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The optimal control of the path to a specified 6nal state of a quantum-mechanical system is inves-
tigated. The problem is formulated as a minimization problem over appropriate function spaces,
and the well-posedness of this problem is is established by proving the existence of an optimal solu-
tion. A I.agrange-multiplier technique is used to reduce the problem to an equivalent optimization
problem and to derive necessary conditions for a minimum. These necessary conditions form the
basis for a gradient iterative procedure to search for a minimum. A numerical scheme based on
6nite di8'erences is used to reduce the in6nite-dimensional minimization problem to an approximate
finite-dimensional problem. Numerical examples are provided for 6nal-state control of a diatomic
molecule represented by a Morse potential. %ithia the context of this optimal control formulation,
numerical results are given for the optimal pulsing strategy to demonstrate the feasibility of wave-

packet control and 6nally to achieve a speci6ed dissociative wave packet at a given time. The op-
timal external optical Aelds generally have a high degree of structure, including an early time period
of wave-packet phase adjustment followed by a period of extensive energy deposition to achieve the
imposed objective. Constraints on the form of the molecular dipole (e.g., a linear dipole) are shown
to limit the accessibility (i.e., controllability) of certain types of molecular wave-packet objectives.
The nontrivial structure of the optimal pulse strategies emphasizes the ultimate usefulness of an
optimal-control approach to the steering of quantum systems to desired objectives.

I. INTRODUCTION

The search for the appropriate excitation of
molecular-scale physical systems to achieve certain objec-
tives has recently been the subject of increased interest.
Examples include the design of pulse strategies for
nuclear-magnetic-resonant (NMRl imaging sequences'
and the use of lasers to achieve site-speciSc excitations or
dissociation in polyatomic molecules.

The approach often adopted has been to use physi-
cal intuition in the design of appropriate excitation
strategies. Results to date based on physically motivated
guesses for optical pumping strategies have been disap-
pointing. If such problems have a solution, the optimal
pumping field will most likely defy simple intuition. A
polyatomic molecule is a complicated quantum-
mechanical system, and the external optical forcing field
must work cooperatively with the molecular system in or-
der to achieve a physical objective eSciently. Needless to
say, the optimality of the excitation strategy obtained by
an intuitive procedure is unknown. In an attempt to ex-
ploit available analytical and numerical tools, another ap-
proach often used is to solve the "forward" problem by
determining the response of a given system to various ex-
citations. Examples of such studies can be found in the
NMR context ' and in the context of dissociation of
polyatomic molecules.

The best formulation of such problems should essen-
tially be in the form of an inverse problem, in which the

appropriate excitation function or operator that will
achieve a given objective is sought. One methodology for
treating such problems falls into the domain of optimal
control theory. "'o It is the purpose of this paper to ex-
plore the application of optimal controf theory to the ex-
citation of quantum polyatomic molecular systems. The
ultimate goal of polyatomic molecular system control will
not be examined, but the first rigorous steps will be made.
In particular, the mathematical foundations of certain as-
pects of the quantum-polyatomic control problem are
considered, but the numerical iilustratioiis are confined to
simpler systems. Although it is impracticable at this
stage to numerically treat the large polyatomic excitation
problems quantum mechanically, it is still important to
consider the optimal control problem for simple quantum
systems.

Recently optimal control theory has been applied to
the selective excitation problem in NMR (Refs. 11 and
12) and to the design of selective excitation strategies for
achieving dissociation in chains of molecules treated both
classically' and semiclassically. ' Tannor and Rice'
have used a variational formulation, similar to that used
in optimal control, to demonstrate that selectivity of
reactivity can be achieved by a two-pulse process: the
first pulse is used to excite the molecule; the excited mole-
cule is then allowed to evolve freely and the second pulse
is used to stimulate emission, which will bring the mole-
cule back to a desired location on the ground-state
potential-energy surface. This approach to selective exci-
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tation of a quantum system is quite di8'erent from that
adopted in this paper where the aim is to design pulses
that work cooperatively on the molecular time scale to
actiuely steer the system wave packet to its desired objec-
tive.

The control of quantum systems has also been investi-
gated from a systems-theoretic point of view. Butkovskii
and Samoilenko' established a general formalism for the
control of quantum systems that applies in a variety of
contexts. The controllability of quantum-mechanical sys-
tems has also been considered' '~ and conditions have
been derived for the global controllability of quantum
systems. A general theory of quantum-dynamical sys-
tems with observation, control, and feedback has also
been developed. '

In this paper we consider a specific quantum optimal
control problem of achieving, or coming close to, a
speciffed state at a given time. This problem fits into the
general framework set out by Butkovskii and Samoilen-
ko' and involves the optimal control of a distributed sys-
tem in which the Schrodinger equation governs the evo-
lution of the state of the system. We consider issues of
existence of a solution that require a functional-analytic
approach owing to the infinite-dimensional nature of the
problem. %e also consider the numerical approximation
of the optimal control problem and provide some one-
dimensional examples. One of the examples provides a
model of pulse design for achieving dissociation in a di-
atomic quantum system. The optimal pulse strategy is
shown to exhibit interesting structure that could not be
anticipated a priori. This study demonstrates the useful-
ness of a control-theoretic approach to such problems
and establishes the well-posedness of is the optimization
problem under consideration.

In Sec. II the Schrodinger optimal control problem is
formulated and its physical interpretation discussed. In
Sec. III we establish the existence of a solution to the pro-
posed optimization problem for external forcing
represented by Hilbert-Schmidt operators. We discuss
the apphcation of this result in the context of an approxi-
mate solution. Although the issue of existence is impor-
tant to ensure that the problem is well-posed, readers
more interested in the physical results may omit Sec. III
without loss of continuity. In Sec. IV a Lagrange-
multiplier function is used to de6ne a new cost functional
and equivalent optimization problem. This new optimi-
zation problem is then used to establish necessary condi-
tions for a minimum. These necessary conditions are
shown to form the basis for an iterative procedure to
search for a minimum. In order to determine a solution
to the optimization problem in practical situations, it is
necessary to replace the optimization problem by an ap-
proximate one over finite-dimensional subspaces of' the
original function spaces on which the problem was
defined. %e discuss one such procedure that combines
the method of 6nite differences with a gradient procedure
to search for a minimum of the finite-dimensional optimi-
zation problem. In Sec. V we illustrate the pioposed
theory by providing numerical solutions for the control
of the one-dimensional Schrodinger equation in which we
use the Morse potential to represent a diatomic molecule.

Using two diff'erent types of excitation, the final state of
the quantum system is required to be as close as possible
to a variety of speci6ed target states. One such example
of particular interest is a model of dissociation in which
the Snal wave packet will eventually leave the bound-
potential-well region. Constraints due to the form of the
molecular dipole are shown to limit the accessibility of
certain types of molecular wave-packet objectives. The
effect of the weighting factor used in the definition of the
cost functional is also explored.

X:=L~(Q), X, :=L2(Q,[0,T]),
X':=L,(Q x Q), X,':=L,(Q X Q, [0,T]) .

The optimal control problem is posed in a standard
form ' by considering the minimization of the function-
al:

subject to

i' =(Ho+ U)g for all x E Q and t E (0, T)
Bg

(2.1a)

(2.1b)

1((x,0)=$0(x ) for ail x E Q .

Here QO, /EX;Ho:=[ —(vari /2m)V + Vo] is the Hamil-
tonian of the quantum system to be controlled, and
a &R+ is a constant used to balance the relative impor-
tance of the terms in the cost functional J [u]. All these
objects are speci6ed a priori. The operator U is de6ned
by

Ug(x, t):=I u (x,x', t)g(x', t)dx', (2.1c)
0

where u(x, x', t)CX' for each t so that U is a Hilbert-
Schmidt operator. Conversely, all linear Hilbert-Schmidt
operators on X' can be represented in the form (2.1c).t
Thus a large class of operators can be accommodated in
the theory that follows.

Physically the problem (2.1) can be interpreted as
finding the external applied forcing (as represented by the
operator U) that will make the state g as close as possible
in the required X norm to the target state P at time T,
while ([u ()x, remains finite. The parameter a can be used

to prescribe a priori the relative importance of the error
in achieving the target state g with respect to the magni-
tude of the external applied forcing. As an example, in
the case where U arises due to an external optical 6eld,
the presence of the term (u, u ), imposes the require-

II. STATEMENT OF THE OPTIMAL CONTROL
PROBLEM FOR THE SCHRODINGER EQUATION

In this section we formulate the Schrodinger optimal
control problem that will be considered in this paper.

Let QCR" be the spatial domain under consideration
and [0,T], the finite interval over which the problem will
be posed. %e introduce a convenient notation for the
Hilbert spaces that will be required in Sec. III:



37

III. KXISTKNCK OF AN OPTIMAL SOLUTION
TO THK SCHRODINGKR CONTROL PROSLKM

In this section we establish the existence of a solution
to the optimization problem (2.1).

Theorem l. There exists a solution
u E U,d

= [ u:u FX,
'

I (the space of admissible controllers)
and a corresponding |ltGX, that solves the optimization
problem (2.1).

Proof. By the definition of the infimum there exists a
sequence [ u„jof functions in U,d such that

lim J[u„]= inf J[u] .
EU

(3.1)

Claim l. The sequence [u„jdefined in (3.1) is uni-
formly bounded in n.

Proof. By contradiction. Assume that there exists a
subsequence [u„j,such that given any M &0 there ex-

8k

ists an N for which

n„)N =M & Ilu„ II

However, J[u„] ~ as Ilu„ II», ~ which contradicts
nk Xt

the construction [u„jgiven in (3.1). Thus there exists an
M gO.

ment that the objective g be reached as best as possible
under the constraint of minimal radiative energy deposi-
tion.

This formulation provides a quantum-mechanical basis
for the more practical task of determirung the optimal
external force field (e.g., a laser pulse) that has to be ap-
plied to a molecule in order to achieve a particular objec-
tive such as dissociation of selected atoms from the mole-
cule.

[u„jby means of (2.1c). Considering U„asa bounded
perturbation to Ho it can be shown to generate a Co
semigroup SH + U (t) with the following property:

IlsH, «)ll.p&«"=IlsH, U «)Il.p&«

II» &c" . QED

Since the closed unit ball is weakly compact in a Hilbert
space, it follows from claim 1 that there exists a subse-
quence [u„jof [u„jthat converges weakly in U,„,so

that
weak

Q~ ~ 9 as k~00
k

Now since a Hilbert space is weakly closed, u F U,d.
Similarly, applying claim 2 to the corresponding subse-
quence [f„jwe can establish that there exists a weakly

convergent subsequence of [f„jin X, which converges
Elk

to an element /AX, . Thus taking the intersection of all

these subsequences we obtain two sequences:

Now by the definition of the semigroup,

0 ( t)'=SH, +U„(t)Po(') .

We combine this representation with claim 1, which en-
sures the existence of an M ~0, M„&Mfor all n, with
the above estimate on the semigroup SH + U to obtain0+ n

( f )II & c ~e(re+At)t

Squaring and integrating over [0, T] we obtain the result

Ilu„II», & M for all n .
t

QED [u, I: lim u, = i7 E U,„,
Claim 2. The sequence [ t/r„j of solutions to (2.1b) and

(2.1c) that correspond to [u„jis uniformly bounded in n.
Proof. We consider in this paper potentials Vo for

which Ho generates a Co semigrouP SH (t) on X. Let

[U„jdenote the sequence of operators associated with

lim g, =/AX, ,

where the limits are weak limits, and g, is the solution of
(2.1b} and (2.1c) corresponding to u, . We now show that
u is the minimizer:

J[u]=J lim u, = lim P„lim g, » —g, lim g, » — lim f„Px+a lim u„lim u, ,+(P,f)»
$ —+ C0 g —+c0 S—+c0 $ —+00 g —moo @~co $ —+c0 t

»m y„»m y, » —»m (f,y, )» »m, „&y„—y)»+a»m u„»m u, , +(f,f)x~ ~ ~ ~

Q ~ oo $~ 00 $ —+ QG g —moo g~ 00 t

by the definition of weak convergence. (All limits in an-
gular brackets are weak limits. ) We have

x' —»m &@ @,)x —»m &0, 4)x

+a lim infllu, ll', +ll@llx

inf J[u],
uCU d

using the weak lower semicontinuity of the inner prod-
uct. Thus we have proved the existence of an element
u CU,d that achieves the in6mum value of I on U,d.
This proves the theorem.

Comment. It is of interest to consider the case in
which the operator U defined in (2. lc) corresponds to
multiplication by some function. The operator U would
then represent an external applied potential. This could
be represented formally by letting u (x,x ', t }=5(x
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In this section we reformulate the optimization prob-
lem (2.1) using a Lagrange-multiplier function. We
derive necessary conditions for a minimum and discuss
the approximate solution of the optimization problem.
We assume that U is in the form of a multiplication
operator so that it may be interpreted as an external ap-
plied potential. Theoretical justification for this assump-
tion is discussed in the comment at the end of Sec. III.

A. Lagr ange-multiplier formulation

Let p(x, t)CX, and consider the minimization prob-
lem: Find u, f, and p:

L [il, P,p]= inf L [u, f,p],
uEX,
t)tjE- X,
p 6X(

(4.1)

L[u, f,p]:=~[u]+Ref f p f+ (H, +u)p —dx dt
o n

X, =X, A Ip: it)(x, O)=1(0(x)I .

The introduction of the term with the I agrange rnulti-
plier assures that the Schrodinger equation is satisfied at
the minimum of the functional.

B. Necessary conditions

Necessary conditions for a minimum are obtained by
taking the Frechet derivatives of L [u, g,p] with respect
to the argument functions u, P, and p and equating them
to zero:

0= 5p g= ——(Ho+u)g, f(x,O)=$0(x),
5p

(4.2a)

—x')u(x', t) in (2.1c). However, in this case u 6X; so
theorem 1 does not apply. If we replace the 5 function by
a 5-sequence function 5, so that u, (x,x ', t) =5,(x
—x')u (x', t), then theorem 1 does apply and there exists
a solution to the optimization problem for each e~o.
This is all that we require from the point of view of an
approximate solution of the optimization problem, as 6,
can be chosen to be much narrower than the physical
length scale of the problem, and the operator U can be re-
placed by the multiplicative factor u (x, t) I. n the
remainder of this paper we consider operators of a multi-
plicative form in the context of an approximate solution.

IV. LAGRANGE-MULTIPLIER FORM
OF THE OPTIMAL CONTROL PROBLEM,

NECESSARV CONOmONS FOR A MINIMUM,
AND APPROXIMATE SOLUTION

5u 0=f f 2au —Re P P—' 5udxdt .5L T g

5u o n fi

(4.2c)
The necessary conditions for a minimum (4.2a) —(4.2c)

form the basis for an iterative procedure that starts with
a trial applied potential u' ' from which the correspond-
ing solutions g' ' and p' ' can be found using (4.2a) and
(4.2b), respectively. These functions can then be used to
compute the gradient 5L /5u. This gradient is then used
to identify a search direction to look for a new applied
potential u "' for which the value of I. is lower. Since this
search is infinite dimensional, we shall for practical pur-
poses replace the Hilbert spaces X, X„andX, by finite-
dimensional subspaces on which the optimization prob-
lem is posed. The corresponding necessary conditions
yield a search procedure on the finite-dimensional sub-
spaces, and the gradient can be used to search for an op-
timal applied potential by the method of steepest descents
or by a conjugate direction procedure.

C. Approximate solution

Thus far all the results in this paper are general in that
the quantum control system could contain an arbitrary
number of particles in three spatial dimensions. We now
restrict our discussion here to problems involving the nu-
merical solution of the Schrodinger equation (2.1b) in one
spatial dimension. The procedure can be extended direct-
ly to higher dimensions, neglecting for the moment the
concomitant computational burden of such an extension.

Given a trial potential u'"' we solve (4.2a) and (4.2b)
numerically using finite difFerences. For the one-
dimensional problem in which 0= [0,L] we divide the
spatial domain into X equal subintervals of length
b,x =L /N. The mesh points formed by the end points of
these subintervals are denoted by x„=noix and the nu-
merical solution at such a mesh point is denoted by
1()'„)(t)=i|)'"'(x„,t). We now approximate the operator
H =Ho +u using central difFerences so that (4.2a) is ap-
proximated by

where

t H(k)(t)q(k) (4.3)

H.'"'(t):=
I qE+[V. „+u„'—"'(t)+2q]1 qs 'I . --

Here q =A /2m Ax, E is the spatial shift operator
defined by Eg„=P„+i, and I is the identity operator.

In order to solve the system of ordinary diiYerential
equations (ODE's) (4.3) we use the Crank-Nicholson pro-
cedure. The time interval [0, T] is divided into J subin-
tervals of length bt = T/J. The end points of these sub-
intervals are denoted by t =jAt, and superscripts are
used to denote the time step at which a quantity is evalu-
ated, i.e., P =t(( )tx, ). The Crank-Nicholson procedure
can now be expressed in the form

0= 51(=---p= — (Ho+u)p, —5I. . i
5$ ))t'

P(x, T)=2[/(x) —g(x, T)],
(4.2b)

I + H(k)j +) (k)j +) I )
H )j)ky)k)j

n n 2~ n n

(4 4}
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Since 1()'„"'=$0(x„);n=0, . . . , N the numerical solution
„canbe found by a marching process us-

ing (4.4), which involves an inversion of the tridiagonal
matrix [I+(ib,t/2')H„'"'j+'] at each time step.

The reason for choosing the implicit Crank-Nicholson
procedure in preference to an explicit scheme such as the
"leapfrog" method is that for explicit schemes the
bound on the time step ht depends on the unknown ap-
plied potential u (x, t) Th. us it is impossible to determine
a priori the magnitude of the time steps ht. The Crank-
Nicholson scheme has a stability region Re(z) & 0, and
since the eigenvalues of the Toeplitz operator (i/A)H„(t)
lie along the imaginary axis we conclude that the
difference scheme (4.4) is unconditionally stable. The
Crank-Nicholson scheme can be shown to conserve the
probability density in that (++',P+') =(+,+).

A similar procedure is used to determine the a proxi-
mate Lagrange-multiplier function Ip(k) jJ'„=00' '

„

from
(4.2b), in this instance marching backward in time.

%'e assumed above that u„{'J was known, and calculat-
ed the associated 1((„"'jand p„'"'j. All these can now be
used to determine the gradient derived from (4.2c):

)ay 1 a' x X Xo
+ 1 —exp

co Bt 2'' 2

+ it (X; t) g(X, t), (5.3)

the paper, the objective in each of the examples will be a
particular wave-function shape P(x, T) at a chosen time
T. Although steering wave packets to target shapes does
not correspond to an actual laboratory observable, the
ability to steer wave packets ultimately provides the free-
dom to attain any other meaningful objectives. In addi-
tion, the choice of T should not be viewed as a critical
matter since in real molecular control problems it may be
made sufBciently large so as to insure insensitivity to its
value and convergence of the optical pulse shape in a
laser control problem. ""

In order to reduce (5.1) to a dimensionless form, we re-
scale the length according to x =5X. We choose
5=(h/mes)'j, where co=y(2D/m)' is the frequency
of the harmonic oscillator associated with (5.2) for

~

X —Xo
~

&& 1. In this case (5.1) and (5.2) yield

G(k)j 2 &(k)j Re ~(kl j t ~j(k)je
n

where N are some appropriately chosen numerical quad-
rature weights. The method of steepest descent s can
now be used to determine a new approximate applied po-
tential

{%+1),j + {k),j Qk)6{k)j

where P(") is a non-negative scalar minimizing
J[u„(")'j—pG„( "].Naturally the gradient 6„'""can also
be used to set up a conjugate direction search procedure
such as the Polak-Rabiere method. is

V. NUMERICAL RESULTS

A. Ijtatra4ection

iA
. a@ ))'t 8 + Vo(x)+tt (x, t)

Xiii
(5.1)

%e also choose Vo to be the Morse potential,

Vo(x) =D (1—e ) (5.2)

which represents the potential-energy function of a dia-
tomic molecule. This simple example suSces to illustrate
the possibility of molecular control, while more realistic
cases must await further numerical calculations. ""

In keeping with the formulation presented earlier in

In this section we illustrate the above theory in the par-
ticular case of controlling the Schrodinger equation in
one spatial dimension. We assume that U is in the form
of a multiplicative operator; therefore, it may be inter-
preted as an external applied potential. Theoretical
justification for this assumption is discussed in the corn-
ment at the end of Sec. III. In this case (2.1b) can be
written in the form

where %=2D/A'~ is the maximum number of bound
states, and u (5X, t)/fico is replaced by the dimensionless
applied potential u (X,t). In all the numerical examples
presented in this section rve assume m=1 and %=10.
Throughout this section we shall consider control over a
time interval [0,T] in which T =Sn or four periods of os-
cillation at the fundamental frequency t)) =1.

In the numerical experiment described below we con-
sider the following.

(1) Two different types of external applied potentials:
(P 1), it (X,t) =8 (X)E(t), where 8 (X) is a specified dipole
function, e.g., linear in X; and (P2), u (X,t), an arbitrary
function of X and t. The potential (Pl) is realistic since it
represents the external potential due to a dipole moment
8(X) subjected to a time-varying electric field E(t) The.
electric field E(t) is to be determined by the optimization
procedure. Since the potential (P2) has more freedom
than (Pl) we can expect a lower minimum of J to be
achieved than for the more constrained case (Pl). The
potential (P2) may not be realized in the laboratory, but it
is interesting to consider for its contrasting behavior to
the spatially constrained case.

(2) A variety of difFerent values of the parameter a:
This parameter in (2.1) and (4.1) determines the relative
importance in the cost functional J[u] of the error in
achieving the target state f compared to the magnitude
of the external applied forcing. If 0 & a « 1, then we are
allowing the external Seld to be essentially as large as
necessary to achieve the target it(. Naturally there exists
a critical range of values of o. in which the two terms in
the cost functional are balanced, and the optimization
routine makes a direct trade between achieving the target
and increasing the magnitude of the external forcing. If
o. is made still larger, then the external forcing can no
longer inhuence the state appreciably. An alternative to
choosing the parameter a would be to place a constraint
on ~(u))» directly. This constrained optimization prob-

lem is not considered here, but it would be appropriate if
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there were some practical limitation placed on ((u)~»

(e.g., if field intensities of only a specific bounded value
could be achieved).

(3) Gaussian target wave packets g(x }: These we posi-
iloil at various places lii tile illterval [O,L]. We foi'Inlllate
a model of dissociation within the context of the
optimal-control problem (2.1) by requiring that the posi-
tion of the target wave packet be such that the expecta-
tion value of the Hamiltonian is sufBcient for dissociation
(assuming that significant spontaneous energy loss does
not occur during the subsequent unforced free wave-
packet evolution).

B. Translating a Gaussian wave packet

The numerical results in this subsection have been
chosen to demonstrate that it is indeed possible to deter-
mine an external applied potential that will result in a
specified target wave packet bei.ng achieved at a given
time T =8m. %'e consider the tmo types of external ap-
plied potentials (Pl) and (P2) discussed in Sec. V A, and
the results for these optimally determined external poten-
tials are given in Figs. 1 and 2, respectively.

In this calculation the domain extends from 0 to
L =16.0 and the bottom of the potential well is at
Xo ——4.0. %'e define the function

g(g, (0,1)=m ' "l '~ exp[ —(g —go) /2l ] (5.4)

and choose the initial wave function to be
1(o(X)=g (X,XO =4, 1), and the target state to be the same
Gaussian centered at X&——8.0, so that P(X)=g(X,S, I).
For the spatially constrained dipole function (Pl) we
choose 8 (X)= —(X —Xo ) with unit magnitude transition
dipole. For both potentials (Pl} and (P2) the value of a is
10, so effectively we allow the magnitude of the poten-
tial to become as large as is required.

Comparing Figs. 1(a) and 2(a) we notice that there is a
closer correspondence between the final state f(X, T) and
the target state f(X) for (P2) (the external field with full
freedom) than for (P 1) (the external potential constrained
to be a linear function of X}. This is to be expected from
an optimization point of view, as we are minimizing over
a smaller space of functions in the constrained case and
one would therefore expect the minimum achieved to be
larger. However, what is of more importance is the inter-
pretation in terms of controllability since the spatially
constrained field is less able to control the state. In terms
of achieving the objective, this phenomenon demon-
strates the limitation that results from placing a physical
constraint on the spatial variation of the controller. This
limitation could in principle be alleviated to some degree
by nonlinear feedback to the dipole function through
coherent modification of the molecular electronic struc-
ture for su%ciently intense electric fields.

The nature of the reduced correspondence between the
fin.al state and the target state in the case of the con-
strained external potential (Pl) is also significant. In this
case the f]Inal wave packet is broader than the desired tar-
get. This can be explained by observing that the external
applied potential —(X Xo)E(t) pivots [se—e Fig. 1(b)]

about the point Xo and that the gradient of the potential
Vo(X) decreases as X increases away from Xo. As a re-
sult, an enhanced effective instantaneous curvature of the
combined potential Vo(X) —(X —Xo)E(t) cannot be
achieved in the region X & Xo by any value of E(t) This
limitation is illustrated graphically in Fig. 1(c) in which
the initial potential Vo(X), the applied potential corre-
sponding to the maximum value E,„ofE(t), and the
net potential Vo(X)+8 (X)E,„areplotted. We see that
in the target region X =8.0 the curvature of the net po-
tential is, in fact, negative. This causes the spreading in
the final wave packet observed in Fig. 1(a), and demon-
strates that sharpening or even direct translation of the
wave packet is diScult to achieve in the region X ~ Xo
using this particular spatially constrained controller.
Even the location of the dipole zero, X =Xo in this case,
will also influence the efFectiveness of the constrained
field.

One way of modeling dissociation (see Sec. V D below
for further discussion) using the optimal control formula-
tion (2.1) would be to specify a target wave packet f(x)
that is sufFiciently narrow that the target energy
8= ( f,Hollt ) is larger than the dissociation energy of
5.0. The spreading phenomenon described above implies
that it mould be diScult to try to sharpen the wave pack-
et in the region X &Xo by means of a spatially con-
strained controller of the form —(X —Xo)E(t). This
difFiculty was verified numerically and indicates that an
inherent limitation in the molecular Hamiltonian Ho or
the dipole function 8 (X) can make certain objectives
unattainable.

In Fig. 1(d) the plot of E(t) is positioned above the
space-time contour plot of the corresponding probability
density

~
f(X, t)

~

. The function E(t) is proportional to
the section through the surface 8 (X)E(t) at X =16.0 in
Fig, 1(b). The response of the wave packet can be seen to
lag behind the larger peaks of E ( t) by a factor of approxi-
mately m/2. In this example, as well as all the others, the
field structure reAects knowledge of where the wave pack-
et is currently located and where it is going. This is
brought about by the feedback process carried through
the Lagrange-multiplier function p (X,t). The strategy of
the spatially constrained controller 8 (X)E(t) is essential-
ly to exploit the mails of the potential to guide the wave
packet to the final target position. This can be seen by
the two large-amplitude pulses at t =n and 6n. Between
these two pulses there is an interval of comparitively
lom-amplitude, higher-frequency phase adjustment. The
excitation that occurs at the end of the time interval be-
tmeen 6m and 8m is essentially a low-frequency pulse at
about the fundamental frequency re=1. The contour plot
in Fig. 1(d) illustrates that the wave packet is not spatial-
ly dispersed during the time period [0,T]. The response
to the low-amplitude, higher-frequency phase adjustment
is in the form of the closely distributed (in space and,
time respectively) peaks that occur between 2ir and 5m..
The fact that the field E(t) is not identically zero at
T =8m can be explained by observing that we specified
that the wave packet shall be at rest at T=8~. Thus
there is a very short deceleration period at the end of the
interval [0,T]. In Fig. 1(e) it can be seen that the power
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spectrum of E(t) contains some low-amplitude, high-
frequency components, but the low-frequency com-
ponents dominate the spectrum. The second peak cen-
tered at a frequency of 1.0 corresponds to the fundamen-
tal frequency of the Morse oscillator. This information is
consistent with the phase adjustment interval, followed
by the low-frequency pulsing toward the end of the time
interval that we observed above.

In Fig. 1(f) the time evolution of the energy of the wave
packet is plotted. Superimposed on this plot is the ap-
plied field E(t). The phase adjustment excitation does
little to the energy of the wave packet, whereas the three
main jumps in energy can be seen to correspond directly
to the large-amplitude lo~-frequency pulsing. The drop
in energy at the end of the time interval corresponds to
the deceleration phase to bring the wave packet to rest at
T =8m in order to match the target wave packet.

As can be seen from Fig. 2(b) the strategy of the con-
troller (P2) with full freedom is far more complicated

than the spatially constrained controller (Pl). In Fig. 2(c)
we juxtapose: the diagram showing positive (dark shad-
ing) and negative (light shading) regions of u(X, t), the
space-time contour plot of the probability density

~
g(X, t) ~, and the positive (dark shading) and negative

(light shading) regions of the probability flux vector
J:=(film)Im(g'VP). The nature of the field u (X, t) does
not allow direct comparison between the constrained
(P 1) and unconstrained controller (P2). However, a qual-
itatively similar interpretation can be given to the uncon-
strained controller (P2) if we regard the duration time of
the moving valleys (light shading) in Fig. 2(c) (i) as a mea-
sure of the period of oscillation. Interpreted thus, a
high-frequency phase adjustment stage between t =0 and
4~ can be identi6ed. In response, the wave packet is both
dispersed and concentrated in rapid succession swithin

this interval. This is strikingly demonstrated by the small
regions of alternating flux of short duration that occur in
the interval f0,4w].
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The low-frequency excitation toward the end of [0, Tj,
which was a feature of the spatially constrained controH-
er (Pl), also has its counterpart in this setting of control
with full freedom (P2}. In the interval [4ir, Sir] the wave
packet is guided to the target position by a local deepen-
ing well of long duration indicated by the dashed line in
Fig. 2(c) (i). This local well is Ilanked by high but local-
ized walls that serve to concentrate the wave packet with
a view to achieving the final target state. The large unin-
terrupted regions of probabihty Aux shown in Fig. 2(c)
(iii) confirm the observation that the probability ampli-
tude is being channeled to achieve the final target state.
The dashed line marking the bottom of the guiding well
shown in Fig. 2(c) (i) has also been superimposed on the
wave-packet contour plot shown in Fig. 2(c) (ii}. As was
the case with the spatially constrained controller (P 1), the
wave packet in this case of full control (P2) also exhibits a
phase lag relative to the controller.

In Fig. 2(d) the time evolution of the energy b(t) of the
wave packet is plotted. . The energy increase for the un-
constrained controller (P2) is far more uniform than for
the constrained controller (Pl). In the case (P2) the ener-
gy increases monotonically, unlike the spatially con-
strained controller (P 1), which transfers small amounts of
energy back to the applied f1eld.

As a measure of the average energy involved in apply-
ing an external potential u (X,r) we define the functional

@[u]:=—f J 1$(X,r)1'
I
u(X, r)

I
dXdi . (5.5)T 0 0

In the case of the potential u (X, t) with full freedom,

b[u]=0. 10,
whereas for the spatially constrained external potential,

6'[BE]=0.25 .

Thus the energy required of the spatially constrained field
is somewhat higher than that required of the uncon-
strained Geld. This 1s also true of the maximum applied
field values, since II u

I I
„=0.5, whereas Iles II „=6.3.

These latter numbers may be compared to the potential
well depth N j2=5.0, and in the constrained case it is
evident that the applied 6eld is quite strong. In realistic
problems care will be required to ensure that significant
electronic disturbances do not also occur. As mentioned
above, this possibility could be turned into an asset if it
could be treated in the cost functional J [u].

C. The e8'ect of the weighting factor a

In this subsection we explore the e8'ects of the parame-
ter o. that balances the two terms in the cost functional

NAVE PACKET AT t=Q @=0.52
NAVE PACKET AT t=sn 8=2.70
TARGET NAVE PACKET

(a)

(b)

1.00

X
+

0.60

-0.20

020

FIG. 2. A Gaussian wave packet translated from Xo ——4.0 to Xf ——8.0 by an unconstrained applied potential (P2) u (X,t). (a} The
probability densities of the initial wave packet $0(X)„the final wave packet PX, T) achieved using u (X,t), and the target wave packet
1({X). {b) The external applied potential u(X, t) over the space-time domain [0, 16.0]X[0,8m']. The spatially localized, complex
structure of this potential should be corltrasted with that of the constrained potential sho~n in Fig. 1(b). (c) Three space-time plots
with an aligned time interval. (i) Regions of positive (dark shading) and negative (light shading) applied potential u (X, t). (ii) A con-
tour p1ot of the probability density

I
@(X,t) I

with contour intervals 4
I 1{ I

=0.1. {iii) Positive and/or negative regions of the flux
vector J(X,t). The positive regions (dark shading) represent regions in which there is a flux of material in the positive-X direction,
whereas negative regions (light shading) represent regions in which the Aux of material is in the negative-X direction. A similar
period to that of Fig. 1 of high-frequency phase adjustment can be observed. This is followed by a stage in which the wave packet is
guided to the objective by a deepening well indicated by the dashed line. The same dashed line on the contour plot of the probability
density demonstrates the phase lag of the wave packet behind the external excitation. The large uninterrupted regions of material
ilux confirm that the wave packet is being chanclled to the final state toward the end of the interval [0,Sir]. (d) The energy A t) of the
wave packet over the time interval [0,8m]. In this case the energy absorption of the wave packet is monotonic, which was iiot the
case for the spatially constrained contro11er [see Fig. 1(f)]. All the quantities used in this figure are dimensionless.
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Three regions of values of a can be identified by the ratio
8 = [~P—P)~~/a((u (~z where u is the control in the hmit
a ~0.

(i) R »1. In this case field energy is unrestricted and
the only limitation on the controller originates from the
reachability of the molecular objective by the class of
controller being considered.

(ii) R =O(l). A direct tradeoff' has to be made be-
tween decreasing )(f—l(~)z and the associated increase in
Ilu llx,

(iii) R &(1. In this case essentially all the eff'ort will go
to decreasing ~(u ~(z and a poor match between P and ijj

can be expected.
Depending on the purpose of the control problem, an ap-
propriate choice of a has to be made so that J[u] should
operate in the appropriate regions (i), (ii), or (iii). A fac-
tor to consider may also be unwanted damage (e.g., elec-
tronic disturbance) to the target molecule or others in the
rnediurn, but we do not consider such cases here.

%'e now consider the translated Gaussian wave-packet
problems of Sec. V 8 with a range of values of a. Figure
3 compares the probability distributions

~
f(X,T)

~

of
three final states for the spatially constrained field (Pl)

using the values (i) a =10, (ii) a =10, and (iii)
a=10 . The degradation in performance can be seen
clearly in Fig. 3 while the energy of the controller in each
case is (i) @[BE]=0.25, (ii) @[BE]=0.05, and (iii)
@[BE]=0.03. In Fig. 3(b) E(t) is plotted for comparison
in each of the three cases. As o.' increases, not only is
there the expected lowering of amplitude of E ( t), but the
Geld also does not make the important small higher-
frequency phase adjustments seen in the case a=10
Figure 4 compares the probability distributions

~
g(X, T)

~

of three distinct final states that are obtained
using the values (i) a=10, (ii) a=10 ', and (iii) a= 1,
and for the potential (P2) with full freedom u (X,t) The.

degradation in performance can be seen clearly in Fig. 4,
while the average energy associated with the controller in
each case is (i) C[u]=0. 12, (ii) 6[u]=0.11, and (iii)
8[u]=0.07.

The above results demonstrate how the value of the pa-
rameter o. implicitly afFects the emphasis of the terms in
the cost functional J [u]. Depending on the objective of
the control problem, the emphasis can be placed on re-
ducing the energy of interaction rather than reducing the
error in matching the target, or vice versa. In some
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molecular control problems other terms may enter into
the cost functional with a correspondingly greater choice
to be made as to their relative weight. This prospect pro-
vides an important degree of flexibility and in favorable
cases a family of satisfactory field designs might be ob-
tained.

X
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D. A model of dissociation

A question of practical importance is to determine the

appropriate externally applied potential that will drive

the wave packet out of the potential weH. Although radi-

ative dissociation of diatoms has been demonstrated in an

uncontrolled framework, we consider radiative dissocia-
tion here using optimal control theory with a view to its
real utility in polyatomic applications. There is a variety
of ways in which this can be formulated in terms of the
optimal control problem (2.1). If, for example, we con-

sider Gaussian target wave packets of the form

P(x) =g (X,XI If )exp[ iPgX—/R],

where g is defined in (5.4}, then the target energy
8:=( f,Ho fr)» can be made larger than the dissociation

energy of 5.0 in the present case by choosing XI, I'&, and

l~ appropriately. If we determine a control 8(X)E(t),

0 5P

l

I 1

o= 10
a=10
a=10

7.00

WAVE PACKET AT t=s~ 0=10 7

WAVE PACKET AT t=an' @=10
WAVE PACKET AT t=Sn a=1 0
TARGET NAVE PACKET

P.OO

+
0.60

-0,5P

1.00 5.00 0.20

FIG. 3. Three distinct wave packets, each corresponding to
difFerent values of a. The parameter a determines the relative
importance between the term that represents error in achieving
the target state 1(, and the magnitude of the applied potential.
In each case a spatially constrained applied potential of the
form —(X —4)E{t) is sought. (a) The probability densities at
time T =8m of the three wave packets and that of the target.
Initially ((0(X)=g(X,4, 1) and the final target at time T is
f(X)=g(X,8, 1) for each of the wave packets. {b) The applied
electric field E(t) for each of the values of e. As o. is increased
the magnitude of the applied field is restricted, which limits the
extent to which the target state f can be achieved as can be seen
in (a). As a result of an increase in o; the applied field E(t) also
loses some of the important phase adjustment structure as can
be seen clearly in the early time interval [0,4' J upon compar-
ison of the cases o;=10 ' and 10 in (b). All the quantities
used in this figure are dimensionless.

2.00 6.00 10.00

FIG. 4. Probability density at time T =8m of three distinct

wave packets, each corresponding to difFerent values of o.. The
parameter o, determines the relative importance in the cost
functional J[u] of the term representing the error in achieving

P with the term representing the magnitude of the applied field

u (X,t). Initially the wave packets are all Gaussian, i.e.,
$0(X)=g(X, Xo ——4, 1) and targeted to be the same Gaussian

centered at X& ——8.0 at time T, i.e., @(X)=g(X,8, 1). In each

case an unconstrained applied potential of the form u(X, t) is

sought. As the magnitude of u is forced to be smaller by in-

creasing a, the reachability of the target state g can be seen to
diminish. All the quantities used in this figure are dirnension-

less.



OPTIMAL CGNTROI. OF QUANTUM-MECHANICAL SYSTEMS.~ ~ 0 0 4961

0

which ensures that [I@—P[[» is sufficiently small, then im-

plicitly we will have established a contro~s e a control that achieves

n a
' . 'g e argued thatn a e given time T. It mi ht b

wi not necessarily be the one that re

the least energy or some other criter'
a requires

'
n. owever, accepting the fact that the optimiza-

tion takes place over a subset of dissoci
determined b th

issociation controllers

h d I obl
y t e problem posed in (2.1

em we have posed doesdoes yjeld an optimal
a wi ac ieve dissociation in

I h' '
h 11e s a use a spatially constrained con-

l 0.00

—~*------ INITIAL WAVE PACKET

FINAL NAVE PACKET

TARGET 'NAVE PACKET

0.0

600

2.00

~0o~as~ ~o~ 11W

3.00 9.00

25.00

30.00

15,00

10.00

i.00

0.00

-5.00
2.00 4.00 6.00

I I i

8.00 10 00 1R 00 14 00 16.00

FIG. 5. Am
' ' '

tai~ . odel of dissociation obtai

X

q
p 'll '

d

been su
ease at time T. (a) The initial otenti

g

k h ffi

space timedomain 0
mo ecue to

) provides the control f 'dor guidin the b'av

~ y o p
p e co boned th the M

ing to t e minimum value E;„.The

p
po o

e net potential sn the t
p that can be seen i ( ) A

nc eld E(r) over the time interval 0
e wave packet to

ove t e contour plot of the prob b'1'a 11ty

y a t&me period of
ive y igh in fre uenc

t ' '
e t) cant e diving electric fi ld E

h

nit&ally there is a time
'

d
enc

'
u e. is is followed by a lary ge low frequency pul h h

ce to squeeze the molecular bondon to its desired tar-
e t is superimposed on this lot

c e . the quantities used in this 6
e ime interval [0,8m], can be seen t

is p ot (see the
an e seen to cause the major energy



PBIRCE, DAHI. EH, AND RABITZ 37

-2.0
0.0

LLJ

~rg r
toe rr

~ rrr ~ r ~
r 1

~r ~~ rr
r

\1

~ ~

rrr
'~rr

rr r
~ ~rrrr

5.00

Q, Q 3.00

1 00

Q. Q 1.00 5.00

6.0

12.Q ~

)ytx, e))

ls. Q 4

4
0/e

FIG. 5. (Continued).

troller of the form 8 (X)E(t)= —(X —Xo)E (t)
18 () and the bottom of the potential well at

Xo —6.0. In this case. dissociation is sought by varying
the 5eld to suSciently compress the molecule at time T
and then release it to ffy apart. In order for the target
wave packet f(x) defined in (5.7) to have sufficient energy
to ensure that 8 & 5, we choose X& ——3.8, P&

—0.0, and—
3&

——1.0. %'e assume a Gaussian initial wave packet of
width 1.0 and centered at Xo ——6.0 so that

$0(X)=g(X,6, 1) .
In Fig. 5(a) the initial, final, and target probability dis-

tributions of the wave packet are superimposed. on the
potential Vo at the appropriate energy levels. As the
figure demonstrates, the 6nal wave packet has sufBcient
energy for dissociation to take place. The probability dis-
tnbution ! 1((X,T)! of the final wave packet is narrower
than that of the target ! P(X)! . This can be explained
by the fact that the external applied potential
—(X Xo)E(t) pi~ots abo—ut Xo [see Fig. 5(b)] and that
the gradient of the potential Vo(X) increases as X de-
creases away from Xo. As a result, a signi6cant e5'ective

curvature of the combined potential Vo(X) —(X
—Xo)E(t) can be achieved in the region X &Xo by de-
creasing E(t) sufficiently. This increased curvature is
demonstrated in Fig. 5(c) in which the initial potential
Vo(X), the applied potential for the minimum field E;„,
and the net potential Vo(X) —(X Xo)E;„arepl—otted.
%'e observe that in the target region X&——3.8, the curva-
ture of the net potential is increased signiScantly relative
to that of Vo. This causes the narrowing of the Anal wave
packet seen in Fig. 5(a). Contrasting the sharpening
effect observed here with the broadening efkct observed
in Sec. V 8 for the same class of constrained controllers,
we see that the joint interaction of the molecular Hamil-
tonian Ho with the form of the dipole function 8( )X
makes certain target wave packets reachable in some re-
gions but unattainable in others.

In Fig. 5(d) the plot, of E(t) is positioned above the
space-time contour plot of the corresponding probability
density ! g(x, t)! i. The function E(t) is proportional to
that which forms the boundary of the surface 8 (X)E(t)
at X = 18.0, which is plotted in Fig. 5(b). As was the case
in Fig. 1, the wave packet lags behind the larger peaks of
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E ( t). Very little excitation is performed by the controller
for tF[0,2lr]. In fact, during the interval [0,5ir], the
strategy of the controller is to produce low-amplitude
phase adjustments. This is followed by a large low-
frequency pulse toward the end of the interval [O, T].
The large peak of E(t) near the end of the interval in-
creases the effective curvature of the combined potential
as was demonstrated in Fig. 5(c). This results in the nar-
rowing of the wave packet near the end of the interval
[0,8m], which can be seen clearly in the contour plot and
manifests itself in the width of the final wave packet. In
Fig. 5(e) the time evolution of the energy 8(t) of the wave
packet is plotted. Superimposed on this plot is the ap-
plied field E(t), which is represented by a dotted line.
The phase adjustment stage does little to the energy of
the wave packet. The majority of the energy transfer to
the wave packet can be seen to result from the large low-
frequency pulse applied at the end of the interval. The
average energy involved in applying the external poten-
tial, as measured by the functional defined in (5.5), is in
this case @[BE]=0.38.

%e have thus demonstrated that it is possible to deter-
mine, using this model dissociation problem, a pulsing
strategy that achieves dissociation in the given time inter-
val and that is optimal in the sense of the optimal control
problem posed in (2.1). The optimal field E(t) exhibits a
number of interesting features that could not have been
anticipated a priori without such an analysis. In this case
as well as that of Fig. I control and guidance of the wave
packet is achieved by batting the wave packet back and
forth in a delicately phased fashion by means of the ap-
plied potential 8 (X)E ( t).

VI. COMMENTS AND CQNCLUSIONS

We have formulated an optimal control problem for
the time-dependent Schrodinger equation. The issue of
the well-posedness of the optimal control problem was
considered and the existence of a solution to the problem
was demonstrated. Using the technique of Lagrange
multipliers we derived necessary conditions for a
minimum of the optimization problem. These necessary
conditions form the basis of a gradient-based algorithm
to search for a minimum. A numerical strategy was pro-
posed requiring implicit integration using the Crank-
Nicholson scheme because the applied potential was not
known a priori. A number of numerical experiments
were performed with the following objectives.

In each of the problems considered the applied potential
exhibited an interesting detailed structure that could not
be anticipated a priori. This illustrates the usefulness
of a control-theory approach to achieving quantum-
dynamical objectives. An issue not explored here was the
sensitivity of the final solution to the value of the time T
taken for the solution to be reached. In another work' it
was shown that the field E(t) near the end point T takes
on a specific limiting form as T grows. Optimal control
theory thus provides a promising approach to the search
for an appropriate pulsing strategy. If it is to become a
practical design tool, a number of issues need to be ad-
dressed including the following.

(i) Computational efficiency: The solution of the time-
dependent Schrodinger equation for practical problems is
in itself a computationally expensive venture. The optim-
ization problem is even more computationally intensive,
involving the solution of a large number of time-
dependent Schrodinger problems before a minimum can
be achieved. For example, each of the numerical experi-
ments performed typically involved approximately 30
CPU hours on a Micro-Vax II computer.

It can therefore be seen that the development of more
eScient schemes for the numerical solution of the
Schrodinger equation and the optimization problem itself
may prove to be essential if practical polyatomic prob-
lems are to be tractable. For progress in this area the
reader is referred to the work of KosloK

(ii) Reformulation: If a practical dissociation problem
were considered, then a reformulation in which the ob-
servables (e.g. , the energy) appear in the cost functional
would be more appropriate.

(iii) Robustness: The design of a robust controller that
is insensitive to uncertainties in the Hamiltonian, the
molecular dipole function, and initial conditions will be
essential for practical problems. In addition, insensi-
tivity to laboratory field errors would also be very impor-
tant. The imposition of practical levels of insensitivity is

essential since implementation of the field designs in the
laboratory will, of necessity, be of an open-loop nature.

We have formulated an optimal control problem that is
shown to be well-posed, tractable and which yields useful

information about pulsing strategies for quantum sys-
tems. Although this is an exploratory investigation of an
idealized system, it highlights essential features of what
could become a useful design tool.

(i) To verify that the numerical solution to the optimi-
zation problem does indeed yield a solution that results in
a specific target state being achieved within a given time
T.

(ii) To demonstrate the effect of the parameter a that
balances the two terms in the cost functional J.

(ill) To provide a 11UIIlerlcal solutloll to a liiodel of dis-
sociation in which an appropriate pulsing strategy is
sought that will ensure dissociation in a given time.
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