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We analyze the minimal conditions required to build up a coherent and neutral-like description of
critical phenomena in strongly coupled binary mixtures of pointlike positive charges. One is thus
led to bridge the gap between the microscopic approach dealing with the divergence of the ionic
structure factors S,5(k) in the k —O0 limit and the thermodynamic one deduced as usual from the
Gibbs free-energy function. We emphasize the fundamental role played by the electronic polariza-
tion. Namely, modeling the plasma in the so-called polarized binary ionic mixture which accounts
for the electronic density fluctuations through a static dielectronic function €(k), we show that the
ionic mixture may be properly described as a mixture of “pseudoatom” if e(k) fulfills the compressi-
bility sum rule while the weak electron-ion coupling hypothesis is assumed to be valid. Conversely,
the binary ionic mixture model, with no electronic polarization at all, appears to be inappropriate to
the microscopic approach, as a consequence of the rigid character of the electron background.

I. INTRODUCTION

From a general point of view, studies of critical phase
separation in binary ionic mixtures may be developed
along two different routes. The first one deals with the
thermodynamic properties of the system via the following
standard equation:
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(1.1

which results from the usual interdiffusion stability condi-
tion.! g =G /N denotes here the Gibbs free energy per
atom, T and p are the temperature and the pressure, and
¢, (@=1,2), the concentration numbers. The Greek in-
dices denote the type of component. Solutions of Eq.
(1.1) provide a line of critical temperature T,(c,) which
corresponds to the spinodal decomposition curve (see
Fig. 1). Only the higher critical point T, is physically ac-
cessible. The proper demixing curve is deduced from the
free-energy isotherms by means of the usual double
tangent construction (Fig. 1) and gives the compositions
of the coexisting stable phases. Note that the quantity
(3% /dc? )r,, plays the same role as the inverse iso-
thermal compressibility K ~! in the liquid-gas critical
transition.>

The second route is based on the main characteristics
of the critical regime, that is, the emergence of a long-
range tail in the pair distribution functions g,s(r) ap-
propriate to the mixture, and the onset of large concen-
tration fluctuations. Consequently, the long-wavelength
limit of the partial structure factors S4p(k), and some of
their linear combinations, exhibit a singular behavior, the
analysis of which allows us to study demixing within a
microscopic framework. The link with thermodynamics
is achieved through a small number of fundamental rela-
tionships expressing the structure factors at zero wave
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vector in terms of related thermodynamical quantities.
Some of the latter have been derived by Bhatia and
Thornton,® who got the following important result:

-1
d’g

1.2
o (1.2)

lim S, (k)=kpT
k—0

T.p

S.c.(k) here stands for the concentration-concentration
structure factor which we will detail later. Equation (1.2)
provides a rigorous statement which is valid whenever
the left- and right-hand sides are exact. It is worth men-
tioning that the coherence between the microscopic and
thermodynamic approaches which it implies generally
fails if an approximate description of the system under
consideration is to be used.

In the present paper we consider an extension of the
above coherent scheme to critical phenomena in strongly
coupled binary ionic mixtures. Here we are confronted
with a three-component system composed of two classical
ionic species embedded in a highly degenerate electron
gas. We will restrict our analysis to the case of fully ion-
ized point-like ions and assume the weak electron-ion
coupling hypothesis (WCH) to be fulfilled, an assumption
which imposes an upper limit on the electronic parameter
r, (typically r; < 1.5 in the H*-He?* mixture).

Up to now the important problem of critical phase sep-
aration in such dense Coulombic systems*~!2 has been
handled through the thermodynamical equation (1.1) in
connection with the determination of a miscibility gap
within ionic mixtures of astrophysical interest, such as
the hydrogen-helium one building up the fluid phase in
the deep interior of giant planets.!* Using a hard-sphere
reference system, Stevenson® has first noted that the H*-
He?" mixture in a responding electron gas separates un-
der the physical conditions of temperature and pressure
prevailing in Jupiter. In his calculation he made use of
thermodynamic perturbation theory carried out up to
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second order to describe the response of the electron gas.
A similar hard-sphere perturbative approach, based on a
linear response model with Thomas-Fermi and Debye-
Hiickel screening, was derived later by Firey and Ash-
croft.> Hansen, Torrie, and Vieillefosse® (HTV) and Pol-
lock and Adler® reached the same conclusion as that of
Stevenson but within the framework of the binary ionic
mixture (BIM) model where the electron gas is taken as
nonresponding and mechanically rigid. HTV have also
shown that electronic polarization corrections, as well as
quantum corrections, introduced linearly in a perturba-
tive manner, result in a marked shift of the critical point
location, although the position of the demixing curve is
not drastically affected on average. This feature is ex-
plained by the smallness of the excess (nonideal) free en-
ergy of mixing, typically less than 1% of the internal en-
ergy for the H*-He?* mixture, a quantity which turns
out to be crucial for the accurate determination of phase
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FIG. 1. Schematic of Gibbs free-energy variations with

respect to concentration c,. The spinodal curve corresponds to
the locus of points a and b [(3’g/3c})r,=0]. The demixing
curve pertains to the locus of points 4 and B. It corresponds to
the standard double tangent construction, and expresses the
chemical potentials’ equalities.
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diagrams. An extension of HTV’s results to highly
disymmetric mixtures has been produced by Brami, Han-
sen, and Joly.7 In a more recent work, Hubbard and
DeWitt® have directly incorporated the electronic polar-
ization within the interionic potential. Therefore the
reference system here has to be enlarged to the so-called
polarized BIM (PBIM) model where the electron back-
ground is now allowed to respond to ionic fluctuations.
Finally we mention the works of MacFarlane and Hub-
bard!?~!2 who computed the free energy of mixing of al-
loys at high pressure, both in the fluid and solid phases,
carrying out the calculation of the electron response
within the framework of the Thomas-Fermi-Dirac (TFD)
theory. The latter, which allows for a strong electron
response, were used to account for the partial ionization
character of elements with higher charge number than
hydrogen. The authors have shown that their TFD re-
sults predict a smaller deviation from ideal mixing than
the perturbation theory does, even for the hydrogen-
helium alloy. They concluded that the latter might be
fully stable against phase separation in the metallic zone
of Jupiter and Saturn.

In contradistinction to the thermodynamic approach,
only a few works have been devoted to the study of
demixing at a microscopic level in Coulombic sys-
tems,'* !> by paying attention to the divergent behavior in
the long-wavelength limit of the partial structure factors.
This method has been applied first by Stroud'* to the al-
kali metals with some success, on the basis of a mean-field
approximation for the S 5(k) and an empty-core variety
for the e "-ion pseudopotentials. In dense-plasma phys-
ics, on the other hand, previous attempts such as that of
Baus!® have shown that the critical microscopic features
of an unscreened Coulombic binary mixture (i.e., the
BIM) are partly akin to those of an uncharged fluid mix-
ture. Baus’s conclusion, however, is reached by hy-
pothesizing an ad hoc Ornstein-Zernike behavior for the
static concentration fluctuations, a conjecture which
proves erroneous as demonstrated in Sec. III of the
present paper and in Sec. II of the following one. Anoth-
er BIM of considerable astrophysical interest is the H*-
Fe?** mixture, located at the center of the sun. Its po-
tential demixing properties have been sometimes dis-
cussed'®!7 in relation to the observed discrepancy in the
number of solar-produced neutrinos escaping towards the
earth. This explains that several microscopic approaches
to the corresponding equilibrium properties have been
developed. This includes nodal expansions'® correcting
the Debye static correlations with 7 effective interactions,
as well as static ion-ion correlations'” derived from the
so-called hypernetted-chain (HNC) integral equation.
However, the relevant neutralizing electron background
remains mostly classical, while the present work is dedi-
cated to the investigation of BIM neutralized by a nearly
completely degenerate jellium.

In this work we investigate the problem of demixing in
strongly coupled binary ionic mixtures in a way which
ensures that the coherence between the thermodynamic
and microscopic approaches as detailed in the preceding
is preserved. We analyze the long-wavelength behavior
of the ionic structure factors both in the BIM and the
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PBIM models within the framework of the theory of
thermodynamic fluctuations'®!® (TTF). The polarization
is introduced within the linear-response approximation
(LRA) through a static dielectric function e(k), at any r
value compatible with the weak electron-ion coupling hy-
pothesis. Our claim is that the electron background
should be allowed through polarization to follow the
enhanced ionic fluctuations near criticality in order to ob-
serve demixing at a microscopic level. More specifically,
it follows from our TTF analysis that the PBIM critical
properties may completely reduce to those of a neutral
binary fluid mixture provided the function e(k) fulfills the
compressibility sum rule,”®?! while a superposition ap-
proximation scheme is used for the thermodynamic vari-
ables of the plasma. The analogy between the PBIM and
an uncharged fluid mixture extends also to the stability
conditions of the system as well as to the entire compres-
sibility sum rule. On the other hand, the BIM appears to
be fully stable against demixing, i.e., without any expect-
ed divergence of the S,g(k). This result is explained by
the presence of a Coulombic energy term which prevents
the ionic density fluctuations to build up indefinitely.

This paper ‘is organized as follows. The main features
of our TTF analysis are displayed in Sec. II. We first in-
troduce the basic notations together with the description
of the plasma in the superposition approximation
scheme. Next we introduce a small number of thermo-
dynamical relationships. The suitable second-order
differentials of entropy which form the groundwork of
the TTF are then derived. Their long-wavelength behav-
ior is discussed through the properties of an effective po-
tential AD(k) which turns out to play a central role in our
analysis. The stability conditions of the system, which
directly arise from the expression for the entropy varia-
tion, are discussed in Sec. III. In Sec. II of the following
paper, we apply the methods of the TTF to derive the ex-
pression of the direct correlation functions @aﬁ(k) and
that of the structure factors S,g(k) in the long-
wavelength (or hydrodynamical) limit and then set up a
few sum rules. Finally, numerical results based on the
HNC approximation for the S,g(k) are displayed in Sec.
III of the following paper, for the H*-He?* mixture.
These results confirm the stability of the BIM and the
possibility to observe a ‘“‘microscopic” demixing in the
PBIM. A preliminary account of parts of this work has
already been given elsewhere.?

II. CONSEQUENCES OF THE WEAK
ELECTRON-ION COUPLING HYPOTHESIS

A. Notations

We consider a mixture of N;= 32_, N,, ions with
charge number Z, (a=1 refers to the smallest charge)
and N, electrons in a volume V. The ionic component
is characterized by the ionic number densities n;
=limy_, ,(N;/V) and n;,=lim,_ .(N,;,/V). The con-
centration numbers are ¢, =N, /N;.

We choose the ion-sphere radius a; =[3/(4mn;)]'”? as
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the unit of length and we define the classical plasma pa-

rameter as '=Be?/a;, where B=1/kyT. The electron

gas is characterized by the usual dimensionless parameter

ry=a,/ay, where a, is the Bohr radius and a,=[3/

(47n,)]'”? is the electron sphere radius deduced as usual

from the electronic number density n, =lim,_, (N, /V).
For convenience, we introduce the short notation??

Y =c,Y! +c,¥} 2.1)

for any average concentration number over the variable
Y,. The electroneutrality condition is thus expressed as
N,=2ZN,, or equivalently, a;=a,Z '/*. Also we denote
by z,=Z,/Z a reduced charge number.

We define A=(97/4)!/* as a numerical constant and
we denote?? by &=3—a, the complementary value of the
index a. Finally, we introduce the symbol €4 defined as
€,5=1ifa=pP and €,5= —1 if a£p.

From the preceding notations, we see that the thermo-
dynamic state of the binary ionic mixture under con-
sideration is entirely determined in terms of the set of in-
dependent parameters (I',r.,c;). Alternatively, one can
choose (I,r;,c,), where I'"=Be’/a,=TZ ' defines
another plasma parameter.

In the following we will have to consider the local fluc-
tuations of the thermodynamic variables around their
equilibrium values. This local character will be intro-
duced simply through the explicit dependence over the
space variable r, or k, in the Fourier space, except for the
local number densities, which will be denoted explicitly
as p;(r), p;,(r), and p,(r).

B. Superposition approximation scheme

As previously stated, we restrict ourselves to the case
of a classical and strongly coupled binary ionic com-
ponent interacting weakly with a highly degenerate neu-
tralizing electron gas. The latter assumption is written in
terms of the degeneracy parameter a=T /T as

2 7 Ts
P‘F=O.54F <«<1,
where T is the Fermi temperature.

Equation (2.2) imposes an upper limit over the elec-
tronic parameter r, which gets obviously enhanced in the
strong-coupling regime I' >>1 of present interest. As a
result, the electron-gas properties are entirely described
in terms of the electronic parameter r, when the condi-
tion (2.2) applies.

The validity of the WCH is ensured when the average
e ~-ion Coulombic energy remains smaller than the Fermi
energy,

Ze? A? 1.84
a, ‘T 2Z  Z
The condition (2.3), which is obviously fulfilled for
r, S1in the H*-He** mixture, enables us to envision the
plasma in the superposition approximation scheme where
the thermodynamic variables of the whole system are
written as the sum of the ionic and electronic com-

ponents, respectively. Thus, with evident notations, we
get

a=T/Tp= (2.2)

2.3
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P =p.+pi> G =G, +G;,

K '=Kk-'"+K!, S§=S5,+S,, 2.4)

for the pressure, the inverse isothermal compressibility,
the Gibbs free energy, the entropy, etc. Moreover, the
electronic and ionic variables are assumed to depend only
on the state variables of each component separately. Asa

particular example, we get for the pressure and the chem-
ical potentials.

p=pr.n,), p.=p.n,),

Pi=pi(niT), Wig=Ha(n;0, T), 23

choosing T and the density numbers as independent vari-
ables.

Finally, the superposition approximation must be sup-
plemented by the electroneutrality constraint. The
differential of the Gibbs free energy

dG =dG,+dG,

dG,=—-S8,dT+Vdp,+u.dN, , (2.6)
dG,=—-S,dT+Vdp,+ é Li8Nig »
a=1
yields
dG=—-SdT+Vdp+ é Bio8Niq » (2.7a)
a=1
with
Bia=Hiat+Zal, - (2.7b)

The fi;,’s define the effective chemical potentials of the
whole system which may thus be described as an effective
two-component one. Moreover, from Egs. (2.1)-(2.7), it
is easily shown that there exists a one-to-one correspon-
dence between the variables related to the entire system
and that of the ionic component alone,

(T ticottiao - -} = (TP Mgl - -} . 2.8)
The thermodynamic state of the plasma may then be de-
scribed in both types of representation and this possibility
will be steadily worked out in this paper. It is worth
mentioning that the superposition approximation scheme
(2.4) and (2.5) holds equally well for the local variables by
assuming a local thermodynamic equilibrium (LTE) hy-
pothesis. When the latter is supplemented with a local
electroneutrality criterion, the bijection rule (2.8) applies
to the local variables too.

C. Basic thermodynamical relationships

A small number of thermodynamical relationships
which will be currently used in the sequel are summa-
rized in the present section. Some detailed derivations
are given in Appendix A. For convenience we adopt a
lower-case letter for all the intensive variables, along the
notation
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A=A, + A, (a;=A,/N,, a,=A,/N,),

= (2.9
G=A/N,-=a,-+Zae .

1. Gibbs-Duhem relations and related expressions

The Gibbs free energies g;=G;/N; and g=G /N, are
expressed as

2 2
gi= 2 ca“ia! g= 2 cmﬁ‘ia .

a=1 a=1

(2.10)

When choosing the set (T,p;,c,) or (T,p,c,) as indepen-
dent variables, their first-order differential reads

dg;=—sdT +vdp,+p.dc, with p.=p,—p;, 211
dg =—sdT+vdp+fide, with B =fi,~f,.

v=V/N;=1/n; defines the mean ionic volume while y,
and [i. are the chemical potentials conjugated of the
charge number concentration c;. Alternatively, one can
choose the charge number concentration cy=c,Z, /Z in
lieu of ¢;. We get

d 5_2_"— =——SZLdT+ ‘fi‘ 1 deg

with #COZE% ., (.12a)
d -;.- = %dT+%‘e’-+pc de,

with ﬁ%:ﬁ%‘—l—%@ . (2.12b)
Be,=Hc, » (2.12¢)

Be, being a conjugate of the charge concentration number
Co.
From the well-known Gibbs-Duhem relationships,

2
2 cad:uia_v dp,—-{—s,—dT:O s

(2.13a)
a=1
2
S coditi—vdp+sdT=0, (2.13b)
a=1
one deduces
2 ay’ia 2 aﬁia
e |=—=| =0, o |52 =0. (214
a§1 acﬂ T.p; agl acB T,p

These relations permit us to link the second-order deriva-
tive of the Gibbs free energy to the first one of the chemi-
cal potentials p, (or fi.) and p, as follows:

e,

dcg

dc?

oL,

aCI =Z(2122)2

T.p;

s
T,p; T,P,'

i

(2.15a)
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2 L, _ oL,
L ) - 3"— —Z(z,2,7 | = (2.15b)
acl T.p Cy T.p Co T.p
Another important relation reads (Appendix A)
e d%g; K
Z 2 0 — : :2____0_
(2122) B[ aCO Ton B a(j% Tpi+8 K’.
2 -, K
8|2 1522 e
dct Ty K
which implies
d%g; 2 K, K;
g2 e 5eToi 6w
dc? |1, aci |7, K K,

The expansion coefficients 8 and & are detailed in the
sequel [Eq. (2.26)].

2. Compressibility relationships

We denote the kinetic (ideal) compressibility of the ion-
ic component as Ky=f8/n; and we introduce the short
notation

a.u'ia
T (3 Jrnyens 2.17)
~ aﬁia
Hap an,ﬂ T,niy¢n,-B.

In terms of the derivatives p,g and fi g, the inverse iso-
thermal compressibilities are (see Appendix A)

K, ap; 2
K, P o fre, TP F Gt (2180
1 1 LA | ap=
Ky J 2 _
?=B 5’1& . =Bni BE] CaCB;.LaB . (2.18b)
i )€y af=

According to the usual definition of the electronic
compressibility,

Ky _ |9p, - Op,
el P n, | o | (2.19)
K, on, | an, |,
the relation linking together s and fi,; reads
z,zg K
L0 (2.20)

Bop=HKept+ 'B'n““_ "X

e

3. Volumic expansion coefficients

The transformation relations for the derivatives u,z or
Li,p when changing from the set of independent variables
(T,n;,) to (T,p;,c,) or (T,p,c,), are (Appendix A)

(1— Cﬁ ) a,u,-a
dcg

UaUB
+ K’
T.p; i

Hap=— (2.21a)
!
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(1—cp) | Oftjq Uolp
fop= , 2.21b
y‘aﬁ n; aCB T.p K ( )
where v, and U, are partial ionic volumes
|
@ 3N,-a T'p‘.,N'.r#Nm ’
(2.22)
_ | oV
* aNia T,p,NiT;sN,.a ’

the additive properties of which, according to Euler’s
theorem, read

(2.23a)

R
I M~
(2}
R
]
R

2
V=3 CulU,=
a=1 1

or
2 2
I= 3 nv,= 3 ni,o, . (2.23b)
a=1 a=1

The v,’s and U,’s are readily expressed in terms of the
following volumic expansion coefficients:

on; on;
s=— |0 | 5=t || (2.24)
n; | dcy |T,p, ni | 8¢y g,
so that
nvy=1-—c,8, n;v,=1-c,3,
(2.25)

nv,=1+¢8, nv,=1+c,8.

In addition to & and §, it is useful to introduce the expan-
sion coefficient 8’ and § ', related to the electronic number

density n,,
on,
3y |r,

It is then a straightforward matter to derive the following
transformation relations:

an,
dc,

(2.26)

1
’
Tvp,' ne

5 =L
ne

§'/8'=K/K,; , (2.27)
8=z,—2,+48, §'=z,—2,+8, (2.28)
from which arise
5=57—(z, —2) 1=+~ (2.29)
and
K; K;
n,va‘—*nii)'a?-}— 1—-1—(— Zy - (2.30)

D. The second-order differential of entropy

The suitable thermodynamic potential required to de-
scribe the equilibrium properties of a fully isolated system
is the entropy S. In the theory of thermodynamic fluctua-
tion,'®!% the probability of having a fluctuation 8a for a
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thermodynamic quantity a around its equilibrium value
(a),, is proportional to exp(AS /kj), where AS denotes
the corresponding entropy variation. As a standard re-
sult, the TTF provides a powerful method to derive the
static correlations {8a,8b ),, within every couple of vari-
ables, the normalized average being computed with the
weight function exp(AS /kg), while the entropy variation
is expressed as a quadratic form in 8a and 8b. In the fol-
lowing, we apply the TTF to the case of a polarizable ion-
ic mixture, choosing the local ionic density fluctuations
8p;(r)=p;,(r)—n; as independent, the induced electron-
ic density fluctuation 8p,(r)=p,(r)—n, being computed
in the linear-response approximation (LRA). We thus
generalize to polarizable ionic mixture the TTF analysis
of Vieillefosse and Hansen?* for the OCP, which has been
subsequently extended by Vieillefosse?>?® to other
Coulombic mixtures such as molten salts.

In a fully isolated polarized binary ionic mixture at
fixed volume V and temperature T, the local entropy vari-
ation per unit volume which arises from local but macro-
scopic density fluctuations reads

2
To(p;(r)s(r))=8(p,(r)u(r))— 3 p;o(r)dp;,(r)

a=1

— . (r)dp, (1), (2.31

where u(r) and s(r) are the local internal energy and en-
tropy per ion, respectively.

Equation (2.31) is written under the assumption of the
LTE hypothesis and its range of application is thus re-
stricted only to the long-wavelength regime,

2m

k

where k stands for the current wave vector of the Fourier
|

A="=>>q,—k <«<a; ', (2.32)
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transform of any spatial fluctuation §f(r), the latter be-
ing defined as

87 (k)= dere~"k"5f(r)=8f(r)=—:; 3 e BPK) .
k

(2.33)

It should be noted that the restrictive condition (2.32)
applies only far from any critical transition. If this is not
the case, a; must be replaced by some characteristic criti-
cal correlation length £, so that one expects the results of
the TTF deduced from (2.31)-(2.33) to be valid only in
the strict limit k —0, i.e., in the vicinity of a critical
point. This peculiar feature will be discussed further in
the sequel.

The electronic density fluctuation in Eq. (2.31) is to be
taken in the LRA, so that we get in Fourier space

A _ __1____ A~
8p.(k)=— | = =1 8pk) , (2.34a)

with

2
8piok)= 3 Z,8p;4(k) .

a=1

(2.34b)

8p;o(k) denotes here the ionic charge-density fluctuation.
The dielectric electronic function €(k) is assumed to
fulfill the wusual perfect screening condition®’
€(k);_o~k 2, so that the electroneutrality law is then
automatically ensured for the whole system through
(2.34a). With the LTE criterion (2.32) it may also be ex-
tended to the local macroscopic subsystems of typical ex-
tension A>.

The second-order differential of the entropy is directly
deduced from (2.31),

2 2
T(pi(r)s(r)—n;s)=8(p,(r)u(r))+18Xp,(r)u(r))— 3, p;o(r)8p;o(r) =1 3 8p;4(r)8p; (1) —pu, (1)8p, (1) . (2.35)
a=1

a=1

The terms proportional to 8%p,(r) and 8y, (r)8p,(r) have
been removed as a consequence of the LRA and we have
retained only the 8p,,(r)’s as independent variables,
which implies §"p,;,(r)=0 (n > 1). Finally, the total en-
tropy variation AS in the volume V is computed by the
integration of (2.35) over the space variable r while the
following conservation equations are to be used:

fydrS(p,»(r)u(r))'—"O , (2.36a)
[ ,dr8p, (r)=0, [ ,d18p;(r)=0 . (2.36b)
We thus get
AS_ B 2
K, = 2nydr8 (pi(D)u(r)
B 2
57 2 3 uak)8p—k) . (2.37)

k aB=1

f

The prime in the summation means that the zero wave
vector is left out to take proper account of (2.36b). The
conservation equation (2.36a) may be extended up to
second order in the form

B
—2—Vderﬁz(p,-(r)u(r))=—(Ec+Ep) , (2.38a)

2V k apB=1

B 2 4e? 1
E =3 zZZ —
P ZVZk w1 TP K2 | ek

X 8P4 k)85 —K) (2.38¢)

which physically means that, due to the density fluctua-
tions, the internal energy of the system is transformed
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into a Coulombic macroscopic energy E. and a term E,
which we add to account for the polarization energy of
the electron gas taken in the LRA.2?° Equation (2.38a)
is a direct consequence of the long-range nature of the
Coulomb potential. It expresses the fact that the interac-
tion energy between the subsystems cannot be neglected
with respect to the internal energy. This is to be con-
trasted with the neutral systems where the coupling
strength (between subsystems) is ensured only through
surface bonds so that (2.37) is just restricted to the term
involving the chemical potentials.

The final expression for AS, deduced from (2.37) and
(2.38) with the help of (2.17), reads

B S (cacy)AZ,Z 00K +Bryptog]

B k opf=1
8p:,(k)8p 5( —k)
Pia Pip , (2.39)

(N;gN;p)'"?
where
4mfe’n;
Berm _3C 1 (2.40)

T k%(k)  a? kle(k)

(k) denotes here the dimensionless Coulomb potential.

The formula (2.39) may alternatively be expressed in
terms of the derivatives fi,z (Eq. 2.17) while taking ac-
count of Eq. (2.20),

2
BS 130 S (cocy) UZoZpAD(K) +Br,figs]
kB k apf=1
85, k)85 —K)
e T (2.41)
(NgN,p)
with
1 Ko
AD (k) =D(k)— = (2.42)
Z? K,

The quantity Ad(k), which acts as an effective potential
in the coefficient of the quadratic term 8p;,(k)5p;4( —k),
plays a central role in the characterization of the PBIM
as a well-behaved model with respect to stability criteria
and microscopic critical properties of binary ionic mix-
tures. This point is clarified in Sec. Il E. Before that, we
wish to establish the expression of the determinant of the
fundamental quadratic forms (2.39)-(2.41) which read,
respectively,

D(k)=Dg +Z %(k)D;, D(k)=Dp+Z*Ab(k)D, ,
(2.43)

with

Dg=ccdet | Bnfigg| ,
(2.442)

Dy =ccydet | Bn;p g,

2
2 eaﬂz&zﬁuaﬁ ’
a,f=1

DI—':ClCan[
5 (2.44b)
Dy=cicoBn; 3 €uqpz 2500p 5
a,B=1
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where the notations €,5 and & (or B) have been previously
defined in Sec. IT A.

The determinants in (2.44a) and (2.44b) split into a reg-
ular component Dy or Dy quadratic in the Kqp (o1 the
fip and an interactive component D, or D, linear in the
Kqp (o1 the fi,z). With the help of the thermodynamic re-
lationships displayed in Sec. II C, these components may
also be written as (see Appendix B)

Ko

D B azgi
=cc,—B | —=
R 12 K[ aC% T.p,

i

K,
% P

i

O,

aco ) (2.45a)

=c,c,Z(z,2,)*
82

DR-Clcz KB 3c2
1

e,

Lop

K ) (2.45b)

=c,c,Z(z,2,)

d%g;
dc?

B

Dy=cc,

Tvp,' Ki

e,

EC\sz(ZIZZ)ZB ac
0

, (2.46a)
Tn,

g
ci

D;=cc, |B (2.46b)

K

+S'2_(l } ED[ .
K

Tp

The equivalence between D; and D is easily demonstrat-
ed from the definitions (2.44b) and the relation (2.20). It
does not hold for the regular components linked together
under the form

K, |’

K

K, . K, _ -
K:) D,= ??—D, —cc,0"

a relation which is directly deduced from (2.16a) and
(2.16b) [or from the complete equivalence between D (k)
and D(k)]. It must be noted that the derivative of fi.
contained both in the regular component Dy and in the
interactive one D, is taken at fixed temperature and fixed
pressure in the first case, and at fixed temperature and
fixed electronic density in the second one.

Finally, it is also useful to recover the above expres-
sions for the limiting case of one single ionic component
plasma (OCP). Due to the logarithmic term contained in
the ideal part of the chemical potentials, we obtain

DR =DR—'

(2.47)

2. 2
CET c1628 %ngi r,p,.zclaithlczﬂ[gC% T,pzl
(a=1,2), (2.48)
lim DR-—&, lim DR=£9- (a=1,2), (2.49a)
cq—l K" c -1 K
and
lim D,: hm D,—l (a=1,2). (2.49b)

C——»l



E. Summary: The PBIM model

A coherent approach for the polarized binary ionic
mixture taken as an effective two-component system re-
quires us to supplement the superposition approximation
scheme with an internal consistency requirement over the
electron-gas dielectric function €(k), considered in the
form

k?+ kg (x)
e
krp=(6wn,e’/Ep)'/? denotes the Thomas-Fermi wave
vector and the function g (x) depends only on the dimen-
sionless variable x =k /2k.

The aforementioned internal consistency is secured
through the well-known compressibility sum rule?®?!

k) =1 4mnle’K,
e TR

€( (2.50)

) (2.51)

which implies

lim g(x)=%n,E¢K, ,

x—0

(2.52)

and then

_ K
lim Z % (k)= ° (2.53)

e

so we get from (2.42)

gimoAﬁ(k)zo (~—k?% (PBIM) .

(2.54)

It is also straightforward to check out that the long-
wavelength components in the entropy variation (2.41)
have exactly the required neutral-like form of a two-
component mixture owing to the presence of the fi,g for
the whole system in the coefficient of the quadratic term
8p:o(k)8p,s —k). This convinces us to adopt the
definition of the coherent PBIM model as a polarized
binary ionic mixture where the electron gas is taken in
the LRA in addition to the electronic compressibility
sum rule requirement. On the other hand, the BIM mod-
el with e(k)=1 for all k is entirely governed by the
Coulomb potential ,(k)=4mBe’n;/k?, so that
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g<kg~ﬁc(k)_>oo (~k~%) (BIM). (2.55)

k—0
The striking discrepancy between (2.54) and (2.55) is ex-

plained by the behavior of the screened Coulomb poten-
tial at the origin,

) ) 47rBezni

lxmo lim9(k)=0,(k)= 2 (BIM) , (2.56a)
] ) 47rBe2n,-

lim llmﬁ(k)=—2~— (PBIM) . (2.56b)
r,—0k—0 kTFg(O)

The first limit diverges as k ~2 while the second diverges
as k3p~r,”!. Then for a finite value of r, the screened
Coulomb potential is finite at k —0 while the Coulomb
potential is not.

This peculiar feature explains the internal deficiency of
the BIM model with the thermodynamic quantities taken
at finite r; value for the electron gas, while the ionic ones
are computed at 7, =0 through 9,(k). This remark leads
us to expect the PBIM to be able to display a more con-
sistent framework than the BIM one, as far as the investi-
gation of stability criteria and critical demixing proper-
ties of binary ionic mixtures are concerned.

III. STABILITY CONDITIONS IN THE THEORY
OF THERMODYNAMIC FLUCTUATIONS
A. General

The stability conditions of the system are readily de-
duced from the entropy variations (2.39) or (2.41) which
must fulfill a definite and negative quadratic form in or-
der to prevent the enhancement of ionic density fluctua-
tions. The required conditions are more readily derived
while first reexpressing AS in the charge number density
fluctuation

8p,~0(l')= 2 Zaﬁpia(r)

a=1
[see Eq. (2.34b)] and the charge number concentration
8co(r)=8(Z p;y(r)/pio(rT))

taken as independent. Details are given in Appendix C.
We get

A_S:_ 1 , ‘_9— = 2n SPIO(k)SﬁIO(—k) n, _K_O. oA ~ . ~
A -—-——-ZNI Zk ‘ K, Z “v( 52 —szz Ki8[Sp,»o(k)ﬁco(—k)+8pi0(—k)8c0(k)]
nZ' || % 5250 |52, (k)82o( —K) (3.12)
—+ + W - s .
(Z,Z,)? dc? |1, K, |JroPo 2
or alternatively,
AS 1 , Ky -, 8pio(k)8p o —k) n, Ko . _ A N
k, = — N, 21:' [ X V4 52 — Z.Z, K 8 '[8pi0(k)88o( —k)+8p;0( —k)8¢,(k)]
nlZ? 32 <, Ko
B|—5 O '"— |8¢,(k)dCy(—Kk) |, (3.1b)
(ZIZZ) aCl Tp
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where the coefficients 8 and &' have been defined in
(2.26). Other expressions equivalent to (3.1a) and (3.1b)
but involving the expansion coefficients & and §, respec-
tively, can be derived on the same footing, but with the
ionic number density 8p,(r)=3?2_, 8p;,(r) and the con-
centration number fluctuation 8¢, (r)=28(p;,(r)/p;(r)) as
independent variables (Appendix C).

The stability conditions are mathematically set up
when both the coefficient of |8p;(k)|? and the deter-
minant of the quadratic form (3.1a) [or (3.1b)] are
definite positive quantities. This secures a positive
coefficient for | 8¢,(k) |2 too because (3.1a) and (3.1b) are
symmetric quadratic forms. Thus we get, respectively,

K, - K, _
?O+Z76(k)5—170+22A6(k)20, k<<a”' (32)

i

D(k)=Dr+Z%(k)D; >0, k <<a;' (3.3a)
or, equivalently,
D(k)=Dg+Z*A0(k)D; >0, k <<a;”! (3.3b)

where the determinants D (k) and D(k) have been previ-
ously defined in (2.43)-(2.46).

Regardless of the appearance of the potential 3(k) in
the preceding inequalities, and owing to the presence of
the inverse compressibility and the Gibbs free-energy
derivatives on the left-hand side (lhs), respectively, we
refer to the former [Eq. (3.2)] as the mechanical stability
condition (MSC) and to the latter [Eqgs. (3.3a) and (3.3b)]
as the interdiffusion stability condition (ISC). With the
limits (2.49a) and (2.49b), they reduce to the MSC alone
in the case of a single ionic component plasma.

B. Stability conditions in the PBIM

Applying the long-wavelength sum rule (2.54) to the
MSC and the ISC leads to

Ky, _ K,
—+Z (k) =— >0 (MSC, PBIM), (3.4a)
K; k-0 K
~ Ko | 3% d’g
Dp=cic,—B|—= >0=8|—
R 1¢2 K B aC% - = ﬁ ac% -
>0 (ISC, PBIM) . (3.4b)

The stability conditions of the PBIM are thus exactly
the same as in a neutral mixture, which means that the
Gibbs free energy g (T,p,c,) of the whole system must be
a concave function of the concentration ¢, (at constant
temperature 7T and constant expression p) in order to
prevent the enhancement of the interdiffusion
phenomenon associated to the critical phase separation.
The total compressibility K must remain positive to
secure the mechanical stability.

It should be noted that the ISC in the PBIM is directly
related to the sign of the regular component Dy appear-
ing in the definition of D(k) [Eq. (2.43)]. With the help
of the equality (2.15b), it may be alternatively expressed
in the following forms:
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al"‘ c aH’CO

>0 or 8

>0 (ISC, PBIM) .
T.p dcy

T,p

(3.5)

C. Stability conditions in the BIM

Equations (3.2) and (3.3) are now governed by the
divergence of the Coulomb potential v,(k) at kK —0, so
that

—+Z%,(k)>0 (MSC, BIM), (3.6a)
Ki k—0
Dr+Z*9,(k)D; >0 (ISC, BIM) . (3.6b)

k—0

Clearly the MSC (3.6a) is always satisfied irrespective of
the sign of the ionic compressibility K; which, as is well
known, becomes effectively negative in the BIM (Ref. 6)
just as in the OCP (Ref. 30) for I'" 2 3. This result is ex-
plained by the emergence of an induced macroscopic
electric field arising from the ionic density fluctuations,
preventing the latter from building up indefinitely. As
shown by Lieb and Narnhofer,’! for the classical OCP,
the existence of negative (ionic) compressibility and pres-
sure does not entail fundamental difficulties.

It is very instructive to contrast the corresponding
MSC inequalities (3.4a) and (3.6a) in the PBIM and the
BIM, respectively. We note first that the finite term
Z %(k =0), which gives rise to the inverse electronic
compressibility in the former model [see Eq. (2.53)], is re-
placed by an infinite quantity Z *,(k —0) in the latter,
owing to the inversion in the limits (2.56a) and (2.56b).
Thus Z %, (k —0) may be seen as an “infinite equivalent
inverse electronic compressibility” which acts at the mi-
croscopic level in the BIM and ensures that the MSC will
be fulfilled once for ever. Moreover, although it follows
from our numerical results in the H*-He?™, displayed in
Sec. III of the following paper, that the ionic compressibil-
ity K; can also turn negative in the PBIM, the total
compressibility K has to remain positive in order to
secure the mechanical stability condition (3.4a). This is
to be contrasted with the BIM, where the existence of a
definite and positive compressibility K for the whole sys-
tem does not follow from a thermodynamic criterion but
has to be physically imposed through a restrictive choice
for the parameters 7, and I, so that the positive inverse
electronic compressibility K,~! (or pressure) compensates
at least the negative ionic one within the previously
defined superposition approximation scheme.

The interdiffusion stability condition (3.6b) in the BIM
is related to the sign of the interactive component D,
while it depends on Dy in the BIM [Eq. (3.4b)]. Conse-
quently, it reads
g

+S 2
dc?

Tp

D1=D1=C1C2

h K

¥

>0 (ISC, BIM) , (3.7
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or alternatively [see Eq. (2.46a)],
g,

dcq

(3.8)

B >0 (ISC, BIM) .

T,n,

The inequality (3.7) no longer has the usual neutral-like
form (3.4b) owing to the presence of the definite positive
term 8 ‘(K /K ) which ensures that the BIM can sustain
nonexploding ionic density fluctuations even in the vicini-
ty of the spinodal decomposition curve (3% /dc? )7, =0.
This follows directly from the general property that the
interdiffusion stability criterion (3%g /ac%)r, p >0 breaks
down before the mechanical one' K >0. Moreover, it
can be further stated that ISC in the BIM is always
fulfilled, exactly as the MSC, which means that ﬁ, is a
strictly definite positive quantity. This assumption is obvi-
ously true in the one single-component limit where D,
reduces to unity [Eq. (2.49b)]. Thus hypothesizing a
change in sign for D, in some intermediate concentration
range would imply that the system remains fully stable or
fully instable, the lhs of (3.6b) varying discontinuously
from + o to — oo. This unphysical and novel feature is a
by-product of the Coulomb term and can be explained by
the appearance of an infinite electrostatic energy if un-
damped ionic density fluctuations are allowed to build up
in the system. The preceding argument may be indirectly
checked out against the known properties of the BIM
equation of state. In the case of weakly asymmetric mix-
tures, HTV (Ref. 6) have shown that the excess internal
energy uf*® or excess Helmholtz free energy f7*° is re-
markably linear in the concentration ¢, when it is com-
puted at constant I'' (i.e., at constant temperature and
constant electronic density),

B[ e, /88 (D23 ) +er[88(0'Z37) . (3.9

S 8&p denotes here the Helmholtz free energy of the OCP.
As shown in Appendix D, the excess (nonideal) com-
ponent of Dy is identically zero when it is computed with
the above linear equation of state so that D; reduces only
to its ideal part D 9 (see also Appendix D for the deriva-
tion of D)%),
D,=Dd4+Dy°=D¥=z7, (3.10)
which is obviously positive.
The variables kept constant in the derivative auco/aco

[Egs. (3.5) and (3.8)] are T and p in the PBIM and T and
n, in the BIM, respectively. In the high-density limit
r,—0, the ionic pressure becomes negligible compared to
the electronic one (p; <<p,). Since p, is a function of r,
only, the condition of constant pressure is then equivalent
to the condition of constant electronic density (or
equivalently to the condition of constant parameter I'’ at
fixed 7). We thus expect that the ISC inequalities will be
identical in the BIM and the PBIM, taken in the high-
density limit. Some attention must be paid, however, to
the precise definition of the latter. There is no doubt that
at constant plasma parameter I' and composition ¢, the
thermodynamic quantities of the PBIM reduce to that of
the BIM for r,—0. This holds for the term §'%(Ky/K)
entering in the definition (3.7), but it can be shown fur-
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ther that this term remains finite in the limit r, —0 taken
constant temperature. The last result, demonstrated in
Appendix E, confirms once more the atypical behavior of
the ISC in the BIM.

IV. PROVISIONAL CONCLUSION

We have, as announced in the Introduction, developed
the TTF formalism for studying in a coherent scheme
demixing phenomena in strongly coupled binary ionic
mixtures. Up to now we have put emphasis on the for-
mal technicalities as evidenced in the appendixes. For
the first time, a consistent analysis has been produced
which agrees with the stability condition requirements
and, as detailed in the following paper, ensures that the
structure factors will diverge at critical values of the ther-
modynamic parameters at which the second-order deriva-
tive of the Gibbs free energy simultaneously vanishes.
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APPENDIX A: BASIC THERMODYNAMICAL
RELATIONSHIPS

1. Derivation of Eq. (2.16a)

We have only to detail the lhs equality in (2.16a). The
right-hand side equality is then obtained in the same
fashion through a change in the notation, owing to the
identity (2.12c). We first write

a.u-co al"co B alJ'co ane
dcy |Ta | 9cq T,ne+ on, |T.c, | Bcy |Tp
(A1)
with
. )
Di
—a-—o =£2 EY , (A2)
n, |Teo nl |0cy |Ton,

a result which follows directly from the differential
(2.12a) when reexpressed in terms of the independent
variables (T,n,,c,). Moreover,

ap;
dcg

ap;
on,

an,

T,n,

(A3)

T,cq aCO T.p;

Noting that the derivatives taken at constant ¢, are
equivalent to the derivatives taken at constant ¢, (with
dcy=z,z,dc,), one gets with the definition (2.18a) (left
equality)
KO —
—=Z
K =ZB

Also, the definition (2.26) reads
on,

dc

ap;

. (Ko=B/n;) .

T,cq

1
8=z,z,—
n

e T,P,‘
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Then multiplying each member of the equality (A1) with
Z(z,2,) leads to

_ n _ e K
Z(z,2,)B Cc‘) ]r,, =Z(z,22)2[)’[ ac° - —5'2—153 .
0 "Wy 0 e i
(A4)

The identity (2.16a) (lhs) follows directly from the result
(A4) supplemented with (2.15a).

2. Derivation of the relations (2.18a) and (2.18b)

We start from the Gibbs-Duhem relationship (2.13a)
first reexpressed in terms of n;,=cn; (@=1,2). One thus
gets

2
(dpi)r= 2 Haphicdnip (AS)

a,f=1
where the notation (2.17) has been used.
Introducing Eq. (A5) in the definition (2.18a) (lhs) for
the inverse compressibility yields

X =Bn; I, CuCplyp -
i a,f=1

(A6)

The relation (2.18b) can be derived similarly with the re-
placements K; —K and p,g— i p-

3. Derivation of the relations (2.21a) and (2.21b)

Considering the chemical potentials pu,;, (@=1,2) as
functions of the independent variables T, ¥, N,;, and N;,
yields

a:u'ia _ a:u’ia
ON,g T.V,N,, dN,g Tp, N,
| Bkia vV
3V |TNgN, | 3N T.p,N,,
(y=£B) . (A7)
One also uses
Wiq _ ap;
oV |TN,.N, daN,, TV,N,,
ap;
N aV T’Nia’Niy
14
X (ys#a). (A8)
aNm T,pi,N,.r 4

Thus, owing to the definitions (2.22) and the identity

1 {8y

K. =_—
! V | dp,

b

T
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we get
aﬂ'ia _ aﬂ‘ia Valpg ('}’#B) ]
aN,B T, V'Ni}’ aN,B T’Pi’Niy VK‘

(A9)

Multiplying each member of (A9) with ¥ and changing
the set of variables from (T,V,N,,) to (T,n;,) yields
directly the expected result (2.21a). (2.21b) is deduced in a
similar manner with the replacements p,z— i3 K; —K,
pi—p,and v, —7,.

APPENDIX B: DETERMINANT OF THE SECOND
DIFFERENTIAL OF ENTROPY

We detail in what follows the derivation of the expres-
sions (2.45a) and (2.46a) for Dy and D,, respectively. A
similar derivation holds for Dy and D, at the expense of
a simple change in the notation. Hereafter, the variables
taken as constant in the partial derivatives, such as
Ou;q/9cg (@,f=1 or 2), are assumed to be T and p;.

1. Derivation of Dy [Eq. (2.452)]

With the help of the transformation relations (2.21a),
the expression (2.44a) for Dy reads

€16, 2 Wi Ko (ngvg)n;gvp)
Do = 9 iara iR
R 2 a,32=16aﬁ 6CB aCE + Ki CGCB
aﬂi& KO (niav&)(niﬁvﬁ)
X BCB a e
cp K €4Cp
(B1)
Obviously,
I, oy,
Hia __ Hia (a,=1.2),
dcp acﬁ
so that,
Ky, 2 du,
DR=B?:QBE_I {ca?:(nmva)(niﬂvﬁ) . (B2)

Using relations (2.14) (left equality) together with the ad-
ditive properties (2.23b) for the partial ionic volumes,
yields straightforwardly

X8
K; c,

d%g;

2
oc

Ky

oy
-— Eclcz?ﬁ
1

Dp=c,c
R 1
2 ac 1

’

T.p; T.p;

(B3)
which corresponds to (2.45a) (left equality).

2. Derivation of D, [Eq (2.46a)]

We introduce again the basic transformation relation
(2.21a) into the expression (2.44b) for D,,
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al"'ta KO (niava)(niﬁvﬁ)
dcg + K; CuCp

D;=c,c, 2 €apZ42p |Bcp
1

a,p=
(B4)
and then the relations (2.14), (2.23a), and (2.23b) to derive

0 B
——"niz(sz‘ —‘ZlU2 )2+—‘
i (5]

oLy
D;=cc, acl,

T.p;

(B5)
Next, with the help of (2.25) and (2.28), we note that
ni(zv, —z0y))=—(8+2;—2,)=-08",

so we finally get

APPENDIX C: EXPRESSION OF OR THE SECOND-
ORDER DIFFERENTIAL OF THE ENTROPY
IN TERMS OF THE VARIABLES 8p;0(k) AND 8¢, (k)

For the sake of simplicity we omit in what follows the
explicit k dependence for the fluctuations 8f(k). Prod-
ucts like 8/ (k)8g(—k) will be noted simply as § 788 and
assumed to be ordered from left to right. For our pur-
pose we will consider in a first step the transformation
(8p;1,6p;,)—(8p;,8¢,), and then in a second step the
transformation (8p;,8¢,)— (8p;(,6¢,), in order to derive
the expression (3.1a) for AS, starting from Eq. (2.39).
The transformation (2.41)—(3.1b) is derived in the same
way and will not be detailed any further.

The first variables’ change quoted above, with
6p; =8p;, +06p;, and n;6¢, =c,8p;; —c,8p;,, reads

K 2
D =cc; | -8+ i%‘ , (B6) 8Pia=Co0p; +n:88, (@=1,2) with ¥ 8¢,=0,
K,' a 1 | Tp; a=1
corresponding to (2.46a) (left equality). so we reach
J
AS 1 o < o ~
—-———:—-EXT——E 2 {[ZaZBU(k)“"ﬁniﬂaB](CaCBSp%)
B i k aB=1
+[ZaZﬂi:‘(k)+Bn,~yaB][n,»28’éa8?ﬂ+n,-(caﬁ’c‘BBp‘,-+cﬁ8ﬁ‘,.8’éa)]} . (ChH

We made use of (2.18a) (right equality) to insert K, /K; into the term proportional to 852, Then we transform the Hag
in the other terms according to (2.21a). Finally, a straightforward application of the relations (2.14), (2.23a), (2.23b),
and (2.25) yields after some algebraic calculation

as L s ) |z 2k 4 20 D) — 50 | (8,52, +52,85
E_:—Wzk" Z “v(k)+ ra 8+ |Z(Z,—Z,)0(k)— X n;(8p;8¢, +8¢,8p;)
13 1 ]
(k) 4 50 s 250 2 (C2)
+ [(Z,—Z,)D(k)+ X, +B ac? |1, niocy .

A similar equation can be derived starting from (2.41) with D(k)— A (k),
The second variables’ change (8p;,,8¢,)— (8p;,6¢() reads

K, —K, p;,—p, g —g, and §—35.

7 56,— 56 (Z,—ZZ)SA

8pio=n,Z, —Z,)8¢,+Z 5p; =P i g, o
86o=2,2,8¢, | 5,
¢, = ,
212,
which implies
AS —1 o, | |52 Ko ‘Sﬁfo Ko A o A s
E:;—izk l ‘Z"ﬁ(k)+7i 7 2 "7{:(8‘*21—22 7 S (8pipBCo +82¢5p;0)
® pKo 5| %% n78e § (C3)
+z,—z —+ :
1ok, ac1 Tp, | (2,2,)?
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Identifying 8’ with (6+2z, —z,) [see Eq. (2.28), left equali-
ty] and replacing n; by n,/Z, we get the expected result
(3.1a). A similar derivation holds for Eq. (3.1b) with
?(k)—AD(k), K;—~K, p;—p, g;—&, and §—5".

APPENDIX D: CALCULATION OF D,
IN THE BIM WITH THE HTV’s EQUATION OF STATE

We start from the expression (2.46a) (right equality) for
D, or Dy, supplemented with the definition (2.12a) for
Hc,» and make the replacement dc=z,z,dc,. We get

”g‘(zz.uix*‘zll‘iz) (DD

—b=cc. b
DI—D,_—_ClCZZ ac,

Tn,

We will compute (D1) with the help of the following ther-
modynamical relationship:
Pi

+Za_ s
T,ne n,

I‘Lia:zafk+(1_ca)z dc =

a

d lf;

(D2)

relating the chemical potentials y,, to the Helmholtz free
energy f; expressed as a function of T, ¢, and n,.

In the case of the BIM, where pf*°/n; =1uf*, the ex-
cess part of (D2) reduces to

exc
]

)

dc

exc

Hia :za(ffxc‘{'%“fxc)"'( l—c, \Z

zZ

T,n )

e

(D3)

a

Obviously the contribution of the first term in the above
relation does not contribute to D ¢, which then
simplifies as

}zne .

Noting finally that the derivatives at constant T and n,
imply also that the parameter I'’ be kept constant, it is a
straightforward matter to check out that the rhs of (D4)
identically vanishes when it is computed with HTV’s
linear equation of state (3.9).

The ideal part of D, is derived from (D1), writing®
Buio=In(c,n,/Z) + @,(T). One obtains

Dl=l+C1C2—Z—E“_‘:

€exc
1

z

9
dc,
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= B
D C;XC_____
! dc,

== (D4)
VA

(DS)

APPENDIX E: CALCULATION OF § 'K, /K)
IN THE HIGH-DENSITY LIMIT r, -0

The sequel is devoted to the calculation of the r,—0
limit of the basic quantity § ‘*(K,/K) contained in the in-
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teracting component D; [Eq. (2.46b)] related to the ISC
(3.7) of the BIM. For jellium this limit is equivalent to
the ideal Fermi gas, taken as nonrelativistic in what fol-
lows. Conversely, the r,—0 limit pertaining to the ionic
component can be defined in two distinct ways, whether
or not I'' (or I since ¢, is kept fixed) or T is kept con-
stant. The first case corresponds to the “natural” high-
density limit of the PBIM, giving rise to the BIM at a
given value of the plasma parameter. The second one
corresponds to the correct high-density limit fulfilling the
conditions (3.7) or (3.8).
We reexpress &’ as

[_ap_
dc
on, LT,
1 o -t (E1)
ne cl T,p ne __@E'
ane T'cl
so that, with p=p, +p;,
ap; K | 3 |Bp
5 K 3c, |7n, Ko [3¢y | n, ||Tn,

In the r,—0 limit at constant I'’, the pressure term
Bp; /n, reduces to its BIM value where it depends only on
I’ (or T). Thus 8’ behaves like K /K, and §'%(K,/K)
behaves the same way. However, in the r,—0 limit, K
becomes negligible compared to K,, which tends towards
its ideal expression, so that

(E3)

Thus § (K, /K) vanishes with 7, in the limit ,—0 taken
at constant I''.

Now we pay attention to the limit r,—0 at constant
temperature. This implies that T’ or I'" becomes very

large, so that we can use the asymptotic Salpeter®® “ion-
sphere’” model to compute p; in (E2) as
Bp; Yy
L=—~;ir'z”3 with 4=0.9 . (E4)
n;
The calculation of &’ thus leads to
,_AZ2\Z, 2/3
F =~A—2——Z—2——(21 —Z57)r, (ES)
with
K 2 42(Z,Z,)
. zp0  Be” A° 414, 23 2/3
lim 82 == (2P -2, ke

which remains finite when T (i.e., B) is kept constant.

*Also at Conservatoire National des Arts et Meétiers, 292 rue
Saint Martin, 75141 Paris Cédex 03, France.
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