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Dynamical states and bifurcations of a thermal lens using spectral analysis

G. Gouesbet and E. Lefort
I.gboratoire d'Energetique des Systemes et I'rocedes,

Institut National des Sciences Applitluees (INSA) de Rouen, 76I30 Mont Saint Ai-gnan, France
(Received 24 July 1987; revised manuscript received 1 February 1988)

Dynamical states and bifurcations of a thermal lens are studied with use of spectral analysis. The
following dynamical states are observed: steady, periodic, quasiperiodic with two fundamental fre-
quencies, and subharmonic states. Hysteresis is observed in the transition between periodic and
quasiperiodic osciBations. Although chaos is not observed in the present work, thermal-lens oscilla-
tions can also lead to chaos as previously published. The control parameters are the laser power I'
and a distance d. The boundaries of the difFerent dynamical states are given in the plane (I', d).
Properties of the diferent dynamical states and of the transitions between states are studied.

I. INTRGDUCTION

In recent years the transition to chaos in dissipative
dynamical systems has received increasing interest with
many important contributions, both theoretical and ex-
perimental. A good review is given by Eckmsnn' and
also, more recently, by Cvitanovic. A recent
comprehensive book by Berge et al. provides an over-
view of the involved concepts.

Several routes to chaos have been modeled and dis-
cussed by theorists. The most celebrated are probably
the Ruelle-Takens scenario, where a strange attractor is
likely to appear after three successive bifurcations, ' the
transition through an infiiute cascade of subharmonic bi-
furcations, and the intermittency model. " These
routes and other connected phenomena have been experi-
mentally observed and discussed in Refs. 12—17, a list
which is very fsr from being exhaustive, although limited
to early papers.

Another oscillatory phenomenon (thermal-lens oscilla-
tions) has been observed in our laboratory, exhibiting
dynamical states of very rich behaviors. A research pro-
gram has been undertaken to understand snd describe
this phenomenon. One part of this program has been de-
voted to the description of the dynamical states snd bi-
furcations exhibited by the system when control parame-
ters are modified. The present paper reports on the re-
sults obtained in this framework during the last few
years.

II. GENERAL PRESENTATION QF THERMAL-LENS
OSCILLATIGNS

A. Thermal lensing ancj thermal-lens OsciBations

The original observations are as follows. ' A cw laser
beam (Ar ion) is focused on a cell containing a ferro6uid
(cobalt particles, 12 nm diameter, in toluene). When
leaving the cell, the beam exhibits a strong divergence,

with production on a screen of a regular and very-well-
contrasted ring pattern. These phenomena have a
thermal origin and can be interpreted as caused by the
production of a thermal lens in the liquid. Thermal lens-
ing has been studied in various situations in Refs. 19-25,
among others. Furthermore, under certain conditions,
when the laser beam travels horizontally just below the
free surface of the liquid (or also vertically upwards), the
ring pattern can depart from steadiness and exhibit vari-
ous unsteady behaviors (periodic, quasiperiodic, chaotic).
The oscillatory images produced by observing the outgo-
ing beam on s screen have been given the name of optical
"heartbeats, "HB1 for an horizontal beam and HB2 for a
vertical beam. Only the HB1 is discussed in the present
paper because dynamical states observed up to now with
the HB2 have not been as rich as for the HB1.

Dynamical states depend on the nature of the liquid
(included its absorbance for the illuminating wavelength),
the cell geometry, boundary conditions such as ambient
temperature and pressure, all the illuminating conditions
among which we select the laser power I', and the dis-
tance d between the laser axis and the free surface. In the
present paper everything is fixed but two control parame-
ters: power I' snd distance d.

Bifurcation critical quantities depend very much on the
liquid. For the onset of oscillatory behavior, the required
power varies from 1 % for a "chromic acid cleaning mix-
ture" (Cr03 + HzSO4), to 100 mW or so for cobalt parti-
cles dispersed in toluene (ferrofiuids), down to 10 mW for
organic solvents colored with a dye (benzene, acetone, to-
luene, carbon tetrachloride). Oscillations have never
been observed for some liquids, such as (colored) water.
Our e8'ort to produce thermal-lens oscillations at low
laser powers is discussed in Ref. 27. Preliminary mea-
surements have shown that the critical quantities for the
onset of oscillations depend very much on the external
temperature in the case of thermal-leos oscillations at
small laser powers. For instance, critical frequencies are
modi6ed by 100% for an ambient temperature
modi6cation equal to 1 K. The present paper is conse-
quently devoted to high laser power thermal lensing.
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8. Present understanding
of the instability mechanisms

Two directions for research have been explored. The
first one concerns the understanding of the instabihty
mechanisms leading to thermal-lens oscillations (HBE:
optical heartbeat experiments). Using optical visualiza-
tion techniques, it has been established that the optical
heartbeats are accompanied by convective oscillations in
the liquid bulk and surface oscillations at the free surface.
These oscillations can also be produced when heating
belo~ the surface is carried out by means of a hot wire in-
stead of a laser beam (HWE: hot-wire experiments).
Critical temperature differences (between the hot-wire
and the ambient temperature) and critical frequencies for
the onset of' oscillatory motion have been systematically
measured, for four Rhodorsil silicon oils of well-known
thermophysical properties. A theoretical effort has
been undertaken aiming at the prediction of the experi-
mental critical quantities, first by using a purely numeri-
cal approach, ' and secondly by examining the link be-
tween the H%E problem and overstability produced in a
horizontal liquid layer destabilized simultaneously by
buoyancy and surface tension agencies. ' There are
two important differences between the HWE and the
HBE. For the 6rst one, we note that heating is along a
line in the H%E while it is nearly localized at a point in
the HBE. In effect, in the HBE the divergence of the
laser beam in the cell is produced in a very small region
having a length which is much smaller than 1 mm. The
second difference is as follows. In the H%E the hot wire
is temperature controlled and the heating boundary con-
ditions do not depend on the dynamical state of the sys-
tem. Conversely, in the HBE there is a feedback between
the heating conditions and the liquid motion, making
thermal-lens oscillations a more complex phenomenon
than the H%E. The absence of such a feedback in the
H%E is probably the reason why, for these experiments,
complex dynamical states have not been observed up to
now, but merely the Arst transition from the steady state
to the oscillatory state with a basic single fundamental
frequency. However, from the knowledge gained by the
aforementioned investigations and also from optical visu-
alizations in the HBE, thermal-lens oseillations can be
qualitatively described by the very simple sequence of
events listed below.

At the entrance point ef the converging laser beam in
the cell, absorption produces an intense local heating
which is spread, essentially by conduction, to the sur-
rounding liquid. A thermal plume is then generated
which is buoyancy driven up to the free surface in a
convection-dominated regime. When the thermal plume
reaches the free surface, it is disrupted by the Marangoni
effec which drives the hot liquid toward the lateral boun-
daries of the cell (we assume that the derivative of the
surface tension with respect to the temperature is nega-
tive, as usual). The liquid in the ceil is then moved, driv-
ing a cold liquid at the laser beam location, and ending a
cycle of the process. A new cycle is ready to start. The
oscillatory behavior would then be linked to a continuous
disruption and creation of thermal plumes. Actually, the

different steps in the oscillatory process are coupled.
They develop more simultaneously than sequentially.
Two time scales must be associated with the above
scenario: a buoyancy or Rayleigh time corresponding to
the ascension of the thermal plurne, and a surface tension
or Marangoni time corresponding to its disruption at the
free surface, the latter being usually much smaller than
the first. The evolution of the HB is linked to this hydro-
dynamic scenario, the divergence of the outgoing beam
being greater when the temperature gradients in the laser
impact zone are larger. %hen the thermal plume is
created, the HB dimensions increase progressively up to a
maximum. The ascension of the thermal plume is accom-
panied by a weak decrease in the HB dimensions. The
disruption produced by the Marangoni effect 6nally leads
to a sudden contraction of the ring pattern on the screen.

The present paper is mainly devoted to a second direc-
tion of research, namely, to characterize dynamical states
and bifurcations in thermal-lens behaviors when the two
control parameters P and d are modified. Chaos has not
been observed in the present series of experiments, al-
though other experimental conditions can lead to it.

III. THE EXPERIMENTAL SETUP

A. Presentation of the setup

The experimental setup is shown in Fig. 1. The source
is a inodel 164 Spectra-Physics Ar-ion laser (item 1)
working in the TEMOO mode at 514.5 nm, with an electric
field vibrating in the vertical plane, and a beam diameter
equal to 1.5 mm at I/e . Items 3 and 5 are two right-
angle prisms, mounted on supports for adjustments with
respect to three independent rotation angles, permitting
them to produce a beam parallel to the 1aser output and
then to increase the compactness of the experiments.
Items 2 (a polarization rotator) and 4 (a fixed Gian prism)
enable an accurate adjustment of the laser power. The
laser beam is focused on to the internal entry face of the
cell by a lens 6 (focal length = 150 mm).

Pellicle beam splitter 7 (8 p thickness, transmis-
sion =92%) rellects a part of the laser power to the set 13
(beam attenuator), 14 (photodiode, Hamamatsu, S1227,
1010 BR), and 15 (numerical voltmeter, with a charge
resistance). This set permits a measurement of the laser
power fed to the cell via a prior calibration using a laser
powermeter. The beam attenuator is used to keep the
photodiode 14 in a linear range of operation. The rela-
tive accuracy on I' is estimated to be 5%.

The sealed cell 8 is a spectroscopy cell. Its vertical lo-
cation is adjusted with an accuracy equal to 0.01 mm.
The thickness 1 of the cell (that is to say, the thickness of
liquid parallel to the laser beam-} can be 1, 2, 5, or 10
mm. The cell dimension perpendicular to the laser beam
is L =10 mm. The height is 0 =45 mm. The height h of
the liquid in the cell varies between 30 and 40 mm.

Screen 9 is a translucent one (Microcontrole, Marata
85-85, S390023) permitting the visual observation of the
HB. It is located 4 cm after the cell. It plays a second,
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peak steepness is equal to 1. It ranges from 1 to 3 for sil-
icon oils, and from 7.5 to 8.5 for the organic solvents we
tested. Consequently, we chose to study a silicon oil.
The final choice was the Rhodorsil silicon oil labeled
47V5 which leads to low critical thermal constraint
values. ' ' The amount of harmonics also depends on
the light collecting system, the chosen one being de-
scribed in Sec. III A.

( k+1}to

IV. QUAI. ITATIVK DESCRIPTION
OF THE OBSERVED BIFURCATIONS

A. Gcllcf slltk@s

The first bifurcation corresponds to a transition be-
tween a steady thermal lens to a periodic one (that we
shall call basic), and displays very similar qualitative
characters regardless of which liquid is under study. The
amplitude of the successive spectral peaks decreases ex-
ponentia1ly with the harmonic order, corresponding to a
linear decrease in semilogarithmic coordinates (Fig. 3),

A second bifurcation destabilizes the basic periodic
state, its properties depending on the liquid under study,
and, for a given situation, on the location in the control
parameter plane (P,d) The mo. st probable transition is
to a two fundamental frequency quasiperiodic state, with
the possible occurrence of frequency-locking phenomena,
and the existence of a hysteresis zone. %e also observe a
doubling period transition which is the starting point of a
Feingenbaum subharmonic cascade.

In the present work higher-order bifurcations involve
other period-doubling transitions. Spectra up to fo/16
(corresponding to five bifurcations from the steady state)
were observed, fo being the fundamental frequency of the
basic periodic state. Transition to chaos is possible,
although it has not been observed with the present exper-
imental setup.

B. Quasiperiodie states (QP states)

%'e call primary peaks the ones existing in the basic
periodic regime spectra. At the transition to the QP
state, four secondary peaks very often emerge simultane-

62 ' 63' 64

FIG. 4. Sketch showing an example of secondary peak spac-

ing in a bifurcated spectrum.

ously in each interval between two successive primary
peaks (Fig. 4). We found that

5, =52=54——5s =5,
but, in general, 5& is not equal to 5. The above 5,. values
are the same regardless of the interval [kfo, (k+1)fo].
The respective amplitudes of the peaks are sketched in
Fig. 4. Obviously, the amplitudes in this complete struc-
ture decrease when the order k of the interval increases.

In other cases, five (instead of four) secondary peaks
appear in each interval, with 5i —5$—53 —55 —56
different from 54, with a similar amplitude structure as in
ihe previous case.

An example of a still more complex and general situa-
tion, in which an amplitude hierarchy is not so easy to
describe as before, is shown in Fig. 5. A large number of
secondary peaks simultaneously emerges between two
primary peaks. The exponential decrease of the primary
peak amplitudes with respect to the peak order k is
preserved. The frequency intervals de6ned by the secon-
dary peaks between the primary peaks of order k and
(k +1) do not depend on k. The amplitude of the peaks
varies from 0 (arbitrary value for the fundamental) to
—50 da for the peaks we identify. It is actually expected
that a large number of peaks, with still smaller ampli-

Amplitude {d8

-60.2 d 8

i( A(dB) )fg - 0.67 Hr

-58.9d B
2fo
-64.0dB

gf =P.POSH'

AA =0.05dB

Sfo
I -ag.ada

0 0 52 1.04 4,68 f Hz

f
Hg

FIGr. 3. Basic periodic spectrum, silicon oil 47V5.
FIG. 5. A bifurcated spectrum, silicon oil 47V5 colored with

Red Organol, BX1750, 3 mg/1, d = 1 mm, I' =200 m%.
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FIG. 6. Sketch of a basic periodic spectrum.

tudes, do exist but are hidden by a nonchaotic back-
ground noise. In each interval [kfo, (k+1)fo], except
the case k =0, there is a strong symmetry for the peak lo-
cation: a peak at (kfo+f ) is associated with a peak at
[(k +1)fo f] with—an equal or nearly equal amplitude.

The spectrum represents a QP state with two funda-
mental frequencies fo and f, (chosen, for instance, as
shown in Fig. 5). Near the onset of quasiperiodicity, f, is
equal or nearly equal to fo15. Then only four secondary
peaks emerge between two successive primary peaks (sit-
uation sketched in Fig. 4). Interval 5 is equal to f, . In-
tel val 53 is equal to the difFerence between ( kf0 +2f i )

and [{k+1)fp—2fi] that is to say (fo —4f, ). 5s is
nearly equal to f, because f, is nearly equal to f, /5.

A simpli6ed sketch of the actual spectrum is shown in
Fig. 6. We observe the exponential decrease of the pri-
mary peak amplitudes when the order k increases. Cen-
tered on each primary peak, there is a satellite set of
secondary peaks regularly located, with a symmetrical
exponential decrease of the amplitudes. The satellite sets
interpenetrate to produce the whole spectrum character-
ized by a double hierarchy of exponential decreases.
Furthermore, the absolute values of the decrease slopes in
the semilogarithmic scales of Fig. 6 are equal or, at least,
nearly equal, irrespective of k.

AdB

fp/2
fo

Sfo/4

f /4 Sfo/8

Sfp/8

this transition are well de6ned. The amplitude of the
secondary subharmonic peaks (fo/2, 3fo/2, 5fo/2. . . )

increases from 0 when the distance to the onset values in-
creases. The reversible supercritical transitions from the
steady state to a basic periodic state, then to a subhar-
monic periodic state with a fundamental frequency equal
to fo /2, form the first steps of a subharmonic cascade.

Higher-order subharmonic bifurcations with funda-
mental frequencies equal to fo/4, . . . ,fo/16, were also
observed. Examples for fo/8 and fo/16 spectra are
sho~n in Fig. 7. But the onset values are not precisely
known due to their strong sensitivity to external condi-
tions, such as the external temperature. Higher-order bi-
furcations may appear or disappear suddenly, even
though the dynamical state prior to the transition was
stable for a long period of time. A special study of this
cascade would certainly require a more careful tempera-
ture control. Some observations for the transition be-
tween the fo/2 and fo/4 regimes suggest that it might
exhibit (i) hysteresis, and (ii) amplitude discontinuities. If
confirmed, this qualitative behavior would significantly
differ from the one exhibited by the logistic map. Due to
the potential importance of such a difference between the
logistic map results and our experimental observations,
specific experiments devoted to this problem are planned.
However, even now, a departure from the logistic map
model does exist, as shown in Fig. 7. In effect, in the
logistic map, there is a well-defined hierarchy between

C. Between quasiyeriodicity and the subharmonic cascade

In some cases, by modifying the distance d at a fixed I',
we observe a d range where the oscillations are periodic
with a fundamental frequency fo, located between a QP
range and another range for subharmonic bifurcations.
However, these periodic oscillations do not display the
same qualitative features as the ones described previous-
ly. The exponential decrease is only asymptotically
reached, when the order k of the peak increases, and
some peaks of small order (2fo, 3fO, 4fo. . . ) are charac-
terized by a small amplitude: the signal in the time
domain becomes near1y sinusoidal.

7fo/8
!sfo/40"3fo/8 sf~8

fol8

o

f
Hz

D. Subharmonic bifurcations

At high laser powers (about 400 mW), we can observe a
transition between the basic periodic state {frequencies
fo, 2fo. . . ) and a first subharmonic dynamical state
(fo/2, fo, 3fo/2. . . ). The control parameter values for

FIG. 7. Examples of highly bifurcated spectra. (a} folg
state, d =0.5 mm, I' =490 mW. (b) fo/16 state, d =0.5 mm,
I' =49I m%'.
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the amplitudes appearing in the spectra through succes-
sive bifurcations, the newer amplitudes being always
smaller than the older ones, in relation with the existence
of universal numbers owning some kind of universal
character. Conversely, Fig. 7 spectra does not comply
with this qualitative rule. For instance, the amplitude of
the peak 7f0l8 is higher than the amplitude of the peak
3fo /4, and the amplitude of the peak 3fo l8 is higher or
at least not significant1y sma11er, than the amplitude of
the peak fol4. Admittedly, it is possible to argue that
the level of bifurcation is not high enough to approach
the universal behavior of the logistic map. However, in
the logistic map, the hierarchy between the amplitudes
appearing in the spectra through successive bifurcations
is qualitatively always observed, even for the 6rst bifurca-
tion steps.

eCT1
~CT2
~ CT3
O CT4
& CT5

~i& (mw)

ZONE(NS)

pmn
I

d~nw zoNE(s}

o &m(p)o'. 5 1.0 &.h 2.b

-200
&II pmax

I

.100
,
--p f&)

I

I

I

dM(p), ;d, dmm

2.5 ~max

FIG. 8. The diferent dynamical states in the plane (P,d).

V. IDENTIFICATION OF THE DYNAMICAL
STATES IN THE CONTROL PARAMETER

PLANK (P,d)

A. Experimental procedure

The rest of the paper is devoted to quantitative experi-
mental results. The experimental procedure is described
in this section.

The liquid was a Rhodorsil silicon oil 47V5, colored by
a Red Organol BX1750, with a concentration equal to 6
mg/1. The cell dimensions were 5 mm (thickness), 10 mm
(lateral width), 45 mm (height). Two series of experi-
ments were carried out. For the 6rst one, the laser power
P ranged between typically 300 and 400 m%'. The exter-
nal temperature T,„, was controlled between 22. 1 and
22.8'C. For the second series, when P ranged between 30
and 220 mW, the external temperature was controlled be-
tween 22.4 and 22.6'C.

The control parameters were P and d. In more exten-
sive experiments, a third control parameter would be the
dye concentration. Observations and measurements have
been carried out by scanning d for a Axed P. The experi-
mental procedure has been carefully designed to permit a
good control of the experimental conditions. For in-
stance, stabilization of the laser power, external tempera-
ture, and adjustment of one distance d, requires about
three hours of work.

The reference d =0 is obtained by lowering the sealed
cell until the appearance on the screen of a vertical lumi-
nous line corresponding to the reAection of the laser
beam on the meniscus in the cell. This adjustment is car-
ried out for a very small value of the power P to avoid
beam divergence. The accuracy on d is estimated to be
0.02 mm. Scanning on d is carried out by steps equal to
0.02 mm, or 0.1 mm, depending on whether interesting
phenomena are detected or not.

B. General presentation of the dynamical states
and transitions

The parameter plane (P,d) was systematically ex-
plored. More than 400 points of the plane were studied.

The fo11owing dynamical states were observed: steady,

periodic with one basic fundamental frequency, quasi-
periodic with two fundamental frequencies, and periodic
by period doublings from the basic periodic state.

The following transitions were observed: steady-to-
periodic, periodic to quasiperiodic, periodic-to-periodic
by period doubling. %e must also mention, for P larger
than 300 mW, the transition from a quasiperiodic state to
a subharmonic periodic state, and the presence of hys-
teresis at small laser power for a transition periodic-to-
quasiperiodic. All these features are now discussed in
some details by reference to Fig. 8.

C. The transition steady to unsteady

The steady to unsteady (periodic with one basic funda-
mental frequency) transition takes place on a curve CT1
in the ( P, d ) plane, separating an S zone (steady) from a
NS zone (nonsteady). The transition is supercritical: the
amplitude of the spectrum peaks increases continuously
from zero, in a reversible way, when the CT1 is crossed
from the S to the NS domain.

There exists a laser power P;„=34 m%, associated
with a distance d;„=1.5 mm, below which the state is

always steady irrespective of distance d. Also, there ex-
ists a distance d,„=2.7 mm, associated with a power
Pm, „equal to about 160 m%, above which the state is al-

ways steady, for any po~er P. Furthermore, the ex-
istence of a power P above which oscillations do not exist
in principle is likely, although that power might be too
high to be observable in practice. The zone NS would
then be limited by a closed CT1. Such a power does exist
in the HB2 case.

For P larger than P;„,oscillations exist for d between
two values d (P) and dM(P). For d smaller than dM(P),
but not too much smaller, oscil1ations are observed for P
between two values P~(d) and PM(d). Furthermore, we
can observe a power P equal to about 360 m%' for which
d (P) is zero. It is even possible to observe oscillations
for negative d values, a fact which is connected with the
existence of a meniscus and with the lateral finite exten-
sion of the laser beam.

These quantitative results in the HBE must be put in
relation with the ones obtained in the HWE (Sec. II B,
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and Refs. 27 and 29). In the HWE the thermal constraint
is produced by a temperature difference h, T, instead of a
laser power P. Recent experiments in the HWE (Ref. 34)
have shown that there is a linear relation between the
difference temperature hT and the Joule power dissipated
in the hot wire, then fed to the liquid. Consequently, we
must expect similar quantitative results between the
H%E and the HBE when results are presented using di-
mensionless forms.

Figure 9 compares b, T, /b, T, (d;„) in the HWE and
P, /P, (d;„) in the present experiments, versus d/d;„,
where the star subscript designates critical quantities for
overstability. In the HWE, d is the distance between the
hot wire and the free surface, and d;„ is equal to approx-
imately 0.9 mm. The comparison (circles and open trian-
gles) shows a striking similarity between the reduced crit-
ical profiles for the onset of overstabihty. There is„how-
ever, a significant difFerence for d/d;„smaller than l.

This di8'erence is interpreted as being caused by the ex-
istence of a meniscus in the HBE and also by the fact that
the geometry is confined. The incident laser starts
diverging at the entrance point in the cell, near the en-
trance wall. The thermal plume interacts with this wail
and also to some extent with the opposite wall. In the
HWE the hot wire is located far away from any wall
(nonconfined geometry) and the memscus has no
influence on the phenomena. The height of the memscus
denoted by d,„ in the HBE is estimated to be
d~,„=0.25 mm. When d and d;„are replaced by
(1+d,„) and (d;„+d,„), respectively, the compar-
ison becomes nearly perfect for d/d;„smaller than 1

(circles and closed triangles), and remains good for
d/d;„ larger than 1.

&. I &. (dmin) (~~)
~T I~T» (dirisi)

D. The transition periodic to qgasiyeriochc
at small laser powers (P ~ 220 mW)

S
I

I

d '(P)

————————————(&)

s
l I

(b)
s

I I I I
I I I I

d (P) d (P) d- (P) d '(P) d

This transition involves the boundaries CT2, CT3, and
CT4 in the parameter plane (Fig. 8} and leads to the ex-
istence of the domains QP1 (Qp states with two funda-
mental frequencies) and H (hysteresis). The boundary
CT2 corresponds to a supercritical transition (continuity
and reversibility) while zone H is reached via a subcritical
transition (discontinuities and irreversibilities associated
with hysteresis phenomena}. In zone H two states are
possible, the one actually observed depending on whether
the experiments are carried out by increasing or decreas-
ing d. The total width of the domain QP1 plus H is never
greater than about 0.27 mm; that is an order of magni-
tude smaBer than zone NS. Frontiers CT2 and CT4 have
been joined by a dashed line which actually does not cor-
respond to experiments but to a conjecture. This line
corresponds to a domain in which periodic states are ac-
tually observed, but in which QP states are potentially
present. This domain mould require a speci6c study, for
instance, by working at a fixed d and modifying P, to at-
tempt to reveal the potential quasiperiodic states. Unfor-
tunately, a P scanning is much more difBcult to control
than a d scanning.

Details of this transition are explained using Fig. 10.
We choose a laser power P crossing zones Qp1 and H. In
a first d scanning, we decrease d starting from a very
large d [Fig. 10(a)]. The state is steady S. At d =der(P),
the state becomes periodic with one fundamental frequen-

4
A]4

I

i

I

oi
0

(d)

FIG. 9. P.educed pro6Ies for the transition steady to period-
ic. Comparison between the HBE and the H%'E.

FIG. 10. Qualitative characterization for the transition
periodic to quasiperiodic.
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cy fo (zone P). The associated amplitude Ao is equal to
zero at the transition S-P and increases when d decreases,
while fo increases. At d =d(P), where we cross CT3, a
subcritical bifurcation leads to a QP state with two fun-

damental frequencies. The amplitude A& of any secon-
dary peak undergoes a discontinuous modi6cation, from
0 to a finite value [Fig. 10(c)], accompanied by a frequen-

cy jumP for fo to a lower value [Fig. 10(d)]. When d de-
creases again, the amplitude Ai, (say, 3 i) decreases con-
tinuously, down to 0 at d =d' (P), where the system un-

dergoes a supercritical transition to the basic periodic
state. Finally, the steady state is recovered at d =d~(P).
Increasing d from zero [Fig. 10(b)] we then obtain a tran-
sition sequence of the kind S-P-QP-P-S. However, the
subcritical transition QP-P appears at d =dM(P) instead
of d =dl(P), showing an hysteresis domain H in the
range [der(P)/der(P)].

K. Period-doubling transitions

Period-doubling (DP) transitions can be observed in
zone DP (Fig. 8). The first period-doubling transition
(emergence of secondary peaks at fo/2, 3fo/2, . . .) is su-

percritical and takes place on line CT5. Period-doubling
states of the kind fo/4, fo/8, fo/16, were also observed
inside domain DP but the extension of the corresponding
domains is comparable to experimental inaccuracies,
preventing us from defining boundary locations. Also,
the system can jump spontaneously from a fo/8 state to
a fo/16 state (for instance), due probably to sensitivity to
external conditions.

F. The qnasiperiodic states at high laser powers

(P &300mW)

A two-fundamental-frequency QP domain QP2, limited

by lines CT2 and CT3, is observed at high laser powers
(P ~300 mW). Zones QP1 and QP2 are probably con-
nected as indicated by the dashed lines. The P-QP transi-
tion is supercritical on CT2. The relation between
domains QP2 and DP requires a more special discussion.

8 P QP

~() 2 «o'2

Ds II S

d(P) d'(P)

FIG. 11. Qualitative characterization for the transition be-
tween quasiperiodicity and subharmonic cascade.

tion. A black domain of very small width indicates the
existence of higher-order period-doubled states. %ith
distance d decreasing again, subharmonic states of the
kind fo/2 are recovered. A second black domain of
small width indicates the junction between domain DP
(DP states) and QP2 (QP states). Two kinds of behavior
have been observed in this junction domain. In most
cases, we recover the basic periodic state with fundamen-
tal frequency fo prior to the onset of quasiperiodicity. In
other cases, the QP states emerge directly from the
subharmonic fo/2 states. In the latter case, the distinc-
tion between QP and fo/2 states is somewhat artificial
because the fo/2 states can be understood as a two fun-

damental frequency QP state with frequency locking

fo/fi ——2. The transition to quasiperiodicity must then
be understood as an unlocking followed by a continuous
change of the ratio folf, as d goes on decreasing. The
two above variants were for instance observed under the
same conditions, except for a small difference equal to
0.6'C for the external temperature which is probably not
suScient to explain the difference of behaviors because,
in other cases, such a difference did not modify the nature
of the transition to the QP states. Other noncontrolled
experimental details must intervene, such as the delay be-
tween two modifications of distance d for instance.

Finally, if we continue to decrease d, we observe the
QP-P transition at d =d' (P) followed by the P-S transi-
tion at d =d (P). If d is now increased, the same se-

quence of transitions is observed in the reverse way,
without any hysteresis.

G. The relations between domains QP2 and DP

When power P increases, the width of QP2 is almost
constant while the width of DP increases. Consequently,
the relative importance of the period-doubling phenome-
na increases with the laser power. Domains QP2 and DP
are close, but remain distinct. The nature of the states
between these two domains is not always easy to deter-
mine. The subcritical transition leading to QP1, for a
fixed P, and d decreasing, starts from the basic periodic
state. Conversely, the subcritical transition leading to
QP2, for a fixed P, and d decreasing, starts from a
period-doubled state of the f o/2 type.

Details are explained in Fig. Il. For a 6xed P ~ 300
m%, we start from a point located in zone 5 and decrease
d. Basic periodic oscillations (zone P) appear at dl(P).
Then we enter a DP zone (period doubling leading to
fo/2 states) through a reversible supercritical bifurca-

VI. SPECTRAL ANALYSIS
OF THK UNSTEADY STATES

A. Frequencies and amplitudes: De6nitions

For the basic periodic states, fo is the fundamental fre-
quency. For the QP states (zones QP1 and QP2), fo is

defined by continuity from the basic periodic state. This
definition shows no ambiguity because it is always possi-
ble to go from a periodic state P through a QP state via a
supercritical transition. It happens that, for these states,
fo is also the frequency of the highest peak. For the
period-doubled states, fo is again defined by continuity
from the basic periodic state. However, fo is no longer
the fundamental frequency for these states. Furthermore,
for these states, the subharmonic peak fo/2 may be
higher than the fundamental peak, in contrast with the
logistic map behavior.
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A o is the amplitude of the peak of frequency fo. Com
parison between difkrent Ap values only makes easy
sense for a Axed P, and various d. %'hen P is modified,
the relation between Ap and the hydrodynamic state in
the cell becomes complicated because it integrates several
e6'ects: the modification of the state induced by the
power modification, but spoiled by the fact that the diver-
gence of the laser beam is also modified by a pure thermal
lens elect. Consequently, the dependence of Ap on P will
not be discussed.
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8. Dependence off0 and A o on distance d
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Figure 12 shows the values of frequency fo versus d,
for selected values of P. Ap values are given in Fig. 13.
The functions fo(d) and Ao(d) are defined for d ranging
in zone NS, between d (P) and d(P}.

All the amplitude pro61es are similar. They contain
three different parts labeled A, B,C in Fig. 13 for P =320
mW. Part A is located near the onset value d (P). The
amplitude increases very fast from —90 d8 (experimental
noise), up to —40 d8, for a small change of d, equal to
0.1 mm at P =34 m% and to 0.2 mm at P =300 or 400
m%. In part 8, the amplitude decreases when d in-
creases. The decrease is approximately exponential, cor-
responding to a linear decrease in Fig. 13 (amphtudes ex-
pressed in d8). In the zone at the boundary between A
and 8, the amplitudes randomly vary by a factor of 2 de-
pending on the experiments. In part C the decrease slope
becomes larger as we approach d(P). Eventually, the
amplitude changes from —50 to —80 d8, for a change of
d equal to about 0.1 mm.

The variation of frequency fo with respect to d can be
well fitted by an hyperbohc decrease, modified in three
parts labeled D,E,E (Fig. 12). Part D, near d (P), corre-
sponds to frequencies smaller than the basic hyperbole
values. Frequencies fluctuate from one experiment to the
next but are nearly constant with respect to d when they
are averaged. The region labeled E corresponds to the
hysteresis (zone H in the parameter plane). Finally, in
part F, frequencies increase slightly above the hyperbolic
profile when d approaches dsr(P).

FIG. 13. Amplitude Ao of the fundamental peak vs distance
d for various I' values.

C. Dependence off0 on power P

Frequency fo is shown versus P for various d values in

Fig. 14. For a given d, the profile shows a steep linear in-
crease at small P followed, after a slope-breaking range,
by another linear increase, although with a small slope.
At large d values, only the small slope increase is ob-
served, while, for d =0.15 mm, we only observe the steep
increase behavior. The slopes for the small slope ranges
do not significantly depend on d, within experimental un-
certainties, and the values of the frequencies increase
when d decreases. Furthermore, for any d, the points in
the steep slope range collapse on a single curve. Compar-
ing with Fig. 8, we see that slope breakings are observed
when we approach values d (P).

fp Hg
p~100mw

4 0

P=140m%

it &OH@
3-

Pm180mVI

I
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~ 0 y y~yy yOOO
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oo&&oooooo~
Pm100rnVf
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ado
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FIGr. 12. Fundamental frequency f0 vs distance d for
I' = 100, 140, and 180 m%.

FIG. 14. Fundamental frequency fo vs power P for various
values of the distance d. The critical frequencies for marginal
ovcrstability f~ are also indicated.
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D. The onset frequency for the S-P transition

The critical frequency values f, for the onset of over-
stability (CT1) are given as (f,d }versus d in Fig. 15. For
d smaller than dm;„, the f, profile is hyperbolic (label 8),
except for d smaller than 0.15 mm. In this last zone, la-
beled A, near the free surface, f, increases less than 1/1
when d decreases. Experimental uncertainties become
very great. For d smaller than 2.26 mm, there is a single
onset frequency for a given d value. For d ranging be-
tween 2.26 and 2.73 mm (dm, „,Fig. 8), in the zone labeled
C corresponding to the right branch of the CTI (Fig. 8},
two frequency values are associated with a given d value.
They are f, [P (d)] and f„[P~(d)], the former being
smaller than the latter. At d =d,„, these two frequen-
cies collapse to a single value.

The onset frequencies f, are also reported in Fig. 14.
Two onset frequencies are associated with each P value
(compare with Fig. 8), corresponding to distances d;„(P)
and d,„(P), the value for d;„(P) being greater than the
one for d,„(P). We observe that the steep slope parts of
the profiles in Fig. 14 coincide with the onset frequency
for dm;„(P). The upper and lower branches of the profile

f, (P} are joined at P=P;„. When the linear part of
each branch is extrapolated to P =0 (Fig. 14, dashed
lines), they define a single frequency f, (P =0). The loss
of linearity of the upper branch is located between P =60
m% and P =P;„. Near the junction point at P =P;„,
the upper branch tends to become parallel to the vertical
axis. The derivative of f, with respect to P becomes
very great, or even infinite. The value P =60 mW also
corresponds to a great modification of the slope in the left
branch of the CT1 (see Fig. 8).

In Sec. V C, the critical thermal driving constraints in
the HBE and in the H%E were compared. Similarly,
critical frequencies for the onset of overstability between
both kinds of experiments are compared in Fig. 16 using
reduced values f, If, (d;„) versus 1Idm;„. The profiles
are very similar. However, critical frequencies in the
HBE are much smaller than in the HWE for d/d;„
smaller than l. A first correction for the HBE is carried
out by replacing d by (d+dm, „) and d;„by

2/i t d(mm/s)

il, f.If.{dmiti)
12- (HWE, or HBE net results)

'I

t

10
t

t

)J

t

t
6-

, net resMlts

,after a first correction

,after a second correction

0 1.0 1.5 (HNE, orHltE

FIG. 16. Reduced profiles for critical frequencies f„.Com-
parison between the HBE and the HWE.

(d;„+d,„),as done in Sec. V C. Although this correc-
tion leads to closer profiles, it is still insuf5cient.

A second correction is now carried out as follows. To
the purpose, we observe that, in the H%E, the fundamen-
tal frequency of the oscillations fo varies as 1/1, b, T be-

ing fixed, when d is scanned on the whole range where os-
cillations do exist. In the HBE this hyperbolic profile is
not valid when d approaches the onset value d (P), as
seen, for instance, in Fig. 12 in the zone labeled D. The
difFerence between reduced frequency profiles in Fig. 16 is
attributed to the difFerence of above-mentioned behaviors
between the HBE and the H%E when d approaches
d (P). The resulting correction has been carried out, for
each value of P, by replacing the frequency f, [P,d (P})
by the value fo[P, d (P)] that we would observe in the
HBE if the hyperbolic profile were valid up to d =d (P).
After this second correction, there is a very good agree-
ment in Fig. 16 between the reduced frequency profiles
for the HBE and HWE.

E. The onset frequencies for the P-QP transition

0.5

I
I

fAIA

1.5

FIG. 15. The product f«d vs distance d.

2'.5 drnrn

For this transition, five onset frequencies must be
defined for each P value, due to hysteresis. One onset fre-
quency corresponds to 1 =d' (P}. Furthermore, two on-
set frequencies are associated with d =der(P) and two
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FIG. 17. Fundamental frequencies for the transition between
periodicity and quasiperiodicity.

F. Frequemcies ia quasiperiocHe spectra

others with d =d(P), as shown in Fig. 10(d). There is
no discontinuity in frequency fo at the onset distance
d =d' (P). The onset frequencies at d =dl(P) and
d =de(P) are larger in the periodic state than in the QP
state.

The onset frequencies for the P-Qp transition are
shown in Fig. 17 in which the onset frequencies f, are
also reported for the sake of comparison. All the onset
frequencies P-Qp increase when P increases. The fre-

quency jumps at the boundaries of the I zone decrease
when P increases from 100 to 200 mW. The difference
between the onset frequencies f, and the onset frequen-
cies for the P-QP transition increases when power P in-

creases.

FIG. 18. Oscillation frequencies in the QP state vs distance
d, P =100 and 120 mW. A frequency of the form (afo+bf, ) is

designated in Figs. 18-20 as (a, b).

P ~140m%
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13
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enough, collapse to vertical lines.
All the Qp frequencies can be formed as a combination

of two fundamental frequencies fo and f, . Both the
values of fo and f, increase when d decreases for a fixed

P. However, we observe that f, is approximately con-
stant when P is modified, for a fixed d. Each curve in

Figs. 18-20 is labeled by explicitly designating the corre-
sponding combination law. For instance, in Fig. 18, the
curve labeled (1,-2) corresponds to a frequency f equal to
(fo —2f, ). More generally, we call curve index (ko, k, }
the curve corresponding to a frequency f equal to
(kofo+k, f, ). In certain cases, two or several different

Figures 18-20 show the evolution of the frequencies in
the QP spectra versus d, for various values of the power
I'. We limited ourselves to frequencies in the range
(0,fo ), from which we can deduce the frequencies in any
~a~g~ [nfo, (n +1)fo] by a nfo translation along the fre-

quency axis. Only the distances in the range
[d' (P),deaf(P}] (see Fig. 10) are discussed, the rest of the
oscillation domain being previously discussed in Fig. 12.
Frequency lockings (when the ratio f, If o is rational) are
indicated by vertical bands which, vrhen they are narrow

GS-

0.75 0.40 O.TS dm~

FICi. 19. Oscillation frequencies in the QP state vs distance,
d, I' = 140 and 180 m%'.
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FIG. 21. The ratio f, /fo in the QP state vs distance d for
P = 100, 110,and 120 m%'.
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FIG. 20. Oscillation frequencies in the QP state vs distance

d, P =220 and 300 m%.

G. The devil's staircase

The f i /fc ratios versus d, for selected values of P, are
shown in Figs. 21 and 22. The uncertainties, essential for
the computational confirmation of frequency lockings,

curves indexes meet, indicating frequency lockings, pro-
ducing a decrease of the number of peaks in the spec-
trum.

Identification of frequency lockings by the above visual
criterion has been supplemented by direct computations
of the f, /fo ratio which becomes a rational number at
frequency lockings (periodic states), while irrational ra-
tios correspond to true Qp states. However, this theoret-
ical frequency-locking criterion is not easy to apply in
practice due to the limited accuracy of the frequency
measurements. It is actually impossible to know whether
the ratio of two measured real values is or is not a ration-
al number. In fact, we only used the above determination
of the frequency ratio to confirm (from frequency mea-
surements and accounting for the frequency uncertain-
ties) that such frequency locking which was visuallvlsua
detected from the figures was compatible with a rational
value for the f, Ifo ratio. From a visual observation of
the 6gures, completed by a computational checking of
the rational character of the f, /fo ratio, we identified
the following f, /fo frequency-lockings states: I/2, 1/3,
1/4, 1/5, 1/6, 2/7, 2/9, 3/10, 2/11, 3/13, 4/13, 8/17, ar-
ranged by increasing values of the denominators. The ex-
treme ratio values are 1/6=0. 1666. . . , and 1/2 (period
doubling}.

P = 300mW

-ae—~~-
1

P~ 320mW P = 360mW P w 400mW

03. --f~---gc. ------ '4/13
3/10 3/10

2/ /
P ~ 300mW P~320tnW

0,40 0.50 0.60 0.40 0.500.30 0.40 0.50

dlTllTI

0.30 0.40 O,50 060 0.700.80

FIG. 22. The ratio f, /fo in the QP state vs distance d for
I' =300, 320, 360, and 400 m%.

are indicated in the figures by a vertical line when this
line is high enough to be visible. Identified frequency-
locking points are surrounded by a small circle and point-
ed to by an arrow. The value of the frequency-locking ra-
tios f i Ifo are also indicated. Furthermore, the
identified frequency-locking ratios are 1/4, 3/13, 2/9, 1/5
at P = 140 mW, 3/10, 2/7, 1/4, 3/13, 1/5 at P = 180
mW, 4/13, 3/10, 1/4, 3/13, 2/9 at P =200 mW, and
3/10, 1/4 at P =220 mW (figures not given}.

For I' smaller than 300 m%, where periodic-doubling
states are not observed, the f, /f o ratios increase when d
decreases, and there is a progressive shifting of the curves
toward smaller d when P increases (Fig. 21). For P equal
to or larger than 300 mW (Fig. 22), QP and period-
doubled states are possible. %e observe two diferent
curves in each figure, one for the quasiperiodicity (with
an evolution of the f, Ifo ratio not so clear as in Fig. 21)
and the other, a straight line at f & Ifo = —,', fo«he «st
period doubling. In Fig. 22, for P =400 m%', we observe
a clue for a transition between the QP curve and the
period-doubled line. However, a true junction is never
obtained because we actually observe a return to the basic
periodic state between period doubling and quasiperiodi-
city.

Theoretically, in a two fundamental frequency QP
state, the ratio f, Ifo can evolve continuously when a
control parameter is modified, but remains constant on
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intervals when it becomes a rational number p/q. In
practice, only some bands corresponding to simple ra-
tional numbers can be observed. The finite bands we ac-
tually observed correspond to ratios l/2, 1/4, 1/5. The
evolution of the f, /fo ratio forms a curve, called the
devil s staircase, which is continuous and remains con-
stant on rational number bands. This curve is sometimes
qualified as being fractal. Experimental devil's staircases
are suggested by F1gs. 21 and 22.

VII. CONCLUSION

tween the laser and the free surface. The following
dynamical states have been identified: steady, periodic
with period-doubling bifurcations, and quasiperiodic
states with hysteresis phenomena. The transitions have
been extensively investigated and discussed. Experimen-
tal devil's staircases are presented. The large amount of
results given in this paper shows that therma1-lens oscil-
lations provide a system exhibiting very noteworthy be-
haviors, relevant to the current study of the transition
from a steady to a chaotic state.

The present paper was devoted to the study of dynami-
cal states and transitions observed when thermal-lens os-
cillations are produced by laser heating an absorbing
liquid near and below the free surface. The control pa-
rameters are the laser power P and the distance d be-
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