
VOLUME 37, NUMBER 12

Balancing the Schri¹mger equation with Davydov Ansatse

David W. Brown
Institute for IVonlinear Science, R-002, Uniuersity of California, San Diego, La Jolla, California 92093

(Received 11 March 1988)

T~o theorems are given governing the general quantum mechanical validity of Davydov Ansatz

states.

A number of recent developments in the field of
polaron-soliton dynamics have shed new light on the prop-
er role to be played by Davydov's Anstttz states in the
quantum mechanics of polaronic systems 3 i.e., systems
described by the Frohlich Hamiltonianq
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The Davydov Ansatz states in questions have been re-
ferred to as I D1) and ID2), where

IDi&-=Za. at IP.&

n

+n~n CX qn q qn q

I Dp&=gtt„tt„~exp g(P bt Pq b ) -IO&. (3)

The ID2) state is in wider use than ID1). One reason for
this bias is the greater simplicity of I D2) relative to I D1).
Another reason is that until recently the equations of
motion put forward for Dt states have been plagued with
serious flaws. s 7 On the other hand, one would expect that
the greater flexibility of the D~ states would allow the de-
velopment of evolution equations which improve on the

imperfect dynamics now well known for D2 states.
A recent variational analysis by Zhang, Romero-

Rochin, and Silbey3 has produced equations of motion for
D~ states which improve on the Hamilton equations used
heretofore. s7 The defects which had been identified in
the former Dt dynamics are eliminated by the new evolu-
tion equations; specifically, the new evolution equations
are able to reproduce the exact J „0evolution, and
hence all known exact results.

The method of Zhang et ttl. ' consist~ of applying the
variational principle
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The success or failure of the variational method depends
on the compatibility of the chosen class of trial functions
with the evolution generated by H. Ideally, the class of
trial functions is exactly closed under the action of the
propagator e ' ', which is to say that every trial function
is an exact solution of the Schrodinger equation. In the
more realistic case that one is not fortunate enough to
have chosen a class of trial functions which solve the

Schrodinger equation, the action of e ' ' on a typical ini-

tial state within the class of trial functions will cause the
initial state to evolve out of the class along a Hilbert space
trajectory which cannot be reproduced by the equations of
motion obtained from the variational principle. In this

case one must question the compatibility of the variational
method with quantum mechanics; in proceeding with the
variational equations of motion„one is depending on the
variational method to produce Hilbert-space trajectories
which are in some sense "close" to the unknown exact tra-
jectories.

Zhang et al. 3 are able to show that in the J~„O limit
their variational equations of motion are equivalent to the
Schrodinger equation. In the language of the preceding

paragrgah, the set of D1 states is closed under the action
of e ' ' in the J „0limit. One does not really expect
that this property will continue to hold when J „&0;how-

ever, since the variational method is silent on the question,
independent methods are required to obtain more defini-

tive information.
In order to obtain definitive answers to the question of

the compatibility of D1 states with quantum mechanics,
we substitute ID~) into the left- and right-hand sides of
the Schrodinger equation of the Hamiltonian H and ob-
tain the necessary conditions for their equality. We do
this by expanding the right and left sides of the equation

ih ID(&-HID1&
dt

in a complete set of orthogonal basis states and equating
the coefIlcients of similar basis states. For this purpose we

expand the nonorthogonal coherent states in the orthogo-
nal basis of number states, whereupon we observe that~
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Now choosing a specific but arbitrary site r and a specific
but arbitrary set of phonon occupation numbers jvqj, we

equate the coeScients of each basis state
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with the result
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Carrying out the indicated differentiations and collecting related terms, we find
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(For clarity of presentation we have assumed that the
coherent state amplitudes Pq„are all nonzero. ) Since the
a„and Pq, must be independent of the phonon occupation
numbers vq, we obtain as a condition of balance that the
coefficients of each vq must independently sum to zero.
Considering first the J „0case, (10) yields as the bal-
ance equation

Pqr &rnqPqr &q&P I (»)
which is solved immediately to yield

P„(r)-e '""P„(0)+(e '"'-I)xq,

in complete agreement with Zhang et a/. It is straight-
forward to verify that every solution of (12) determines a
family of Di states which solve the Schrodinger equation.
On the other hand, when J „wo, the balancing conditions
for the Di equations cannot be fulfilled for arbitrary fvq)
since the dependence of (10) on vq is nonlinear. Since the
balance condition must be fulfilled for euery distribution
set fvqj, this is the indication we have sought which tells
us that the Di states cannot solve the Schro'dinger equa-
tion when J „~0. The above reasoning applied to the D2
states yields

Pq+ troqpq+troqXr!
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For arbitrary J „we find the balance equation

Pq tQlqpq troqXrq . (i4)
Since Pq cannot depend on the site index r, this condition
can be satisfied only if Xq 0. Every Xq~o solution of
(14) determines a family of D2 solutions which solve the
Schrodinger equation. We are thus able to summarize
our results in two theorems.

Di theorem: Davydov's Di states satisfy the Schro-
dinger equation of the Frohlich Hamiltonian if and only if

0.

D2 theorem Davydov's D2 states satisfy the Schro-
dinger equation of the Frohlich Hamiltonian if and only if
xq 0.

These results are valid for any transfer matrix J „,
whether short or long range; any number and type of pho-
non branches roq; and any couPling function Xq, regardless
of range, strength, or symmetry.
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