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Modulationally unstable ion acoustic waves
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The modulation of ion acoustic ~aves due to interaction with a quasistatic plasma slow response
in a magnetized plasma is examined. It is found that an instability arises when the modulation is

oblique to the direction of wave propagation, but for a restricted range of angles.

Nonlinear interaction of high- and low-frequency plas-
ma phenomena has been a topic of considerable recent
interest. For example, the interaction of electron plasma
waves (high frequency) with ion acoustic waves (low fre-
quency) is described by a nonlinear set of coupled equa-
tions first derived by Zakharov. ' These equations can be
used with appropriate boundary conditions to study
parametric instabilities, rnodulational instabilities, and
soliton potential structures. The modulation of ion
acoustic waves is the topic of interest in this paper.

In investigating the nonlinear propagation of ion
acoustic waves in an unmagnetized plasma, Shimizu and
Ichikawa used the harmonic generation nonlinearities
and stretched variables to establish a nonlinear
Schrodinger type of equation. It was found that for
their one-dimensional geometry (modulation parallel to
wave phase velocity) the ion acoustic wave was modula-
tionally stable. Kako and Hasegawa extended their
work to a magnetized plasma, and found that ion acous-
tic waves are modulationally unstable when the modula-
tion is in a direct oblique to that of the wave propaga-
tion vector. On the other hand, Murtaza and Salahud-
din used the Krylov-Bogoliubov-Mitropolsky method
to investigate the modulation of ion acoustic waves in a
magnetized plasma. The inclusion of the harmonic gen-
eration nonlinearities was found to produce instability in
some regions of parameter space.

The nonlinear modulation of ion acoustic ~aves due
to interaction with a quasistatic plasma slow response
was 6rst considered by Shukla. For an unmagnetized
plasma, the waves were found to be modulationally
stable. The inclusion of an external magnetic field 80
was considered by Bharuthram and Shukla. They re-
stricted all motion to the x-z plane and found that waves
propagating oblique to 80 were modulationally stable.
However, it must be pointed out that the authors re-
stricted their analysis to modulations parallel to the
wave velocity vector. In this paper we extend their in-
vestigations by allowing modulations oblique to the wave
velocity vector. In addition, the analysis is made more
general by considering three-dimensional motion. A
three-dimensional nonlinear Schrodinger equation which
describes the evolution of the complex amplitude of the
ion acoustic wave is derived. Analysis then shows that
the ion acoustic wave is rnodulationally unstable for
modulations in certain oblique directions to the wave
propagation vector.

For low-frequency electrostatic oscillations with

a, « 0, , where 0, is the gyrofrequency of the jth
species [j=e (i) for electrons (ions)] in the presence of an
external magnetic field Bo=Boz, the perpendicular (to
Bo) component of the particle Iluid velocity is given by

5n, Ino =( I+5n,'Ino }4, (2)

where no is the equilibrium density, P=eg/T, the nor-
malized potential, and the plasma density is written as

ni =no+5nJ+5nj', where the superscript I indicates the
contribution from the plasma slow motion. Then follow-
ing Ref. g, we obtain from the Eqs. (I) and (2), the ion
continuity equation and Poisson's equation, a nonlinear
equation for the ion acoustic wave in the presence of the
plasma slow response

I [I-p,'(a„'+a,'}-X',V']a,'-c,'a,']e
+ I [I—p,'(a„'+a')]a, —c,'a,'I(5n,'/n )4=0,

where c, =(T, /rn;)' is the ion sound speed, p, =c, /0,
is the ion Larmor radius at the electron temperature,
and A.D ——( ,T4/n. neo)' the electron Debye length. In
arriving at (3) we have used T, &~ T, , V'=0 for the qua-
sistatic modulations, and the quasineutrality condition
5n,'=5n, ' In the line. ar limit, (3} reduces to the disper-
sion relation co=k c /a', where a= 1+kzp +k ~D,
with k, (ki) the component of k along (perpendicular to)
Bo.

For a nonlinear interaction which causes a slow ampli-
tude modulation we introduce two time and space scales.
Then by the &KB approximation, ' we may write

@=4(g,i)exp( itot+ik r)+—cc.
(), ~9,—i m —Vg. V~,

v, ,= z XVp — a, VQ,
0 0 j

where the first term on the right-hand side is the EXB
drift and the second term the polarization drift, P is the
electrostatic potential, and c the speed of light. For
a, «u, a„where u, =(T, /rn, )' is the electron thermal
speed, the inertialess electrons rapidly thermalize along
80. Then their density perturbation associated with the
ion acoustic waves in the presence of the plasma slow
motion is given by
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V',~%~+ik,
where the group velocity of the wave packet
V = Vg„x+ V y+ Vg, z, with

V „=Geo/Bk„= cok—„p /a,
V =Bco/Bk» = tok—»p /a,
V, =Be)/Bk, = c, (1+k p )/a

P =Ps+~0 .2 2 2

The substitution of Eqs. (4) into (3) and the ordering

&nV(-p, V'g-O(e'»2), co 'B,-O(e'),
(kAD)~-O(e), 4-0(e), 5n,'/no-O(et) „
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yields a three-dimensional nonlinear Schrodinger equa-
tion for P,

/8 4'+
& [Bk Cdd» +8k COBg +~k COBg

+2(~k„k,~~g„g, +~k, k, ~~g„g,

2 2
Cgk AD

+B„„c08(g )]4— (5tt, /no)+'=0, (6)
y z y z 2Q

which may be rewritten as

iB,4+ ,'X4+—Q
~

4
~

4=0,

0
l
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4= [4o+54(ri)]exp( i hr), —

FIG. 2. Plot of the angle between K and $0 (82) against the
angle between lt and 80 {e~},for P~ ——$,=0', k =2, o =0.1, and
0;/co~;=0. 25. For a fixed 8&, the ion acoustic waves are
modulationally unstable for 82 values in the shaded region.

Q=tok A,D2(1+k A,D~)/4a(l+cr), (Sb)

where 4o is the pump amplitude, 54( «4o) is the per-
turbation, 6 a nonlinear frequency shift, and
ri =E„g„+E»g»+E,g, Ot (with-
«e@). Equation (7) then yields 6= —Q ~

4o ~, and an
evolution equation for 54 which leads to the dispersion
relation

with o = T; /T, . In arriving at (7) we have used the re-
sult

5n,'/no= —(1+k AD) (
4 i i

2(1+cr),

which has been obtained by averaging the ion and elec-
tron equations of motion parallel to Bo over the (fast) ion
acoustic wave period, and using (1) for the particle
speeds in the plane perpendicular to 80.

In examining the stability of a constant amphtude
pump wave to quasistatic modulations, we follow the
general method of Karprnan. ' '" Accordingly, we let
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FIG. i. Orientations of (a) k and k~ and {b) K and K,.
FIG. 3. Variation of the critical k value for instability, k„

with 8&. The other parameters are fixed as in Fig. 2.
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(0—K V )'=D'/4 Q—D
~

+
~

where the group velocity of the wave packet has been in-

cluded, and

D =t)k toK„+8k toE~+t}k toIC,

+2(&k k && +t)p k I &+&k k &&) .

(10)

Letting A=K Vs+i y in (9},we obtain the growth rate

(QD
~

y
(

2 D2/4)1/2

Since for long-wavelength perturbations (
~

K
~

&&
~

k
~

)

the term D2/4 is small, an instability occurs (y & 0) pro-
vided QD &0.

A study of the product QD was undertaken for ob-
liquely (to Bo} directed wave propagation (k) and ampli-
tude perturbation (K). Their orientations are defined by
the angles shown in Fig. 1. For tb, =$2——0' (motion re-
stricted to x-z plane), 8, was fixed in the range 0'-90'
and 8z varied from 0'-90' for different

~

k
~

values. In-
stability (QDy0) was found to occur for restricted
values of 82, but always for Hz&8&. This is shown in

Fig. 2 for k =2. In addition, for a given 8„ there was a
critical k value, k„below which the ion acoustic waves
were modulationally stable for all values of 82. The vari-

ation of k, with 8&, is shown in Fig. 3. It must be noted
that for the large k, values corresponding to small
values of 8, , electron Landau damping could be very
strong. It is seen from Fig. 2 that for small oblique an-
gles of wave propagation (8i) the perpendicular wave
dispersion is too weak to produce a modulational insta-
bility. For fully three-dimensional motion (kgKi), a
finite angle between ki and Ki(ttti&|)}2) was found to
reduce the range of 82 values over which an instability
occurred for a given 8&. The instability was strongest
for motion in the x-z plane (or y-z plane by symmetry).

To summarize, for wave propagation (k) and long-
wa~elength amplitude perturbations (

~

K
~

') oblique to
an external magnetic field Bo and to each other (kl[K)
the interaction of ion acoustic waves with a quasistatic
plasma slow response is found to produce a modulation-
al instability. This contrasts with the earlier results of
Shukla (for an unmagnetized plasma) and Bharuthram
and Shukla (magnetized plasma with oblique k~~K) who
found the ion acoustic wave to be modulationally stable.
Our results are in agreement with those of Kako and
Hasegawa who had a model similar to ours, but con-
sidered harmonic generated nonlinearities.
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