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Scaling description for the growth of condensation patterns on surfaces
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The growth of a droplet pattern condensing on a surface (e.g., breath figures) is analyzed for the
case of arbitrary dimensionality. The growth of a droplet occurs through a two-step process: (i)
continuous growth by condensation on its surface and/or on the substrate and (ii) coalescence with
neighboring droplets. As long as the one-droplet growth remains scale invariant, the growth of the
entire pattern is shown to be self-similar in time and very general growth laws can be deduced,
whose exponents are functions only of the dimensionality of the space of the droplets, and of the
condensing substrate. In particular, for the case of three-dimensional droplets condensing on a
plane substrate (breath figures), the growth exponent of a single droplet should be %, whereas the ex-
ponent corresponding to a mean droplet, averaged over the pattern, should be unity. Comparison
with experiment is performed and possible deviations from the predictions are considered.

I. INTRODUCTION

The condensation of fluids on cold surfaces is an aspect
of phase transitions experienced daily. The importance
of condensation in thermal technology (heat exchangers,
condensers, etc.) motivated an early engineering interest,'
but fundamental studies are surprisingly scarce.” Recent-
ly, new experiments have been described>* in which de-
tailed investigations were made of the growth of breath
figures produced by blowing nitrogen saturated with wa-
ter vapor onto a cold glass surface. In the “incomplete
wetting” case (silanized glass), a rather complex dynamic
behavior was observed, including the following four
different regimes.

(i) At very short times (¢ < 1s), a furious and complex
activity is observed, which seems to depend significantly
on experimental conditions. The time and size resolution
of the experimental setup did not permit a detailed study
of this regime.’

(i)) An “intermediate” regime is reached rapidly, and
persists during two or three decades of time. In this re-
gime, one can distinguish distinct growth mechanisms
which coexist. The first one is a continuous growth due
to condensation from the supersaturated vapor. The ab-
sence of new nucleated droplets between drops in this re-
gime suggests that all the vapor molecules reaching the
surface are efficiently collected by the preexisting drop-
lets. The centers of the droplets do not move during this
process, in contrast to the second mechanism, which con-
sists of a fast, intermittent coalescence of neighboring
droplets. The mean droplet radius p seems to follow a
power law,

p~t" with py~0.75, (1)

whereas the apparent exponent for individual droplet
growth is p, ~0.23. (A rigorous definition for this ap-
parent exponent will be given in Sec. V.)

Other important features of the intermediate regime
are the development of a unimodal distribution of droplet
sizes with very stable polydispersity and surface cover-
age.

(iii) At longer times (¢ X 10*-10° s) “new” small drop-
lets appear on the surface between the large “old” ones,
and the pattern evolution becomes more complex.

(iv) Finally, the droplets lose their hemispherical shape
and/or begin to flow because of gravity.

In the present paper we report preliminary theoretical
investigations of the growth of condensation patterns on
nonwetting surfaces. We restrict ourselves to regime (ii),
which contains many important features of the general
dynamics, and is relatively simpler and better character-
ized than the others. Since dimensionality is very impor-
tant here, we develop a theory for arbitrary dimensions,
considering the experiment discussed above as a particu-
lar case [three-dimensional (3D) objects on a 2D sub-
strate). We also make predictions for another experimen-
tally available combination of dimensionalities, 3D drop-
lets on a quasi-1D thread. To our knowledge, the growth
of droplet patterns on threads has never been studied
quantitatively. Apart from their practical interest for
coating, such studies may help clarify the dimensional as-
pects of our theoretical approach. Last but not least,
very convincing realizations, such as the patterns of
morning dew on spider webs, should be readily available.
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II. CONDENSATION GROWTH

The primary growth process is continuous condensa-
tion. The rate can be expressed generally as

dn,-(t)/dterﬂ-Qy N (2)

where n; is the number of moles of water (or, more gen-
erally, condensing fluid) in the droplet i, A is the
effective collection surface of the droplet, and @ is the
flux of vapor molecules per unit area on the surface. To
keep the problem tractable, we suppose that the flux is
small enough (and/or the thermal conductivity high
enough) to ensure a constant and uniform temperature in
the ensemble of substrate plus droplets, i.e., a thermal
steady state is reached during regime (ii). We also sup-
pose steady-state hydrodynamics, i.e., ¢ does not vary
with time and may change with the position only on
scales much greater than p. These assumptions seem to
be reasonable for laminar flows, but more complicated
situations could be encountered when the hydrodynamics
of the incipient gas involves length scales comparable to
the droplet size.

For a droplet growing on a thread, condensation on the
thread becomes negligible as soon as g >d, the diameter
of the thread. For a sufficiently thin, nonwetting thread,
we can assume that the droplets are spherical and that
condensation between droplets on the thread is negligible
in regime (ii).

From Eq. (2), with p; the radius of droplet i,

Volume conservation requires
nVy=4mpl/3, 4)

where V), is the molar volume of water, and leads to the
growth law,

Pi—Pio=Vweyt —ty) . (5)

Here p; , is the radius of droplet i at time ¢,

For a droplet growing on a surface on which the wet-
ting is incomplete (e.g., contact angle 7/2), the surface
area and volume of the droplet are 2mp? and 2mp} /3, re-
spectively. Generalization to other contact angles 6
would be straightforward, and it would introduce only 6-
dependent prefactors. However, such “intermediate wet-
ting” regimes are generally associated with strong hys-
teresis, which would also modify the geometry of the
droplets, and dramatically complicate the pattern evolu-
tion. (In particular, we expect a breakdown of the circu-
lar symmetry of the droplets.) If the accommodation
coefficient of the “dry” surface is small compared to uni-
ty (the accommodation coefficient of pure water, by
definition), condensation occurs only on droplets, and the
same power laws as for the 1D case are recovered,

Pi—Pio~t—1p,

n!B3—nlP~t—1, .

(6)

If the accommodation coefficient of the surface is not
negligibly small, condensation can occur both on the
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droplets and on the ‘“bare” surface (Fig. 1). Since, by
definition, no accumulation of water between droplets
occurs in regime (ii), droplet i collects all the water con-
densed on its “surface of influence” A, ;, surrounded by
the lines of zero-water-density gradient on the surface.
Lacking a precise knowledge of the molecular condensa-
tion, transport process, and the droplet pattern, we will
use a mean-field description of the surface of influence.
Between two coalescences involving droplet i, the number
of neighboring droplets does not change, and we can
reasonably assume that

Ainf,iZTr[az(to)“‘P,z(l)] . @)

Here 2a(t,) is the average distance between droplets
(Fig. 1) at time t,. It is convenient to define a mean sur-
face coverage

&= |29 | (8)
a(t)
so that Eq. (7) can be rewritten,
2
‘)Tp (to) 2
e —mp(t) . )
b 2(to) P

The form of the growth law is determined by the com-
petition between two mechanisms: (1) condensation

(b)
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FIG. 1. Droplet condensation on a plane. (a) Top view; (b)
side view, showing two competing mechanisms: condensation
at the surface of the drop (accommodation coefficient o ;) and
nucleation followed by diffusion of embryos at the surface be-
tween drops (accommodation coefficient o ys).
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directly at the surface of the liquid droplets, and (2) nu-
cleation of liquid embryos on the surface of influence,
which diffuse to the perimeter of the droplets. There are
two distinct accommodation coefficients o,; and oy
corresponding, respectively, to these phenomena.

The growth law [Eq. (2)] for droplet i can thus be es-
timated as

dp;  VwoyAe,

= (10)
dt 2mpk(t)
where A ; is given by
m[plty)]?
Aeﬁ,,-z‘lT(ZOVL—Uys)p%(t)+-£)2—(7q-)——oys . (11)
€\l

As noted above, we have assumed a constant tempera-
ture. If there were significant temperature gradients
across the drop, the effective area for condensation would
have been less than 2mo,;p? corresponding to an
effective accommodation coefficient smaller than that for
the isothermal case.

In general, relation (10) does not lead to a simple power
law. A power law for the growth is recovered when con-
densation on the droplet is negligible, i.e., for a low drop-
let coverage, o 5 /€*>>1. Then,

n

i_n‘.’0~t——to , (12a)

or

p?——pzo~t—t0 . (12b)

III. COALESCENCE

When the surfaces of two droplets i and j touch (which
occurs on the contact line with the substrate for 8 < 7/2),
a new drop containing n; +n; moles of water is formed in
a fraction of a second. For weak hysteresis, the contact
angle does not vary appreciably, and the new drop has a
radius

p'=(pi+p})". (13)

If all dissipative phenomena can be neglected, the posi-
tion of the center of the new droplet, R’, is imposed by
momentum conservation,

R':—-——(Ripi“i’p’}') (14)
(pi +pj)
or, in a dimensionless representation,
(R'—R;)=¢;(v)J(R;—R;), (15)
where
3 .
by (v)= [VJ‘:(‘IV_’V)}], Y= (p,-[:pj) . (16)

In actual cases, the dynamics of coalescence is driven
by a balance between Laplace, viscosity, and adhesion
forces, and the solution of the corresponding Navier-
Stokes equations may require extensive numerical work.
The situation is simpler, however, in the opposite limiting
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FIG. 2. Coalescence of two droplets: ¥, maximizing the
overlap between the drops, and ¥;, assuming momentum con-
servation (see text).

case in which dissipation dominates. In this case, it can
be shown that dissipation mainly occurs in the vicinity of
the triple line,® and the displacement can be accurately
estimated by minimizing the area swept by these lines, or
equivalently by maximizing the overlap between the sur-
face contacts of the two “old” droplets and of the “new”
droplet. This purely geometrical condition leads to a
more complicated, but still scale-invariant, relative dis-
placement,

(R'—R;)=¢5(v)(R,—R,) . (17)

The displacement 15 has been evaluated numerically and
is compared with ¥; in Fig. 2. The difference between 9
and 1, is significant, and it could be a very critical test of
surface interactions.

IV. PATTERN EVOLUTION

If the law for the evolution of individual droplets is
known, some features of the evolution of an assembly of
many droplets can be predicted. Let us consider a partic-
ular realization,

{Rip;i} (1=0),
and another homomorphic one,
{AR;,Ap;}] (£=0).

From relations (10) and (11), it is clear that the renormal-
ization
R, —AR; ,

Aeﬂ”,i"’}"erﬂ',i H
(18)
pi—Ap;

t—At ,

leaves unchanged the evolution equation for growth by
condensation, as well as the equation for the occurrence
of the first coalescence involving droplet i,

min { |R;—R; | —[p;(1)+p;(1)]} =0 . (19)
J
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Equations (15) and (17) for coalescence are also invariant
upon the renormalization (18), so the evolution of the en-
tire pattern is invariant for these two limiting coalescence
cases. Individual realizations of the system associated
with given flow and substrate conditions can therefore be
separated into homomorphic time-dependent series of
patterns,

(AR, Api, At —t0)} . (20)

It should be noticed, however, that this would not be
true for more complicated, scale-dependent coalescence
or growth laws. For example, scaling will not be ob-
tained if o is a function of p.

If we assume that the pattern of nucleation sites on the
substrate is random and ‘““fine grained” [i.e., smaller than
the mean distance between droplets at the beginning of
the growth phase (ii)], then the range of correlation is of
the order of the droplet size, and all realizations are sta-
tistically independent in the “large system limit.” In oth-
er words, the pattern of a realization at time ¢, can al-
ways be considered as homomorphic with a subdomain of
a statistically equivalent realization at any given time f,
[in regime (ii)]. This ensures self-similarity of the pattern.
Note that this self-similarity is the direct consequence of
the scale invariance of the growth processes involving
one droplet.

This property, which will be very useful in Sec. V, does
not, however, provide any information about the value of
statistical parameters such as the polydispersity or sur-
face coverage. These parameters are controlled by the
correlated evolution of the two random distributions of
sizes and positions, respectively. Information, even
crude, seems difficult to obtain by means other than ex-
periment or simulation.

V. SCALING LAWS
FOR INTERMITTENT GROWTH

In this section we use a mean-field approach in the
sense that all variables are spatially averaged and follow
the growth of the radius p and content 7 of an average
droplet. In the same manner, the number of droplets
which combine during one coalescence (mostly two, but
sometimes three or four on a planar substrate) is averaged
as P, so that the number of droplets decreases as P/,
where j is the number of coalescences.

The evolution of a typical droplet is represented
schematically in Fig. 3(a). There is an alternation be-
tween continuous condensation growth (arbitrary curved
lines) and coalescence (discontinuous on the scale of the
experiments that have been performed and in the present
theory). We call 7; and 7 J' the droplet content immedi-
ately before and immediately after coalescence j, respec-
tively; p; and p ; are the corresponding radii. Let us con-
sider the time interval (tj 11—t }-), between coalescences j
and j+1. In the two limiting cases of o,3~0 and
Oys/€>>1 (dominant droplet capture and dominant
substrate capture, respectively), there is a power-law rela-
tion between the elapsed time, the droplet size, and the
droplet size at the end of the latest coalescence [Egs. (6)
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and (12)]. A scaling treatment is rigorously justified
(within the mean-field approximation). Since ¢ is at most
unity, intermediate cases [Egs. (10) and (11)] therefore
correspond to high €? values, and the relative growth of
one droplet between two coalescences is relatively weak.
Thus, even in these cases, a good scaling description can
be obtained by assuming the approximate ‘local” power
law,

dﬁ(ﬂ’N
dt

This growth law derives from Egs. (10) and (11). The
exponent §, is the dimensionality of the space in which
condensation occurs (most generally a surface, so §, =2,
but generalization to fractals is possible). The exponent 3
can vary between 0 and 2; =0 corresponds to condensa-
tion on droplets only [0 =0 in Eq. (11)], and f=2 cor-
responds to an equivalent condensation on both the drop-
let and its influence area [oyg=0,; in Eq. (11)]. After
integration, Eq. (21) becomes

301 P15, Py - @1)

Al—ntap Bt —1)), (22)

where §=(8,—8,+B)/8,, with 8, the dimensionality of
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FIG. 3. (a) Evolution of a typical or “mean-field” droplet. (b)
Experimental evolution of a typical droplet (log-log plot, from
Ref. 4). The squares represent the time evolution after remov-
ing the effect of coalescences.
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the droplet. In the experimental situation of Ref. 4,
8,=3, but 2D or even fractal objects may be relevant to
other situations.’

The recursion relation is readily derived from (22) as

B/8,

(23)

For large j, straightforward algebra leads to the scaling
relation,

pi~1°, (24)
with
po=1/(8,—8,) . (25)

According to this relation, the overall growth rate
should depend on the difference in dimensionality be-
tween the droplets and the substrate, but should not de-
pend on the time exponent of the growth of an individual
droplet, provided the renormalization of A4 expressed in
relations (18) is not affected. Indeed, the growth-rate ex-
ponent u, can be derived directly by using macroscopic
mass conservation laws, and ignoring the details of the
growth mechanism.® Self-similarity in growth has to be
assumed, however, in this approach.

Finally, it is interesting to discuss the ‘“apparent
single-droplet exponent,” as evaluated by Beysens and
Knobler* In this procedure [pictured in Fig. 3(b)], the
apparent droplet size p is renormalized after each coales-
cence to its size just before this coalescence. This
amounts to defining an equivalent system in which no
coalescence occurs, i.e., in which the number of droplets
remains constant, but whose average water surface densi-
ty D corresponds to that of the real system. D, in the
equivalent system, scales as

D~ () ~ g% (26)

by definition, whereas the surface density of the actual
system scales as

D~Np' . 27)

The scaling behavior of the number density of droplets,
N, is obtained using the self-similarity of the actual sys-
tem in dimensionality 6,

N~p‘"5f , (28)

allowing the relation between p, and p to be obtained:
M, :Ho(sd—*Sc)/Sd . (29)

Note that the growth of hemispherical droplets on a pla-
nar surface always leads to puo=1, u, =+, whereas the ac-
tual exponents for the growth of an individual droplet are
1 for a surface-dominant condensation and 1 for droplet-
dominant condensation, respectively.

Our predictions are significantly different from the ex-
perimental observations (u;,=0.75 and p,=0.23). Since
the exponent py,=1 is merely a consequence of self-
similarity, constant condensation flux, and mass conser-
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vation, we can see only two possible explanations for this
discrepancy.

(a) Our assumption of a constant net incoming flux of
water molecules on the surface is oversimplified. In par-
ticular, the evolution of the droplet size changes the
roughness of the surface. In some hydrodynamic condi-
tions, this may lead to boundary-layer effects and to an
effective ¢, decreasing with increasing droplet size (or,
equivalently, a generalized effective surface 4. with a
radius exponent smaller than 2).

(b) The assumption that the water impinging on the
surface is entirely collected by the visible droplets in re-
gime (ii) is also disputable. Since other visible droplets
appear between the old ones in regime (iii), this assump-
tion must break down somewhere.

One can modify the scaling description by allowing the
radius exponent for A4 to vary. This can be accom-
plished by replacing Eq. (21) by

—Qa

dri(t) Py » (30)

dt

b =B _ p(t)
~[pO] " Ip; )P | 2=
p
where p is a characteristic length and a an exponent with
a value between O and §.. As a result, p is modified,

thy=1/(8,—8,+a) , (31)

but Eq. (29) remains unchanged and, for breath figures,
the mean droplet radius exponent remains equal to 3u,.
Values of the phenomenological exponent « in the range
0.3-0.4 would reconcile the theory with the experiments
described in Ref. 4, but further experiments and, in par-
ticular, condensation experiments performed in well-
defined hydrodynamic conditions are necessary to clarify
the underlying physics.

VI. CONCLUDING REMARKS

Several essential aspects of the condensation processes
have been deliberately ignored in the present develop-
ment of scaling arguments. The first one is the hydro-
dynamic aspect. Very delicate questions may be raised by
the hydrodynamics of the incipient gas, turbulence, and
boundary-layer problems. Most importantly, is there any
difference between a flow of pure water vapor and a flow
of a gas, e.g., nitrogen, as in Ref. 4, saturated with water?
It would be interesting to perform experiments under flux
conditions that are as well defined as possible, in order to
allow a more critical comparison to be made between
theory and experiment. Another difficulty arises with the
more microscopic question of the hydrodynamics of the
coalescence process itself. Fortunately, the behavior
probably affects only the details of the distribution of po-
sitions. Polydispersity may be affected to some extent,
but not the growth rates. As noted previously, the
mean-field nature of the theory provides no access to po-
lydispersity aspects and fluctuations.

By limiting ourselves to regime (ii), we have also avoid-
ed the problems related to the nucleation and the migra-
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tion of water on surfaces. Nucleation has been studied
rather thoroughly, and other experimental situations are
probably more suitable for studying it in detail. But we
believe that the growth of breath figures raises very origi-
nal and interesting questions in relation to the migration
of nucleated aggregates on a substrate.” Some develop-
ments along these lines will be proposed in the near fu-
ture.

Note added in proof. Recent computer simulations [C.
D. Fritter and C. M. Knobler (unpublished)] have
demonstrated the validity of Eq. (29) for the growth of
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two- and three-dimensional
dimensional surface.

droplets on a one-
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