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We provide necessary conditions for the equilibrium of the process A + B— C where there is a
steady input of 4 and B particles, or when back reactions C— A + B are allowed. There is an
important distinction between inputs which conserve or do not conserve the particle number
difference (V4 —Np). For nonconserving input in finite volume or in low enough dimensions, the
system never reaches equilibrium. For conserving input, as in the case of back reactions, the sys-

tem may or may not reach equilibrium.

The diffusion-limited reaction process for two-species
annihilation, 4 +B— (inert species) has been studied as
a model for several physical and chemical systems, includ-
ing ionic recombination, "' electron-hole recombination in
a variety of condensed matter systems,>~7 and recombina-
tion of magnetic monopoles in the early universe.® The
anomalous decay of the concentration of the reactants ob-
served in experiments is nicely explained by the predic-
tions based on theoretical and numerical analyses of the
two-species annihilation model. For equal initial concen-
trations of the two species, the total concentration decays
as ¢ ~%/4 for dimensions d < 4. As the process evolves, 4-
rich and B-rich domains are formed. Reactions between
particles occur only along the domain boundaries, slowing
down the total reaction rate and resulting in anomalous
kinetics. This segregation into domains takes place only
in low space dimensions. For d = 4 domains do not form
and the resulting 1/¢ decay is satisfactorily explained by
classical rate equations.

The usefulness of the two-species annihilation model is
greatly increased by relaxing the restriction that the
species react irreversibly. Allowing for back reactions
(4 +B=C) the model becomes suitable for the study of
many more systems where equilibrium and the approach
to equilibrium are important features.® Similarly, equilib-
rium can be studied in an open system model where there
is a continuous external input of 4 and B particles.
Anacker and Kopelman'® have recently shown that when
the two-species annihilation process with input takes place
on the Sierpinski gasket there is segregation of 4 and B in
the equilibrium state, but there is no such segregation for
the same process on the cubic lattice. Zhang'! looks into
the question of the necessary conditions for the occurrence
of segregation phenomena.

In this Rapid Communication, we question the ex-

a

istence of an equilibrium itself. An important distinction
has yet to be made between external inputs which con-
serve the particle number difference N4 — Np, and those
which do not. We show that the existence of an equilibri-
um state depends crucially on these factors, as well as on
the dimension of the system and whether it is of finite or
infinite volume. Our conclusions are based on an exact
solution of the stochastic partial differential equation for
the evolution of the difference in concentrations of the two
species.

Let us consider two-species annihilation with random
input. As a possible starting point, we may look at a con-
tinuum version of the process, represented by

A(x,t) =DAA(x,t) —kA(x,t)B(x,t) +n4(x,t) ,
1)
B(x,t) =DAB(x,t) —kA(x,1)B(x,t) +ns(x,t) .

Here A(x,t) and B(x,?) are the concentrations of 4 and
B particles. The first terms represent diffusion with a
diffusion coefficient D, the second terms represent reac-
tion, and n4 and ng are stochastic variables representing
the random inputs of 4 and B. An important consequence
of Eq. (1) is that the difference in concentrations y(x,t)
=A(x,t) —B(x,t), obeys a linear partial differential
equation

y(x,t) =DAy(x,t)+n,(x,1) , 2

where n,(x,1)=n4(x,) —np(x,t). It should be noted
that Eq. (2) is insensitive to the explicit form of the reac-
tion term because of the symmetry between 4 and B when
their diffusion coefficients are the same. This is important
in view of the claim that for diffusion-reaction systems the
reaction is of an effective order different than that simply
implied by classical rate equations.'> For the case that
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there is no input (n,=0), Eq. (2) reflects the fact that the
particle number difference, N4 — Np, is conserved upon
each single reaction, and consequently throughout the
whole process.

Much depends on the properties of the stochastic vari-
ables 4 and ng. We will generally require that

(na(x,t))={ns(x,t))=R , 3)

where ( - - - ) denotes an ensemble average. Thus, R is the
average number of particles (of either species) introduced
to the system per unit volume per unit time. Furthermore,
we consider the case of uncorrelated inputs of particles,

max,na&x't'N=R*+Rs(x—x")s(t—1t") , )

and likewise for ng. There are two general assumptions
which enter into this structure of the input correlations:
(1) the input process is assumed Poissonian, so that the
variance is proportional to the mean (R), and (2) the size
of the particles is neglected, resulting in a neglect of a
short wavelength cutoff. !*
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This is a nonconserving input, as it violates conservation of
the particle number difference. The other case of interest
is when the 4 and B particles are introduced simultane-
ously as, for example, with back reactions C— A +B.
Then,

(n,(x,0)n,(x",t')=2R[6(x—x") —p(x—x")16(t—1¢") ,
(6)

where p(x —x') is the probability density that an 4 —B
pair is introduced a displacement x —x' apart. Back reac-
tions are conveniently represented in this way by inter-
preting p(x —x') as the probability of creating a pair of
particles separated by the displacement x —x'. Since
Jd%xp(x) =1, we see that fdxn,(x,t) =0 with probabili-
ty one and the particle number difference is conserved.

The solution of Eq. (2) is straightforward. Since we are
interested in the long-time behavior we may neglect the
initial condition and take y(x,0) =0. Fourier transform-
ing the equation, one finds

From Eq. (3) it follows that (n,(x,r))=0. We distin- (4% _ix
guish between two cases of interest. In the first case, the r(k1) f V27)4 ¢ r(x.t)
input of A particles is completely independent from the in- ,
put of B particles. In this case, -=J; n,(k,t")e ~PK =gyt (7
(n,(x,t)n,(x',t"))=2R6(x—x")6(t —1") . (5)  sothat
J
t t _ =)= Dk 2(s —
rle) ) = [ty [ dge PR TORN G (1) (1)) ®)

We first treat the case of independent 4 and B inputs, Eq.
(5). In this case,

(nk,0)nk',t")) =2Rs(k+k')6(t —1') , 9)

and

R (_d% (1—e kM)

2 =
(y*(x,t)) pJ Gn) PE;

(10)

The divergence of this integral for |k| — « ind =2, i.e.,
the ultraviolet (UV) divergence, is due to the neglect of
the short-distance cutoff (the size of the particles or an
underlying lattice spacing) and is not of concern here.
What is of concern is the behavior of the integrand as
k| — 0, i.e., the infinite volume infrared (IR) behavior.
For d <2 the usual IR problems of field theory appear
and we find

const, d>2,
(y2(x,1))~1{Int, d=2 , (infinite volume) (§8))
12D g

If the difference in concentrations never reaches a station-
ary state, as is the case for infinite volume and d < 2, then
no equilibrium is possible. For finite volume the wave
numbers are discrete and one can study the long-time be-
havior of the solution by simply looking at the k =0 com-

ponent of y(k,z). For any dimension, we find that for
11— 00’

(y2(x,t))~t, (finite volume). (12)

These results are understood by observing that the particle
number difference is described by a simple random walk
constrained only by the spatial diffusion. Diffusion tends
to dissipate any local buildups of excess particles. When
the volume of the system is finite, the excess particles are
bound to stay inside the system and (y2) grows linearly
with ¢ in a pure random-walk fashion. In contrast, when
the system is infinite, diffusion can control the growth of
(¥? by spreading buildups over an arbitrarily large region
if the space dimension is large enough (4 >2). Even in
low dimensions (d <2), the buildup of (¥?) in infinite
volume is slower than linear.

We now turn to the case of conserving input and of
back reactions. Instead of (9), we have, from Eq. (6),

(ny kD, (K1) =2R8(k+K) 1 - p() 165G — 1)
(13)

where p(k) is the characteristic function (Fourier trans-
form) of p(x). Thus,

2

2. --1—{ ddk _ l_e—ZDkt
=R [ n—prol=— . a9

Because p is a probability density, the Riemann-Lesbegue
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theorem ensures that the characteristic function p(k)
must approach the value 1 continuously as |k|— 0. For
the borderline dimension, d =2, this will generically imply
the IR convergence of the integral in Eq. (14) uniformly
in t as t— oo, rather than the logarithmic divergence ob-
served for a nonconserving input [Eq. (11)]. For d <2,
IR convergence is possible only if

[1=p&k)| <(const) |k|® a«>2—d, a15s)

as |k| — 0. This is equivalent to the requirement that

p(x) <(const) |x| %, p>3—d, (16)
as |x|— . Thus, for d <2 equilibrium may not be
achieved even for a “conserving” time-correlated input of
A— B pairs, if the spatial correlation of this input is not
localized enough. The diffusion in d <2 is not strong
enough to overcome the disordering effect of widely
separated inputs. For example, in d=1 a stationary state
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can exist only if the mean particle-input separation is
finite.

In finite volume a stationary state is realized in all di-
mensions for the conserving input. When the wave num-
bers are discrete, the correlated input contains no k=0
components.

In summary, we have shown that the mere existence of
an equilibrium state for the diffusion limited two-species
annihilation process with input depends on the space di-
mension, on whether the system is finite, and on the char-
acter of the stochastic input. We have given necessary
conditions for the existence of a stationary state in low-
dimensional systems. While we disagree with the results
of Ref. 11, similar results to our own have recently been
derived independently by Lindenberg, West, and Kopel-
man, ' who also study the question of spatial segregation.

We thank K. Lindenberg, B. J. West, and R. Kopelman
for helpful discussions and for letting us know of their re-
sults prior to publication. We also thank S. Redner for
many useful discussions.
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