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In this Comment we consider the conclusion drawn by Mees, Rapp, and Jennings [Phys. Rev. A
36, 340 (1987)] concerning the usefulness of the singular-system analysis of a trajectory matrix (ob-
tained by applying Takens’s construction to time-series data). We point out that this is primarily
due to their misinterpretation of our work, and to an assumption they apparently made concerning
the conditions under which a map preserves the dimension of a set. We attempt to clarify the is-

sues.

In their paper! Mees, Rapp, and Jennings (hereafter re-
ferred to as MRJ) address the question of how one should
choose a dimension of the embedding space when apply-
ing the method of delays to time-series data. In particu-
lar, they consider rank estimation of the trajectory matrix
(referred to as the embedding matrix in Ref. 1) construct-
ed from a time series. They present various numerical re-
sults which lead them to the conclusion that the rank of
the trajectory matrix does not give useful dynamical in-
formation.

In developing these ideas they draw upon previous
work by us.>3 We wish to take this opportunity to com-
ment on and perhaps clarify the issues raised.

In the following discussion we use the notation of Refs.
2 and 3: n is the embedding dimension, X denotes the
N Xn trajectory matrix obtained by constructing n-
component vectors (v;,v; ,q,...,V;,,_;) from a time
series of measurements {v; |k=1,...,N +n —1} using
Takens’s construction, d < n is the rank of X or the num-
ber of linearly independent rows or columns of X and m
is the dimension of the manifold to which the trajectory
is confined.

In Ref. 2 the properties of d were investigated in some
detail. In particular, care was taken to distinguish be-
tween d, the signal processing notion of number of de-
grees of freedom, and m, the dimension of the embedded
manifold: while m is a topological invariant of the mani-
fold preserved by the embedding, d is not. Indeed, it was
pointed out that d depends on (1) the quality of the data
(e.g., the precision of the measurement and the signal-to-
noise ratio), (2) the time interval 7, between measure-
ments, and (3) the time span 7, =n7, of the window used
to construct the embedding. Furthermore, d is sensitive
to the nature of the measurement (i.e., what is measured
and where in the system it is measured). In short, d is
strongly dependent upon the characteristics of the partic-
ular time series under consideration.

MRJ consider the general use of d for the characteriza-
tion of the dimension of a dynamical system. In light of
the discussion in Ref. 2 summarized above, this use can-
not be sustained. Rather, the importance of d lies in its
role as an effective embedding dimension when d <n,
since then it is d rather than n which should exceed 2m in
order to satisfy Takens’s embedding criterion.* We
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should understand, therefore, when we can expect d to be
less than n. For the case where X is constructed from ex-
perimental data obtained by sampling a continuous,
noisy, physical (band-limited) process two situations can
exist: the process is either undersampled (sampled at a
frequency less than the band limit) or oversampled (sam-
pled at a frequency greater than the band limit). When
the signal is undersampled, the measurements v (¢) and
v(t +7,) are on average statistically independent; this
will typically cause X to be full rank (d =n). (In any case,
it is worth pointing out that, in general, undersampling a
signal is undesirable, since it introduces aliasing effects
which lead to data corruption and loss of high-frequency
information.) On the other hand, when the signal is over-
sampled, the measurements v (¢)=v(t +7,) and conse-
quently adjacent column and/or row vectors of X will be
nearly the same and therefore linearly dependent; this
will cause X to be less than full rank (d <n). Indeed, as
the sampling frequency is increased further above the
band limit, so the rank deficiency of X will increase.
Therefore, when X is constructed with an oversampled
signal in the manner described in Refs. 2 and 3, d <n
should be obtained.

We should emphasize that our intention in Ref. 2 was
not to propose a new dimension for the characterization
of dynamical systems. Our purpose was to introduce the
concept of, and limits for, the timescale 7,,. In Ref. 2 we
argued that m and not d is an intrinsic property of the
dynamical system and we feel that MRJ are really of this
opinion too. We have since shown how m may be es-
timated using a local singular system analysis.* ¢

When estimating d from the singular value decomposi-
tion of X, MRIJ state that one should look for an abrupt
decrease between adjacent singular values. We do not
agree with this. One has to establish the number of
singular values which exceeds the magnitude of the error
or noise associated with the elements of X.” An abrupt
decrease is of importance only if subsequent singular
values are insignificant in this sense. Naturally, one
would expect the precision of the computer and its algo-
rithm to be adequate so that the dominant source of error
is the noise in the data.

MRIJ then claim that “the efficacy of singular-value
decomposition. . .in reducing dimension calculations. . .
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depends on an abrupt decrease in the magnitude of the
singular values.” The authors appear to base these com-
ments on the mistaken assumption that it is necessary for
a map to preserve lengths in order for it to preserve the
dimension of sets. However, in proving the Whitney
embedding theorem® one shows that generically, the pro-
jection of the embedded manifold onto any subspace of
the embedding space which has dimension greater than
2m is an embedding, and therefore preserves the dimen-
sion of the manifold and even of subsets of the manifold
(e.g., the attractor). The magnitudes of the singular
values corresponding to directions orthogonal to the sub-
space do not enter this argument: it requires only that
the singular vectors which span the subspace should cor-
respond to significant (in the sense described above)
singular values. The virtue of the singular system
method is that it identifies the subspaces for which the
signal to noise is maximized.

MRIJ imply that Ref. 2 advocates “thinning” the data
(i.e., by deleting alternate rows and columns of X) to
determine the optimum embedding dimension. We wish
to emphasize that this was never advocated by us.
“Thinned” data were used in Ref. 2 to demonstrate the
dependence of the singular spectrum on the sampling in-
terval 7,. Indeed, “thinning” X corresponds to project-
ing the retained portion of the data onto a nonoptimum
subspace.

Finally, we address the question of the numerical im-
plementation of these ideas. Typically, the measured sig-
nal will be represented by a sequence of integers obtained
from an analog-to-digital (AD) converter. The AD con-
verter will have limited precision which will add quanti-
zation noise to the input signal, which itself will be noisy.
These noise components result in the data being able to
support only an imperfect representation of the system’s
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dynamic properties. The computation will be carried out
also to a limited precision which must be greater than the
precision of the data. If this condition is satisfied, the
computation will give d singular values which appear
above a noise floor determined by the data precision. The
corresponding singular vectors define a d-dimensional
subspace which contains all the information that one is
entitled to extract from the signal.

Within the above constraints there is no preferred algo-
rithm for the singular-value decomposition. The choice
of algorithm must depend upon the circumstances of its
implementation and the source of data to be processed.
MRYJ advocate calculating the singular values of X using
the Golub-Reinsch singular-value decomposition algo-
rithm for a rectangular matrix. They support this with
their Fig. 5 with which we agree (except that, from the
evidence of their graph, the limitation of their DEC-10
computer and algorithm is 16 significant figures and not
18). It is clear from their figure that this algorithm is
capable of processing data which is of a far higher pre-
cision than that which could be obtained from any realis-
tic experiment. On the other hand, the diagonalization of
XTX using similar precision computers (Data General 30
and VAX 8600) gives adequate precision for the process-
ing of up to 24-bit data (~ 6 significant figures). This is
far in excess of that which we might expect from a good
AD converter (12 to 16 bits).

We note that in this approach the accumulation and
diagonalization of XX should be done in double pre-
cision. The result presented in Refs. 2 and 3 used data
from the integration of the Lorenz model with a Runge-
Kutta algorithm in single precision. This was erroneous-
ly accumulated to form X”X in single precision. This ac-
counts in part for the different noise levels calculated by
MRJ and Ref. 2.

*Also at Mathematics Department, Imperial College, London
SW72BZ, United Kingdom.
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