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Polarization potential for dipole exeitations
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The long-range elastic scattering from a Inany-electron target is due to virtual dipole excitations.
For large enough partial-wave quantum number I. it is a weighted sum of contributions from
single-orbital dipole excitations for which the second Born approximation is valid. It is shown

analytically that the corresponding potential is strictly nonlocal but is phase equivalent for large
enough I. to the adiabatic potential —a/2r . A detailed numerical investigation is carried out for
intermediate L values both of the T-matrix elements and the phase-equivalent local potential. An
excellent simple approximation is found. Numerical examples involve the lowest dipole excita-
tions of hydrogen and sodium atoms in electron scattering.

I. INTR@DUCTION

The adiabatic polarization potential due to virtual di-
pole excitations of the target in particle scattering is, for
large enough r,

V (r)= ctl2r—
We consider the contribution to the polarization due

to the dipole excitation of a target particle from an or-
bital g„t to an orbital g„t . If the target is represent-
ed by the Hartree-Fock determinant this excitation is
the whole excitation from the entrance channel to the
corresponding dipole channel. More generally orbital
excitations contribution additively to the channel excita-
tion with coefBcients given by a structure calculation.

For large enough partial-wave angular momentum I.
the T-matrix element Tt is given by the second Born ap-
proximation. In this case all dipole channel excitations
contribute additively and our orbital excitation is typical
of the general case. The breakup continuum is included
in these considerations. Here g„t ~ is replaced by the
corresponding partial wave of the breakup scattering
state.

We abbreviate the quantum number sets of the initial
and final orbitais by the subscripts 0 and 1. The corre-
sponding target energy eigenvalues are eo and c&. If
l =0 the polarizability a for our excitation is

a=2P /3(e, —so},

where

p= f dr ruo(r)u, (r),
and the radial orbitals u,.(r) are given by

nonlocal polarization potential. In the present work we
6nd an accurate expression for the elastic partial-wave
T-matrix elements for large angular momenta and calcu-
late the phase-equivalent local potential.

McCarthy and Stelbovics obtained some analytic re-
sults. For a given incident energy E the momentum-
space potential corresponding to a local potential in
coordinate space is V(E,P}. It depends on the absolute
difference I' of the momentum coordinates q and q'. For
momentum-space potential that is analytic over the
whole physical range of I' the corresponding
coordinate-space potential is

V (E,r)= al2r +O(r—),
where a is given by

a=16m V'(E, O) .

For a dipole orbital excitation it was shown that a is
given by (2) for 1=0. The result for general angular
momentum was given.

The spherical projection of the nonlocal second Born
polarization potential was considered. We call this the
projected local potential. It is equivalent to the nonlocal
potential in the sense that it has the same Born approxi-
mation,

V'."(E,P)=-,' f '
du(q

~
V.(E) ~q&,

P=q —q', u=q P, q =2E .

The second Born dipole potential is anomalous, how-
ever, since the second derivative of its projected local
potential is discontinuous at P=q+x, where x is the
momentum of the particle in the dipole channel

(r)=r 'u„t(r)1't (r) . (4) x =q +2(co—s, ) .

There has been much discussion of the polarization
potential. Examples are Mittleman and %atson, ' Vain-
stein, Bonham, , Csanak and Taylor, Byron and
Joachain, and %alters. Local potentials have been
proposed, which are equivalent in di8'erent senses to the

Note that x is imaginary below the excitation threshold.
It follows that the projected local potential has the form
(5) in this energy range

For incident energy above the excitation threshold the
projected local potential has the form
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1 3g (0)g (q —x)cos[(q —x)r]
2r4 q(q —x)

3g (0)g (q +x)cos[(q +x)r ]
q(q+x}

(10)

The factor i is absorbed in the de6nition of the
partial-eave T-matrix element.

%e choose 1 =0, I'=l, =1, J =L, L'=L +1. The cor-
responding special values of the 3j and 6j symbols in (13)
are

0 L L
'=[3(2L + 1 )]

g(k)=k-' I "dr j,(kr)u, (r)u, (r)
„

g(0) =P/3 .

This gives an energy-dependent oscillation about the adi-
abatic form for all values of r.

McCarthy and Stelbovics confined their discussion to
the projected local potential. No statements could be
made about the phase-equivalent local potential. How-
ever, the disagreement of (5) and (10), due to a rather
subtle anomaly in V~ )(E,P), warns us to be careful of
general arguments. %e therefore study the structure of
the second Born T-matrix element carefully and com-
pute it to an accuracy of four signi6cant figures for large
L for which it is mainly real. We find a simple approxi-
mation, whose vahdity increases with L, which agrees
exactly with the first Born approximation to the T-
matrix elements of (1).

1 0 1

0 O 0 3

L 1 L+1
0 0 0

=(-1)'+' L+1
(2L +1}(2L+3)

L 1 L —1

a O 0 =( —1)
(2L —1 )(2L + 1)

E =(2L +1)'

The potential matrix elements are
' 1/2

V1+) qk = ' L+' R1+)
mqk 3(2L + 1)

' 1/2

' 1/2

(15)

(16)

II. THE T-MATRIX ELEMENT FOR LARGE L

For large enough partial-wave angular momentum L
the elastic T-matrix element TL for a dipole excitation is
essentially real and obeys the second Born approxima-
tion. %e consider L large enough for departures from
both these criteria to be neghgible. At such angular mo-
menta a weaker condition is also satis6ed. The static
and exchange potential matrix elements are negligible.
The relevant formalism has been given by McCarthy and
Stelbovics,

T, =2J "dk, ',
x —k2

X Ik [V'+'(q k)] +k [V' '(q k)]

—x [VL'+'(q, x)] —x [VL1 '(q, x)] j . (12)

Note that if TL is real then the on-shell potential ma-
trix elements VL '(q, x}are negligible. The potential ma-
trix elements VL'*'(q, k) are special cases for dipole exci-
tations of
Vn'I. 'I'(J)(q k)

mqk 3(2L +1)

where

RI (q k) =p(qk) (n /2) I d«JL, +1/2(qr)
0

~~L 21 +1 /2( kr
&)

&4,'[(L+1)R'+' +LRL ' ] (l8)

The quantities Rz'*' may be evaluated analyticaHy us-

ing the identity

rr 'J, ar J„r
V

1 a
2 P

1 ((~+@)/2)
f'(1 —( v —))4) /2) l ( v+ 1)

(19)

and P is given by (3). Substituting these values in (12)
gives

2

"dk
3 mq 0 ~2 k2 2L+1

I I' A, L L'"""ooo o o o

I L J
~

' EE'O'R11L')1 (q, k) .

(13)

where a &P and I' is the hypergeometric function. The
k integration may then be evaluated numerically.

The function [(L +1)RL+' +LRI ' ] in the integrand
of (18) is strongly peaked at k =q for large L and peaks
more strongly as L increases. The reason for this is the
factor (a/P} for a&P in the identity (19), which be-
comes (k/q) for k &q and (q!k)" for k pq. We make
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the following approximation to obtain an estimate Ti
of TI:

We may evaluate this expression analytically using the
orthonormality relation for Bessel functions of half-

integer order,

I. +1 RL(+)2+1.R
0 2L+1 (20)

f dk kJ„+i/&(k»)J„+i/2(k»') =5(» »')—/» . (2l)

The relevant integral has the same value for n =I.+1,
namely,

"k dk f "d» f d»'(»»') 'J. -+1/z(q»)JL+i/2(q')JLkl+i/2(k»)'4+1+]/2(k»
0 0 0

2q
"o "' ' +' 2' I"(2)l (L+5/2)l (2) (2L+3)(2L+1)(2L —1)

'

Using (2), (9), (17), and (20) we have the following expression for Tz"'..

T (1) —O'Q

(2L +3){2L+ l)(2L —1)

Equation (23) for Tl" is identical to the Born approximation T-matrix element for scattering by the local adiabatic
potential (1),

Ti"—— q' q FL~ q' Yi~ q q' V~ q = r r Ji+1~2 qr Ji+1~2 qr (24)

Using (22) this is seen to be identical to (23).
Here we have rederived the first-order result of O' Malley, Spruch, and Rosenberg. ' Their result for the first-order

phase shift 5&" is given by

TL = tan5L(1) 1 (1)

OTAL

(25)

Here we have assumed that L is so large that Tz'" is essentially real. This is the same as the condition for validity of
the Born approximation.

It is possible to understand the variation of Tr, given by (18), with x analytically. We first consider Tr at the
dipole-excitation threshold x =O. We do the k integration using the identity

f dk k 'J„+i/2(k»)J„+i/2(k»')=(2n +1) '(» /» )"+' (26)
0

which is a special case of (19). Here» and» are the lesser and greater of » and», respectively. The» integration
is then done by a further application of this identity, leaving a simple integration over a new variable z =» /». The
derivation is outlined below,

dk k ' f d» f d»'(»»') 'Ji. +i/z(q»}JL+i/z{q» } [(L +1)J&+3/z(k»)JL+&/z(k»')+LJL i/2(k»)JI i/z(k»')]
0 0 0

JL+ i/2(q») JL, + i/z(qz») z +—1 —1 ~ + 1 i+3/2 L i —1/2

0 0 2I. +3

d»» dz z JL+, /z(q») JL +, /2(qz») z + z
oo L +1 -r. -3n L, -i+1~2

0 1 2J- +3
2

(2L +3)(2L —1)

We now substitute (26) in (18) using (17) and use (2) and (9) to obtain once again the expression (23) for TL .

TL is therefore exactly equal to TI'" at the threshold x =0. We now consider the expression (18) for TL and note
that (k —x )

' is less than k for x ~0 and greater than k for x ~0. TI /Tz"' is therefore greater than 1 for
x ~ 0 (above threshold) and less than 1 for x &0 (below threshold).

III. NUMERICAL EVALUATION OF THE APPROXIMATION T =T,"'
In order to assess the approximation TL ——T&" we consider the difference

k—
T, T,'"= —f "dk—, , q, , [(L+1)Z,' ++Le'-"] .'3 mq o (xi —k2)(x2 —qz} 2L+1 {28}
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E= 50 eV
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The first factor in the integrand is antisymmetric in k
and q.

In Fig. 1 we have plotted the dimensionless quantity

FIG. 1. The function Gz(q, k) of Eq. (25} plotted against
'k —q for difkrent L values at 50 eV.

R =L)/q, (32)

~here L
&

is the angular momentum value beyond which
TL is within 1% of Tr'". We may consider R as the
minimum distance at which the nonlocal polarization

the scattering by the adiabatic potential. The potentials
are therefore phase equivalent in these approximations.
Since the Born approximation tends to the correct po-
tential scattering T-matrix element for large J we may
regard the form T&

' as the large-L form of the adiabatic
T-matrix element, corresponding to large r in the local
potential. In this sense r is large when r &~r

It is interesting to evaluate the electron elastic scatter-
ing T-matrix element numerically using the expression
(18) in its range of validity. This is determined from a
coupled-channels calculation using the criteria that L is
large enough for the second Born approximation to be
within 1% of the correct TL and that the imaginary part
of Tz is less than 1% of the real part. The minimum L
in the range is called Lo.

We are interested first in the way in which TL tends to
Tz" as L increases. Figure 2 shows the quantity
(TL. /Tr' ' 1)X10—for the hydrogen is, 2p excitation
(a=2.9596,e, —su=10. 2 eV) and for sodium 3s, 3p using
Hartree-Fock orbitals (a =176.63, e, —ac=2. 1 eV). For
E = c& —eo, i.e., at the excitation threshold x =0,
Tz —TL" fo—r all L &L~. For negative values of x2,
TL ~ T~". As E increases TL and TL ' di8'er more wide-
ly. The approximate validity of (31) is verified. Table I
shows the distance R, defined by

Gt, (q, k)=(2/mk) (q/P) [(L+1)Rr(+' +LRL( }i]

L+1 L
(2L +1)' (2L —1)' (29)

for E=50 eV. GL is characteristic of dipole scattering
but independent of the particular target structure. It is
strongly peaked about k =q and almost symmetric. It
becomes more peaked and more symmetric as L in-
creases.

GL (q, k) is approximately a universal function for di-

pole scattering in the sense that the relation

12 -I~
I
I

10 —
~

I

I

I

HYDROGEN 1s, 2p
--- SODIUM 3s, 3p

GrL (yq, k)=GL (q, k) (30)
200 i

is very nearly obeyed. This relationship holds within
about 10% over the range y =1 to 10 starting for exam-
ple with E=20 eV, L =20 or E=20 eV, L =40. TL
therefore approaches Tz"' as L increases. The relative
difkrence for difFerent values of L is given approximately

I—

4 t

2

T~z(1'q ) /T'y'J. '(1'q, ) 1=r'(Tr(q—) /Ti'"(q) . 11 . —(31)

IV. DISCUSSION %'ITH NUMERICAL EXAMPLES

0

I

, 0.-2 -'

100
R

200 300 400 5QQ

The first-order term of the second Born T-matrix ele-
ment for elastic scattering with a single-orbital dipole ex-
citation (23) is identical with the Born approximation to

FIG. 2. The quantity (Tz/TL" —1)&10 plotted against L
for electron elastic scattering from hydrogen 1s,2p and sodium

3s, 3p at the indicated incident energies F. (eV).
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TABLE I. The distance R =I.&/q, where I.
&

is the angular
momentum value beyond which TI is swithin 1% of T&" for the
indicated electron elastic scattering reactions.

0 HYDROGEN 1s,2p

Target

H 1s,2p

Na 3s, 3p

20
50

100
200

10
50

R {a.u. )

23.1

49.0
76.0

109.5
109.6
272.3

O.l—
I

~5

-0.)-
- 0.2—

20 30 40 50 60
r (o.u. )

-0.3—

potential is phase equivalent to the adiabatic potential
(1). R increases with E. For the hydrogen ls, 2p excita-
tion R is 23.1 a.u. for 8 =20 eV and 109.5 a.u. at 200
eV. At 50 eV R is 49.0 a.u. for hydrogen 1s,2p, but it
increases to 272.3 a.u. for the much more polarizable
sodlu1Ti 3$, 3p case.

-04-

V. THE PHASE-EQUIVALENT LOCAL POTENTIAL

The phase-equivalent local potential for elastic scatter-
ing may be obtained by inverting the phase shifts using
the WKB approximation" with the following analytic
expression for the S-matrix elements

FIG. 3. The phase-equivalent local potential Vp{r) for elec-
tron elastic scattering from the hydrogen 1s,2p system plotted
at Vz/V —1 for comparison with the adiabatic potential {1)at
the indicated energies E {eV).

A, —p„S (a)= ff
, A, —a„ (33)

(34)

L =0, 1,2, 5, 10,34, 50, 100, 150, 196 (Lo ——34),

L =0, 1,2, 5, 10,30,70, 136, 140, 160 (Lo ——136) .

V(p) =E[1—exp( —Q(o )/E )],
where

(35)

The vector a represents the set of 2N complex parame-
ters a„,P„determined by fitting 2N complex phase
shifts. The expression (33) usually interpolates a set of
phase shifts accurately to within a few percent.

The inverted potential is

The phase-equivalent real local polarization potential
Vp(r) is compared with the adiabatic potential (1) in Fig.
3, where Vz/V —1 is plotted against r for SO eV and
200 eV. Vp{r) is obtained from the inverted potential of
(35) by subtracting the static potential and the equivalent
local exchange potential of Furness and McCarthy. '2

The static exchange potential is negligible at the 1% lev-
el beyond r =7 a.u. at both energies.

p=qr =o exp[Q(o)/2E],

and the quasipotential Q (o ) is given by

(36}
VI. CONCLUSIONS

Q( )
4E 1 d ~d~ 5(A)

7T CT do 0 ($2 —o )

2 2&n(o —a„)
i.

I

(o2 p2 )1/2

and

Sz ——exp(2i5i, ) . (38)

%e have inverted the set of complex phase shifts ob-
tained up to I.o by solving the hydrogen 1s,2p coupled-
channels problem and for larger values of L by using
the expression {18). Ten complex phase shifts were Stted
at 50 and 200 eV for the fo1lowing I.-values: for 50 eV,

%e have considered the phase equivalence of the non-
local potential for elastic scattering with dipole excita-
tions, the projected local potential and the adiabatic po-
tential —a/2r in two radial regions. For incident ener-

gy E=q /2 the radial regions are Lo&qr &L& and

qr ~I, I 0 is the minimum partial-wave angular
momentum for which the approximations of this work
are valid at the 1% level. The basic approximation is
Eq. (18}for the elastic T-matrix element TL. At L =Lo,
Tz is essentially real, it is given essentially by the second
Born approximation to the coupled-channels problem,
the 6rst Born approximation for inelastic channels is val-
id, the 6rst Born approximation to scattering from the
adiabatic potential is valid, and the contribution to TI
from the static exchange potential vanishes.
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Note that Lo is considerably reduced if we relax the
condition that TI is real. The imaginary part corre-
sponding to (18) is of course simple to calculate. For
sodium 3s, 3p at 50 eV, for example, the other criteria
are satisfied at the 1% level for L =30, while Tl does
not become real until L = 196.

%'e have shown analytically that the nonlocal polar-
ization potential is phase equivalent to the adiabatic po-
tential for large enough r. This follows from the fact
that Tr tends to Tz'" [Eq. (23)] as L increases. L, is the
value of L for which TI first approaches to within 1%
Of TI

A real target has thresholds for many difFerent
discrete and continuum dipole excitations. %e have dis-
cussed the excitation of one dipole channel, which is typ-
ical of all channels when the second Born approxima-
tions is valid. At energies greater than the first dipole
threshold the projected local potential is never the same
as the polarization potential, since it has an oscillating
form for qr yL, . Below the first excitation threshold
these two potentials are the same for qr ~L, and they
are both equal to the adiabatic potential.

For L pLo the elastic T-matrix element TL for a sin-

gle excitation is less than Tz" below the threshold, equal
to TI at the threshold, and greater than TL above the

threshold. The corresponding inequalities exist for the
comparison of the phase-equivalent and adiabatic local
potentials. The phase-equivalent local potential is up to
20% larger than the adiabatic potential at several atomic
radii for electron-atom scattering at higher energies.

The easily evaluated expression (18) is an excellent ap-
proximation to TI for L ~ Lo. The full coupled-
channels calculation needs to be done only for L &Lo.
For inelastic channels the partial-wave T-matrix ele-
ments are given by the Born approximation for L ~Lo,
so the three-dimensional T-matrix element may be evalu-
ated to all L by using the analytic Born approximation
for L ~La. This method, however, is not applicable to
the elastic T-matrix element because it never obeys the
Born approximation if there are dipole channels. For
L-Lo (18) gives an excellent check on the numerical
methods used for solving the coupled-channels problem.

ACKNG%LEDGMKNTS

%e would like to acknowledge support from the Aus-
tralian Research Grants Scheme. One of us (L.J.A. ) ac-
knowledges support from the Council for Scientific and
Industrial Research, Pretoria, South Africa.

'Permanent address: Department of Physics, University of
South Africa, 0001 Pretoria, South Africa.

M. H. Mittleman and K. M. %atson, Phys. Rev. 113, 198
(1959).

L. A. Vainstein, in Atomic Collisions, edited by V. Ya. Veldre,
R. Ya. Damburg, and R. K. Peterkop (Academy of Sciences
of the Latvian SSR Press, Riga, 1963) [Enghsh translation:
Atomic Collisions (Butterworths, London, 1963), p. 63].

3R. A. Bonham, Phys. Rev, A 3, 298 (1971);3, 1958 {1971).
J Ph Bg

~F. %. Byron, Jr. and C. J. Joachain, Phys. Rev. A 9, 2559
(1974).

6H. R. J. %alters, Phys. Rep. 116, 1 (1984).

7I. E. McCarthy and A. T. Stelbovics, J. Phys. B 14, 2871
(1981).

I. E. McCarthy and A. T. Stelbovics, Phys. Rev. A 28, 2698
(1983).

9Handbook of Matheman'cal Functions, edited by M.
Abramowitz and I. A. Stegun, (Dover, New York, 1970).

'oT. F. O' Malley, L. Spruch, and L. Rosenberg, J. Math. Phys.
2, 491 (1961).

"L.J. Allen, Phys. Rev. A 34, 2706 {1986).
H. Leeb, H. Fiedeley, and R. Lipperheide, Phys. Rev. C 32,
1223 (1985).

J. B. Furness and I. E. McCarthy, J. Phys. B 6, 2280 (1973).


