which can occur in al-

ternating series for large quantum number values. If
these series are found to cause a serious loss of
significant digits, an efficient Shank-Levin nonlinear
transformation is used to carry out the summations ex-
actly 41,42

The two di8'erent branches of the present algorithm
for reactions (2.1) and (2.7) can also intrinsically be test-
ed against each other. The hydrogenlike wave function

(rr) for the target in process (2.7) can easily be ex-

pressed as a linear combination of normalized STO's.
Hence, in a number of test runs, for various combina-
tions of initial and final states with appropriate
specification of parameters, we have obtained the results
of Belkic et al. for process (2.7) by utilizing the path of
the program devoted to reaction (2.1).

z =(iI —2)/(vI +2), (3.24a)
IV. RESULTS

which scales the integrand towards the dominant region
of the narrow forward cone. This is more obvious if we
rewrite Eq. (3.24a} in the following form:

cos8=1— 1 1+2 (3.241)
pqU 1 —2

where iI =2@,„u sin(8l2}, 8 is the scattering angle
8=cos '(k, kf ), and p,, is the reduced mass of the in-
cident and target nucleus. We choose the universal
Gauss-Legendre quadrature to carry out both of the
remaining integrals over tC[ 10] and zH[ —1,—1]. A
variable order version of this integration rule is used to
compute o;f with any prescribed degree of accuracy. If
necessary, the original integration domains are split into
a number of segments in order to achieve the required
precision of the total cross section. The numerical re-

H++He( ls~)~H(nflfmf)+He+,

H++N(ls 2s 2p )~H(nflfmf)+N+,
H++O(ls 2s 2p )~H(nflfmf)+0+,

(4.1a)

(4. lc)

H++ He( ls 2)~H(X )+He+,

H++N(ls 2s 2p )~H(X}+N+,
(4.2a)

(4.21)

H++O(1s 2s 2p )~H(X)+0+ . (4.2c)

The model of Sec. II is adopted for these reactions with
the RHF wave functions given by Clementi and Roetti.
For He ('S),

%e have presently computed the total cross sections
for electron capture by protons from the E shell of
He('S), N( S), and 0( P ), i.e.,
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""( )=0 76838X" ' ' '(r )+0.22346XI '{r )+0.04082X', '(r )

—0.00994X(100 (rT)+0.002301(00 '(rT) (E," "=—0.91795, Zr =1.354954);

for N( 5),
~RHF(r ) () 937 80'(645739)(r )+() ()58 49'(11.17200)(r )+() ()()()93'((.36405)(r )

() 001 70'(1.89734)(r )+() ppS 74'(3.25291)(r )+() pp9 57'(5.08238)(r )

(4.3a)

(E; "=—15.62909, ZT =5 59.092); (4.3b)

for 0( P),

+RHF(r ) 0 945 16'(7.61413)(r )+0 p33 91'(13.75740)(r ) 0 000 34'(1.69824)(r

+0 002411' ' '(r ) —0 004861' " '(r )+0 03681X' '(r )

(E.RHF = —20. 668 66, ZT~= 6.429 411 ) (4.3c)

where the values of effective nuclear charge ZP are ob-
tained from Eq. (2.11).

%'e have also thoroughly investigated the hydrogen-
like wave functions for the target atoms. Detailed com-
putations based upon Eq. (2.1a) have presently been car-
ried out by setting ZT ——ZT and choosing the same
value for ZT as in the aforementioned RHF model, i.e.,
ZT =1.354954, 5.59092, and 6.429411 for helium, ni-

trogen, and oxygen target atoms, respectively. The
present 6rst Born approximation involving the hydro-
genic model is also consistently devised so that the
correct boundary conditions are preserved. This is in
contrast to the customary computations.

The cross sections for capture into individual state of
H(nflfmf) for reactions (4.1) and (4.2) are displayed in
Tables I-III. Contribution from the ground state of
H(ls) dominates the transitions of the electron into
higher levels of atomic hydrogen for the processes under
study. Hence, the present results for any 5nal state of
atomic hydrogen H(X), which are produced in reactions
(4.2a)-(4.2c), can be obtained with sufficient accuracy
from the following simple expression with the spectro-
scopic notation for the cross sections:

o„„)=cr„+1.616(o2, +cr2 ) .

Here cr,f crf, wh——ere index i is held fixed with reference
to the E shell of He, N, and O. In a test run, capture
into higher states of H(nflfmf), with nf & 3, is found to
be negligible at all the impact energies covered (50
keV & E & Sp MeV).

Comparison between the theory and experiments is
depicted in Figs. 1-3. The RHF model for H+-He col-
lisions describes the measurements remarkably well at
impact energies ranging from 50 keV to 10.S MeV (see
Fig. 1). Concerning H+-N and H+-0 scatterings, only
the experimental data of Cocke et al. correspond to
capture from the L shell of the target. Earlier measure-
ments' did not isolate either of the I%' or I. shell of ni-
trogen and oxygen. However, at high energies, the con-
tribution from the K shell becomes dominant over that
from the I shell. ' Hence, we are justi6ed, at least at

higher energies, in displaying the findings of Acerbi
et al. ,

' Schryber, Welsh et al. , Toburen et al. , and
Berkner et al. in Figs. 2 and 3, together with the pure
It.-shell cross sections of Cocke et al. Furthermore, in
all the experiments quoted in Figs. 2 and 3, capture has
been recorded from molecular targets N2 and O2. At
high energies, it is customary to assume that scattering
of molecular nitrogen N2 proceeds as if the target were
built from two independent (isolated) N atoms (an analo-
gous assumption also holds for 02). This implies that
the simple scaling of the type o N=0. 5o N can be used to

2
arrive at the experimental cross sections per gas atom
(see Ref. 50 for limitations of the scaling). These are
plotted in Figs. 2 and 3. Given these limitations, overall
good agreement is obtained between the present RHF
theory and the measurements. Of particular importance
for high-energy theories is the measurement of Acerbi
et (2!.' on charge exchange in H+-N2 and H+-02 col-
lisions performed at 32.5 and 37.7 MeV. It can be seen
from Figs. 2 and 3 that our RHF model is very satisfac-
tory even for these extremely fast projectiles.

Hydrogenlike and RHF wave functions of the target
atom yield noticeably di8'erent results for the cross sec-
tions computed within the present CB1 approximation.
At intermediate energies, the results obtained with the
hydrogenic wave function are slightly larger than those
due to the RHF orbitals for the target. The situation is
reversed, however„at high energies, ~here the hydrogen-
ic cross sections always lie considerably belo~ the corre-
sponding RHF results. In comparison with the experi-
mental data in Figs. 1 —3, it is observed that the RHF
model represents a substantial improvement over the
crude hydrogenlike wave function for the target atom.

V. CONCI. USIGNS

It is very important to consistently design a first-order
perturbation theory for charge exchange starting from
the basic principles of atomic scattering. Here, "con-
sistent" implies that the unperturbed. channel states and
the perturbing potentials are determined in accordance
with the Coulomb boundary conditions for two charged
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aggregates which are widely separated (Dollard '). A
theory of this kind would supply invaluable information
about the role of direct channels in charge exchange.
Systematic and exhaustive comparison with experimental
data over large energy intervals could subsequently indi-
cate the relative importance of the neglected intermedi-
ate channels.

We have dealt with this. problem by strictly applying
the concept of the convergent S matrix, which was dev-
ised for the Srst time by Dollard. " In this theory, the

scattering matrix for two charged particles interacting
via Coulomb forces can only be de6ned if the Ms((lier
wave operators are reformulated by inclusion of the log-
arithmic phase distortion. This rede6nition has a com-
plicated functional dependence which is virtually impos-
sible to implement in realistic computations. Fortunate-
ly, Dollard ' has shown that the use of distorting Ms(lier
wave operators is equivalent to introducing the Coulomb
phase distortion of the unperturbed scattering states.
This formalism can directly be extended to three-particle

s ~ s ~ ~ I s s ~ s s s ~ T I s f el

~I

s ~

s s s I

0$ 0.&
s ~ s s I

3 e I eelm
Impact energy (MeV)

s s s s s ssl
OS

s ss ~ sasl s s s s s s ssl
2 ao eo

Impact energy (IOO «V)

FIG. 1. Total cross sections for electron capture by H+
from He(ls~). Present results:, the corrected erst Born
(C81) approximation with the Roothaan-Hartree-Pock (RHF)
model; ———,the C81 approximation with the hydrogenic
model). In both models the correct boundary conditions are
preserved in the entrance and exit channels (see the text). Ex-
perimental data: Q, Schryber (Ref. 2); V, Welsh et al. (Ref. 3);
8, Toburen et al. (Ref. 4); , Berkner et al. (Ref. 5); 6, Stier
and Barnett (Ref. 43); 4, Barbett and Reynolds (Ref. 44); +,
Afrosimov et al. (Ref. 45); C3, de Heer et al. (Ref. 46); 0, Willi-
ams {Ref. 47); 0, Martin et al. (Ref. 48); , Horsdal-Pedersen
et al. (Ref. 49). Theoretical results o T«,~

are obtained from the
following equation: o I„,& ——a &, + 1.616(o.2, +o z~ ). Inclusion
of higher excited states of H(nflfmf) does not change the
theoretical curves on the shell given in this Sgure (see also
Tables I). Measurements relate to process (4.2a) where the hy-
drogen atom is produced in any state.

FIG. 2. Total cross sections for electron capture by H+
from the K sheB of N(ls22s 2@3). Present results:, the
corrected 6rst Born (CB1) approximation with the Roothaan-
Hartree-Fock (RHF) model; ———,the C81 approximation
with the hydrogenic model. In both models the correct bound-

ary conditions are preserved in the entrance and exit channels
(see the text). Experimental data (all shells of nitrogen target):
, Acerbi et al. {Ref. 1); 6, Schryber {Ref. 2); 0, Welsh et al.
(Ref. 3)„E,Toburen et al. (Ref. 4); 8, Berkner et al. {Ref. 5).
Experimental data (K shell of nitrogen target): 0 Cocke et al.
(Ref. 8). Original meisurements (Refs. 1-5, 8) have been car-
ried out on molecular nitrogen N2 as target. Data per gas
atom are plotted {oN). These are deduced from the observed
6ndings (oN ) by the following simple scaling: oN ——0.5oN .
Theoretical results oT«, &

are obtained from the equation
o T«,~=o l, + 1.616(o2, +o &~ ). Inclusion of higher excited
states of H(n lfmf) does not change the theoretical curves on
the shell given in this 5gure (see also Table II). Measurements
correspond to reaction (4.2b) with the hydrogen atom H(X) left
in any final states.
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formulated by imposing the asymptotically exact bound-
ary conditions to the scattering wave functions and the
perturbation potentials.

Detailed comparison is carried out between the CB1
approximation and experiments on electron capture by
protons from the K shell of helium, nitrogen, and oxygen
in a very large range of the irripact energy. It is found
that the present Roothaan-Hartree-Fock (RHF) model,
vrhich is introduced within the CB1 theory, yields excel-
lent agreement with the measurements. This is observed
at incident proton energies E (ke&) &60

~
E,""

~, where
E;" " is the RHF orbital energy of the captured elec-
tron. It is concluded that the CB1 method is highly reli-
able for computation of total cross sections from inter-
mediate to very high energies.
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FIG. 3. Total cross sections for electron capture by H+
from the K shell of G(1s 2s 2p ). Present results:, the
corrected 6rst Born (CB1) approximation with the Roothaan-
Hartree-Fock (RHF) model; ———,the CB1 approximation
with the hydrogenic model. In both models the correct bound-
ary conditions are preserved in the entrance and exit channels
(see the text). Experimental data (all shells of oxygen target):
~, Acerbi et al. (Ref. 1); 't7, Schryber (Ref. 2); 6, Toburen
et al. (Ref. 4). Experimental data (K shell of oxygen target);
H, Cocke et al. (Ref. 8). Original measurements (Refs. 1, 2, 4,
and 8) have been performed on molecular oxygen 0& as target.
%e have displayed converted data oo per gas atom which are
related to the measured values 0 o by the expression

2
O.o ——0.5ao. Theoretical results oT„,&

are obtained from the

equation aT„,~

——o.
&, +1.616(o.&, +o» ). Inclusion of higher ex-

cited states of H(n~l~m~) does not change the theoretical
curves on the shell given in this 6gure (see also Table III).
Measurements correspond to process (4.2c) where the hydrogen
atom is produced in any final state H(X).

collisions by identifying a pair of charged aggregates
whose total interaction exhibits an asymptotic Coulomb
ta11. In th1s way, Belk1c e't QI. have obtained an exact
and consistent eikonal T matrix for charge exchange,
which is free of the characteristic Coulomb divergen-
cies. %e presently utilize the first order of this theory,
which is referred to as the corrected first Born (CB1) ap-
proximation. The corrections are such that the usual
full first Born method of the Jackson-Schif —type is re-
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bian State Institute of Statistics in Belgrade through the
Computing Laboratory of the Faculty of Science, Uni-
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APPENDIX

There is a number of misprints in Ref. 35 and they
should be corrected as follows:

On page 1993, in Eq. (2.9), (
~ q —a

~ +aI) ~ should

read (
~ q —a

~
+a&); in Eq. (2.10), a+P=v should

read a+P= —v; in Eq. (2.12), (Ztr/n') ' should read

(Z~ /n')
On page 1995, in Eq. (2.34), V „'&' '(Q) should read

7'( b)(Oq)/2n —t

On page 1996, in Eq. (2.43b), ( —k + —,')„should read
( —k /2+ —,')„; in Eq. (2.49), P, (Q v) should read

P, (Q ").
On page 1999, in Eq. (4.6d), the number multiplying

cross section o';.'4 should read 2.561 instead of 3.113.
On page 2000„ in Table I(c), I should read n/
On page 2001, in Table II(c), n should read n . Also

in the same table, there are two misprints at 250 and SDD

keV. The last number which corresponds to n~=4 at
250 keV should read 8.25[—18] instead of 2.25[ —18].
The second number corresponding to n~=2 at 500 keV
should be 5.12[—19] instead of 5.17[—19].

On page 2002, in Table III, the column labeled E
refers to the E-shell cross section which is multiplied by
2 in order to account for the two E-shell electrons. In
Eq. (A9), X'&'(Q) should read+'& '(Q).

On page 2003, in Eq. (A12), (a —1)/2 should read
—(a —1)/2.

On page 2004, in Eq. (B8), C'++„'(co+/r+ ) should

On page 2005, on the top line, Pfp a + I~@ as should

read NPP'. =NplbpP'. ; in Eq. (B22), (1+yz)k should read

(1+y~) .
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