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Dynamics of spin systems with randomly asymmetric bonds: Ising spins and Glanber dynamics
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The stochastic dynamics of randomly asymmetric fully connected Ising systems is studied. We
solve analytically the particularly simple case of fully asymmetric systems. We calculate the relaxa-
tion time of the autocorrelation function and show that the system remains paramagnetic even at
zero temperature {T=O). The ferromagnetic phase is only slightly afFected by the asymmetry, and
the paramagnetic-to-ferromagnetic phase transition is characterized by a critical slowing down
similar to second-order transition in symmetric (fully connected) systems. Monte Carlo simulations
of a fully connected Ising system with random asymmetric interactions, both at 6nite and zero tem-

perature, are presented. For finite T the autocorrelation function decays completely to zero for all

strengths of the asymmetry. The T=O behavior is more complex. In the fully asymmetric case the
system is ergodic, with decaying autocorrelations, in agreement with the theoretical predictions. In
the partially asymmetric case all Aows terminate at Axed points {i.e., states which are stable to single

spin Hips). However, the typical time that it takes to converge to a fixed point grows exponentially
with the size of the system. This convergence time varies from sample to sample and has a log-
normal distribution in large systems. On time scales which are smaller than the convergence time,
the system behaves "ergodically, " and the autocorrelation function decays to zero, much like the
finite-temperature case.

I. INTRODUCTION

The properties of neural networks with asymmetric
synaptic coeScients (J; QJI,. ) have been the subject of
several recent studies. ' We refer here specifically to
systems with random asymmetry. Two types of dynamic
models have been discussed. One is a system of "soft
spins" (or analog neurons} obeying Langevin equations of
motions. This model has been discussed in detail in a
previous paper (which will be referred to as paper I). A
second model, which is studied in the present paper, con-
cerns the time evolution of asymmetric networks of
discrete +1 variables (Ising spins}.

The soft-spin model has been particularly useful in
analyzing the efkcts of adding weak random asymmetry
to systems with spin-glass (SG) and ferromagnetic (FM)
interactions. Using a spherical model, the SG phase has
been shown to be completely suppressed by asym-
metry. ' The autocorrelation function (the time-
dependent Edwards-Anderson order parameter) decays
completely to zero even at low temperatures. However,
its relaxation time ~EA diverges when the strength of the
asymmetry, denoted by k, decreases as GAEA( k }=k
k~0. On the other hand, the spherical model predicts
that as the temperature is lowered there is a slowing
down, ~E~=1/T, T~O, for all nonzero k, leading to a
complete freezing of the system at zero temperature.

In this paper we study analytically and numerically the
stochastic dynamics of randomly asymmetric fully con-
nected Ising systems. The analytical study focuses on the
particularly simple case of full asymmetry (J;1 and Ji; be-
ing independent random variables). This model is defined
in Sec. II. Section III presents the mean-6eld theory of

the model in the static limit. The dynamic properties are
studied in Sec. IV. In Sec. V we calculate the number of
states which are stable to single spin flips as a function of
k. The states are relevant particularly to the understand-
ing of the dynamics at zero temperature. In Sec. VI we
present and discuss the results of extensive numerical
simulations made for various degrees of asymmetry at
6nite and zero temperature. Summary and conclusions
are given in Sec. VII.

II. DYNAMIC MODEL AND MEAN-FIELD THEORY

A. Microscopic dynamics

(2.1)

where J and J .' are symmetric and antisymmetric ma-
trices. The o6'-diagonal elements of J~ and JJ' are ran-
dom Gaussian variables with means Jo/N and zero, re-
spectively. Their variance is

[(J,'j Jo/N) ]J ——[(J—~') ]J —— (2.2)

Square brackets denote the "quench" average with
respect to the distribution of J,- . The diagonal elements
J,'.; and J,", are zero. The parameter k measures the de-
gree of asymmetry in the interactions.

%e study an asymmetric Ising spin-glass model in the
mean-field hmit. The model is a system of N Ising spins
(cr; =El) which are connected by random interactions
J; . For each pair of spina (i,j ) the interaction J; is of
the form
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The natural dynamics to study for an Ising spin model
is the Glauber dynamics. It is defined by a master equa-
tloll fol' tile probability p(a 1». . . » 0'~, 1 ) of having tile
Collflgllratloil 0' =(ai, . . . , 0~) at tlllle t

m(t)=[(a;(t))]J,

C(t)= lim [(0;(t+r}o;(r))]J.

(2.10)

(2.11)

—g R(»a; )p(ai, . . . » 0;» ~, at»r »t )',

(2.3)

where 10;(o; ) is the fitp rate, i.e., the probability per unit
time that the ith spin Sips from the value 0, to o;, while
the others remain momentarily fixed. A local magnetic
field h;(t) introduces a preference for either the ari =+1
or o; = —1 state, and as usual we choose '

10, (a; ) =—[1—o;tanh(pI1; )],I
(2.4)

d
p(01»»aN»t }

dt

=g l8»( —0'; )p(ai, . . . , 0—;». . . » a~' t»)

—(o;(t) ) = —( cr, (t) ) +tanh[Ph;(t)],
d

(2.12)

B. Quench average and mean-field limit

The mean-field theory of Eqs. (2.6) and (2.7) for the
general k case is rather complicated. However, in the
particular case of a fully asymmetric J,", i.e., k =1, it
simplifies considerably. From the mean-Geld theory of ei-
ther the Glauber dynamics or the analogous Langevin
dynamics ' one concludes that in the N~~ limit and
k =1, the local fields h; (t), Eq. (2.5), can be replaced by a
time-dependent Gaussian random field with a width
which is determined self-consistently. In particular, Eqs.
(2.6) and (2.7} reduce to the following local equations:

h,.(t) =h,'(t)+g J,,o, (t) . (2.5)

—(a;(t)o, (t )) = —(o;(t)o, (t ))

+ (o,(t, ) ) tanh[Ph, (t)], t & t, ,

The parameter I sets the scale of the microscopic pro-
cess, whereas T=P ' defines the "temperature" of the
system, and It, is an external field. For convenience we
will set I'=1.

%'e are interested in the time evolution of the average
value of the spins and the time-delayed autocorrelation
functions which obey the following equations of
motion: '

(2.13)

hl(t)=It; (t)+Jam+/(t) . (2.14)

The last term in Eq. (2.14) is a Gaussian variable with
zero mean and variance

where here h, (t) does not depend explicitly on the state of
the other spins but is given by

—(a, (t) ) = —(o, (t) ) + (tanh[Ph, (t)]),d
(2.6) ( y(t)y(to ) )4,=C( t —tp ), (2.15)

d—(a;(t)a;(to)) = —(o;(t)a;(to))

+(a, (t, )tanh[Pi'l, (t)]), t &t, .

which reAects the efkct of the random interactions J;~ on
the dynamics of a single spin. Note that because of the
asymmetry the e8'ective Seld induced by J; is not a static
field (even at equilibrium) as in the symmetric case.
The quantities rri and C(t) have to be determined self-
consistently from Eqs. (2.12)-(2.15), i.e.,

The angular brackets denote the "thermal" average, i.e.,
average over p(o„.. . , an't;t ),

rrl =« cr, (t) ) &y,

C(t) = lim « o, (t+r)o, (r) » .

(2.16)

(2.17)

(a';(t) )=g a~p(a;t ), (2.8}

&0;(r)a;(t+T)&= y„a;0,'p(o", 1-)p(ET', t+7MT;~),

where ( )t, means averaging the solutions of Eqs. (2.12)
and (2.13) over the Gaussian field P( t). For fixed
configuration of P(t) the solution of Eq. (2.12) (with
Ii =0) reads

(2.9) &0,(t) ) =f . dt'e" "tanhIP[Jom+P(t')]I,

where

(2.18)

where p(a', t':0; t ) is defined as the probability of having
the con5guration o' at time t' if one has the
configuration o at time t.

In general, both (cr, (t)) and (o;(t)a;(tu)) depend on
the specific eon5guration of the matrix J, %'e de6ne,
therefore, the average magnetization and autocorrelation,

(2.19)

Inserting Eq. (2.18) into Eq. (2.13) and carrying our the
average over P(t) we find the following self-consistent
equation for C(t):



37 DYNAMICS OF SPIN SYSTEMS %'ITH RANDOMLY. . . 4867

—C(i}= C—(r)+ f dr'e" ''f(t'), r &0

f(t}=(tanhjp[J m+$(0)]jt»htp[Jo~+4(&}]j &y
'2

I e " ~itanhtp[VI C—(r)x+&C(i)z+Jom]j~?

~
~

~

~~~ ~
~ ~

an
v'p~ — 02ir

(2.20)

For a detailed derivation of Eq. (2.21) see Appendix A.

111. MEAN-FIKI. D EQUATIONS:
THE STATIC LIMIT

In this section we study the static limit of the mean-

field equations (2.19)—(2.21), appropriate for the k= 1

case. Equating the time derivatives to zero yields the fol-

lowing static mean-field equation:

J' 'c dx—8
&2n.

I

which has both solutions q =0 and q =1. However, it
will be shown in Sec. IV that the q =1 solution is unsta-
ble leading to the conclusion that the system does not
have a SG phase even at T =0.

The instability of the PM phase to FM order occurs
when

Jog=1, (3.6}

where X is the PM local susceptibility (shown in Fig. 1),
as is evident from Eq. (3.4). Equation (3.6) defines a criti-
cal line J,(T)=X '(T) in the (T,JO) plane separating the
PM and the FM phases; see Fig. 2. Note that X(T
=0)=( 2 '�)'~ so that

X tanh[p(Jom+ &1—qx+ Vqz )] J,(T=O}=&aj2 . (3.7)

q= lim C(t) . (3.2)

(3.1}

where q is the static Edwards-Anderson order parameter
defined by"

The solution of Eqs. (2.19) and (3.1) near the FM tran-
sition temperature T, =T(J, ) can be obtained expanding
both equations in powers of m. Since in the FM phase q
must be an even function of m and q(m =0)=0, we ex-
pect that q=m +O(m ). Indeed, expanding Eq. (3.1)
for small m we find

The static mean-field equation for the average magnetiza-
tion m is given by Eq. (2.19).

The static local susceptibility is

(;)X= 0 =Pf e ~ cosh [P(Jam+/)],
eh,' -- &2n.

(3.3)

whereas the static response to an uniform field h,0=h is

q= zm +0(m ) .
1 —X2

The same procedure applied to Eq. (2.19) yields

Jo
m =A —1, AgO.

J,(T)

In the T =0 limit Eq. (2.19) reduces to

(3.8)

(3.9)

8pl

Bho „0o
1 —JOX

(3 4)

%e first consider the possibility of a SG phase, i.e., a
phase with m =0 and q&0. It is straightforward to see
from Eq. (3.1) that if the SG phase appears via a second-
order transition, then the paramagnetic X of Eq. (3.3)
must be equal to unity at the transition. However, evalu-
ation of Eq. (3.3) (with m =0) shows that X & 1 for all T;
see Fig. 1. To rule out a possible first-order SG transi-
tion, we have solved Eq. (3.1) numerically with m =0.
%e have found that q=0 is the only solution for all
T&0.

The T=O limit is special. In this case, Eq. (3.1)
reduces to

(3.5)

FIG. 1. Static susceptibility 7 of the asymmetric Ising SG
model vs T for diFerent values of k. The k=1 case is given by
Eq. (3.3) vrith m=O. The dashed line shows the qualitative

shape of g for a fixed small value of k.
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f(t)=X'C(t), t»1, (4.1)

with X given by Eq. (3.3) (m =0). Inserting Eq. (4.1) into
Eq. (2.20) and differentiating with respect to t one obtains

d C(t) =(1—X')C(t),
dt

(4.2)

The solution of Eq. (4.2) which satisfies the condition
C(t ~~ ) =0 is C(t) =exp( t lr—EA), where the
Edwards-Anderson relaxation time ~EA is given by

1
EA

( 1 yz)1/2
(4.3)

Jom
m =erf —,T=O .v'2

One can easily check that Eq. (3.10) does not have solu-
tions m &0 for Jo g (m/2)'i . In the same limit Eq. (3.1)
becomes

(3.10)

dz i 1i2 ~ dx
q e —e

&2~ — &2m.

FIG. 2. Phase diagram of the fully asymmetric Ising SG
model. The line separating the FM and PM phases is given by
J,(T).

Since X g 1 for all T & 0, the relaxational time ~HA is finite
at all T &0 and no critical slo~ing dowp occurs even as
T~O The. zero-temperature limit of rE„is rE~=1/(I
—2/m)' =1.66; see Fig. 1.

In the T=0 case Eq. (2.20) also admits the solution
C(t)=1 (which corresponds to the q =1 solution found
in statics). However, if we write C(t)=1 —5C(t) and ex-
pand Eq. (2.20) in powers of 5C(t), we find 5C(t)~ ~,
indicating that the solution C(t)=1 is unstable. The sys-
tem, therefore, does not show freezing even at T=0.

To study the relaxation of the magnetization in the PM
phase we assume that the initial states have nonzero mag-
netization. The evolution of m(t), in this case, is given
by Eqs. (2.12) and (2.16). Carrying out the average over
P(t) (see Appendix 8) we obtain the following equation:

d —x 2/'2—m(t) = —m(t)+ —e " tanh
dt -- &Zm.

X sgn( Jom +&1—q x
'2

+&qz)

If Jo » 1 the solution of Eqs. (3.10) and (3.1 1) reads

1/2
2 e

P?2 ~1— Jo gal, T=0

(3.11)

(3.12)

X IP[h'(t)+ J,m(t)+x] j . (4.4)

d ~o—m(t)= — 1 — m(t), t »1
dt

(4.5)

In the PM phase m (t)=0 for t »1 (for It =0), thus we
can linearize Eq. (4.4) obtaining

8 J2
q =1— e, Jo «~1, T=O .

The results (3.12) and (3.13) are in agreement with
three results of Feigelman and Iofk. They consider
asymmetric dilution of the Hop6eld model in the limit
a ~0, 0, being the ratio between the number of memories
and the number of neurons. In the limit a~O the model
is equivalent to an asymmetric SG model (2.1) and (2.2)
with Jo ——1/&a~ ~. In this case Jo represents the ten-
dency to condense in each one of the memories and m
stands for the macroscopic overlap with the condensed
memory.

which yields

G„M(t)=lim
5h'(r)

h =00

m(t)=e "", t »1
where the FM relaxation time is

Jo
FM J (Zr)

The equation for the average FM response function

(4.6)

IV. MEAN-FIKI. D EQUATIONS:
DYNAMICS IN THE PM PHASE

In this paragraph we investigate the relaxation of the
average autocorrelation function C(t), given by Eq.
(2.20), in the PM phase. In this phase there are no time-
persistent correlations, i.e.„C(t)=0 for t »1, so that we
can expand the right-hand side of Eq. (2.21) in powers of
C( t ), obtallllllg as the leadlllg ol del'

Jo
G„M(t)= — 1 —— GFM(t)+15(t),

dt
(4.9)

leading to

GFM(t) =Le " e(t) . (4.10)

is easily obtained differentiating Eq. (4.4), with respect to
ft (t), i.e.,
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Equation (4.6} implies that the FM relaxation time
diverges as T~T,+, i.e., the system shows a critical slow-

ing down as the FM transition is approached froxn above,
similar to an ordinary second-order transition (in the
mean-field limit).

((I, =+J;-o, .
l

(5.1)

Thus the equations of the metastab1e states, for a Gxed
configuration of J,-, are

V. NUMBER OF MKTASTABLK STATES OF THE
ASYMMETRIC ISING SPIN-GI.ASS MODEL

A. General asymmetric case

o;=sgn g J,~ o~. , i =1,2, . . . , X .
. J

Following Refs. 11 and 12, Eq. (5.4) can be written as

I,;o;=g J; o~, A, ; &0

(5.2)

(5.3)

In this section we calculate the average number of
states which are stable, with respect to single spin Aips, in
the asymmetric Ising SG model. The fully asymmetric
limit will be treated in more detail in Sec. V B. %'e use
the method developed by Tanaka and Edwards" and
Bray and Moore'2 for the SK model. '

A state is called metastable (at T=O) if it is stable,
with respect to single spin flips, i.e., if all the spins are
parallel to their local field

so that the number of metastable states is

X, =Tr( ) P f d)(, , 5 )(,, o, —gJ; o
J

(5.4)

where Tr~
~

is a sum over the 2 states of the system.
We first discuss the J0=0 and 0&k &1 case. Intro-

ducing an integral representation of the 5 function and
carrying out the average over the configuration of J,", we
6nd for the average number of metastable states,

(5.5)

where we have neglected 0( 1/N) terms. Further
simplification is achieved by way of a Gaussian transfor-
mation similar to Ref. 12, which leads to

1/2
N 1 —k f +~d )((g(„.k)

2m 1+k' (5.6)

g(x, k)=—
r

1 —k x +ln 1+erf 1 —k x
1+k 1+k 2

(5.7)

In the limit N~~ the integral over x may be per-
formed by the method of steepest descents, yielding

metastable states. However, it reduces the value of the
coefficient of N. In the Jo&0 and 0 & k & 1 case a similar
calculation shows that g(k} is a positive decreasing func-
tion of Jo, so that the average number of metastable
states is still exponential in ¹ In the Jz~oo limit

g(k)-+0 and, as expected, [N, ]J~2.
In the k &1 case Eqs. (5.9) and (5.10) are not valid

anymore; however, similar equations can be derived. %e
note that in this case the saddle-point value of x is pure
imaginary. The evaluation of g(k) at the saddle point
yields g(k) &0, and hence [X,]J——0 in the thermodynam-
ic limit, for all values of k g 1 and Snite Jo. Here, again,
g(k) ~0 and [X, ]&~2 in the Jo~ ~ limit.

[~ ] e )vg(k)

where g(k) is the stationary value of g(x; k )

(5.8)

1 —k
g(k) = — x ——,'ln

(1+k )
k&1 (5.9)

and x is solution of the saddle-point equation,

1 —k x
2

k&1.
1+erf 1 —k x

1+k 2

(5.10)

The numerical evaluation of g(k}, Eqs. (5.9}and (5.10),
is shown in Fig. 3. Note that g(k=O)=0. 1992 which
agrees with the value found in Refs. 11 and 12 for the SK
model. For 0&k &1, g(k) is lower than g(k=O) but
nonzero; thus the asymmetry does not destroy, for k ~ 1,
the exponential growth with N of the average number of

FIG. 3. Number of rnetastable states g(k) vs k for 0& k & 1

and Jo =0. Note that g(k =0)=0.1992 (SK model) and

g(k =1)=0 (fully asymmetric Ising SG model). In the k &1
case, g(k) is negative (at least for all finite values of Jo) and

[+s]J=0 lll flic thcfmodyllamic 1lllllt.
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B. Fully asymmetric case

which when substituted into Eq. (5.9) yields g(k =1)=0
leading to [N, )J ——1. We note that this result is true for
all X and not just in the thermodynamic limit. In fact,
averaging Eq. (5.4) yields for k =1 (and Jo =0)

A straightforward evaluation of the integral yields

[N, ]& ——1 =1 for all X . (5.13)

This result can be obtained by the following simple ar-
gument. Let us choose a fixed configuration of spins o,
and ask, what is the probability that this con6guration is
a metastable state7 The conditions for stability are

(5.14)

For any fixed configuration cr the new variables [J,J]
have the same probability distribution as the J," s. This
probability distribution is symmetric around zero, and
each sum in the N equations of (5.14) is an independent
random variable. This implies that each equation will be
satis6ed with a probability —,

' hence

[N, ] =2 ( —,') =1 for all N .

Using this argument, the result (5.13) can be extended to
other classes of fully asymmetric systems (e.g. , systeins
with directed bonds).

In the Jo&0 case, the integrals cannot be performed
and one has to again use the steepest-descent method.
After a straightfoward algebra we find

(5.15a)

—Jom l2
1 —&2/m Joe

Jo ) &m. /2, (5.15b)

In the fully asymmetric limit, i.e., k =1, Eq. (5.10)
yields

(5.11)

We note that Eqs. (5.15) and (5.16) also represent the
average number of metastable states of a long-range Ising
ferromagnet with a Gaussian random Geld with mean
zero and variance Jo. This agrees with our dynamic
study of the fully asymmetric Ising SG where the erat'ect of
the random interactions has been replaced by a Gaussian
random field.

C. Discussion

N, =O, (5.17)

and in addition has a tail (with vanishingly small weight)
extending to large values of N, . This would imply that a
typical large, fully asymmetric system does not have any
metastable state. In addition, the dynamics is a8'ected
not only by the number of metastable states but also by
their basins of attraction, which is hard to estimate
analytically.

In Sec. VI, we study the relation between the stochastic
dynamics of the system and the metastable states by nu-
merical simulations at 7=0. %e will also present simu-
lations at Anite T to check some of the predictions of pa.-

per I.

The results of Fig. 3 show that the number of metasta-
ble states is a smooth function of k (between 0 and 1).
Naively, this would suggest that a SG freezing occurs at
T =0 for all k, 0 g k ~ 1. Indeed, the spherical model (see
paper I) does predict that the EA order parameter equals
unity at T =0. However, in that model this is true for all
k, even above 1, which certainly cannot hold in the Ising
case.

In relating the metastable states to the actual dynami-
cal behavior of the system, one 6rst has to realize that the
preceding results refer only to the aUerage number of
metastable states. Naturally one would tend to represent
the typical number of metastable states by exp[in%, ]J
rather than by [iii, )J. We have not yet calculated either
[in%,)J or the distribution of X, . Nevertheless, on the
basis of previous studies of the symmetric case, we antici-
pate that for k g 1 and large N the distribution of X, is
sharply peaked around [N, ]J (i.e., in[%, ]z = [in%, ]I ), so
that Fig. 3 also represents the number of metastable
states in a typical configuration of J; . On the other hand,
because of the o; ~—cr; symmetry of the system, X, is
necessarily even and therefore the result (5.13) for k =1
cannot represent the typical case. In fact, it is possible
that, in the k =1 case and large X, the distribution of X,
has most of its weight around

where I is the solution of the saddle-point equation,

o~
rn =erf

v'2 (5.16)

which is identical to the static mean-field equation for the
magnetization m at T=0 [cf. Eq. (3.10)]. Equations
(5.15) imply that [N, ]J diverges at the critical point. The
Ising ferromagnetic result [X,]J——2 is recovered in the
limit Jo~ ~.

VI. NUMERICAI. RKSUI.TS

In this section we present the results of computer simu-
lations of the dynamics of Ising systems with asymmetric
interactions of the types (2.1) and (2.2). The simulations
have been performed on Cray X-MP at ATILT Sell La-
boratories. %e have used a random sequential dynamics
where at each time step a randomly chosen spin is updat-
ed according to the following rule:
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o, (i+1)=+1
with probability {1+exp[—21i,(t)/T] I

o;(1+1)= —1

with probability I 1+exp[+2h;(t) jT]I

(6.1)

k;(t)=QJ; o.(t),
J

(6.2)
EA

and T is the temperature of the system. The J; 's arelJ

chosen from a Gaussian distribution characterized by
Eqs. (2.1) and (2.2) with So =0. In the T=0 limit, the dy-
namics reduces to a random sequential updating of spins
according to the rule o; (t +1)=sgnh;(t).

I

)02)
I
I
l

)

)

A. Finite-T case

%e have calculated the autocorrelation function

(6.3) ]01
10

T= 0,5

0.6

c(t)
V T T 'T r V V

+&aaaY v

v T'

FIG. 4. Monte Carlo results of the autocorrelation function
C(r), Eq. {6.3), vs r for difFerent values of k at T=0.5. (a)
k=0.5, (b) k=0.4, (c) k=0.3, (d) k=0.2, (e) k=0.1, and (f)
k =0.

averaged over different initial states, diFerent values of to,
and different configurations of J; . In each trial the 6rst
few hundred steps (per spin) were excluded from the eval-
uation of C(r). The results for T=0.5 are shown in Fig.
4. For comparison we also present the symmetric case
k=0. In this case, C(t) decays to a finite value q=0.6
which is close to the expected value of the EA order pa-
rameter in the SK model. '

The numerical results for k+0 are all consistent with
the prediction that C(r) decays to zero for all nonzero
values of k. Figure 4 also indicates that the decay of C (t)
is slower when k decreases. We have chosen as a crude
estimate of the relaxation time rE„ofC(t) the time at
which C(r) decays to C(t) =0.1. A log-log plot of rE~(k)
is shown in Fig. 5. The small-k values fit rather nicely
with the power law

FIG. 5. Characteristic relaxation time vEA, of C(t), vs k. The
circles correspond to T=0.5 and the squares to T =0. v« is es-

timated from the numerical results of Figs. 4 and 8.

GAEA(k }=k, k (( I (6.4)

as predicted by the results of the spherical model of paper
I.

B. T=ocase

Extensive simulations of T=0 asynchronous dynamics
have been performed for sizes %=100-1200, and k be-
tween zero and unity. Our 6rst main observation is that
for % ~100 the system almost always converges to a
metastable state, even for values of k as high as 0.6. The
fraction of nonconvergent runs was less than 5%. In the
k =1 case almost none of the Rows converged, at least
within our longest measuring time (which was =15000
Monte Carlo steps per spin).

In order to gain more insight into the nature of the
Bows, we have measured the time that it takes to con-
verge to a fixed point. %e have observed large Auctua-
tions in this convergence time ~ as the sample of J; or
the initial states are varied. These fluctuations suggest
that the appropriate quantity for averaging is not ~ but
its logarithm. Figure 6 shows the distribution of ln~ for
k=0.4 and %=600 from runs of =10000 samples of
I J;I ). As shown in the figure, the distribution of lnr is
quite close to a Gaussian. Furthermore, comparing the
histograms of diFerent sizes (but the same value of k}
shows that both the peak and the width scale linearly
with ¹ Figure 7 shows the results for the average of lnv.

for different values of X and k. The results agree with the
relation
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FIG. 6. Distribution of the logarithm of the convergence
time ~ for k=0.4 and %=600 obtained from computer runs of
about 10000 samples of I J;, I. The initial states were chosen at
random. The solid line is a best-At Gaussian.

FIG. 8. Autocorrelation function C(t) vs t for difFerent
values of k at T=O. (a) k=0.7, (b) k=0.6, (c) k=0.5, and (d)
k =0.4.

in'(N, k ) =Na ( k ), 0 & k ~ 1 GAEA(k) extracted from the T=O data [again with the cri-
terion C(rE~)=0.1]. Although the range of the data is
limited, the k dependence of the T=O results for small
values of k is very similar to the T=0.5 results. Both
agree well with the power law, Eq. (6.4). This should be
contrasted with the prediction of the spherical model that
for all 6xed values of k yO„gE& diverges as T ' when

The above numerical results yield the following pic-
ture. In the fully asymmetric systems (k =1) the Rows at
T=0 and finite T have similar characteristics. The sys-

lete
tern continues to fluctuate indefinitely, causin" aa com-
p ete decay of autocorrelations C(t) with a finite relax-
t

~ ~ ~

ion time, in agreement with the analytical results of Secs.
III and IV. In the partially asymmetric case (0 ~k ~ 1)
at T=0 the Aows wander initially "ergodically'" in
configuration space, again giving rise to a complete decay
of C(t) with a finite relaxation time. However, in any
finite system (and k & 1) the probability that the flow will
"accidentally hit" one of the metastable states in a time
ess than t is finite if t =r(N, k) and grows to unity when

r y~r(N, k), where the characteristic convergence time r
diverges exponentially with ¹

(6.5)

where the coefficient a(k)~0 as k ~0 and a(k)~ ~ as
k ~ l.

0

Smce the time to reach a fixed state diverges exponen-
tially with N (at least for a not-too-small value of k), it is
important to know whether a finite time meas-urement of
C(t) will exhibit symptoms of freezing. To check this we
have measured C(t), Eq. (6.3), at T=O, taking into ac-
count only the data with to & 50 Monte Carlo steps per
spin at t+to &v.—to, where v is the time at which the
Aow converged to a fixed state. The results for 0.4 g k & 1

are presented in Fig. 8. Evaluation of C(t) for smaller
values of k requires much larger systems to ensure a size-
able convergence time.

The striking conclusion from Fig. 8 is that, although
the system relaxes eventually to a fixed state, the auto
correlations, measured along the Aows before they ter-
minate, decay completely to zero. In fact, comparing
Figs. 8 and 4 one observes that the T=0 C(r) behaves
similarly to that of T=0.5. To check this point quantita-
tively we present in Fig. 5 the relaxation time of C(t), .

VII. SUMMARY AND CONCLUSIONS

Q

0 200 400 630 BGQ 1000 1200 1400

FIG. 7. Averaged logarithm of the convergence time ~ at
T==0, for k=0.6 and k=0.4, vs N. Each point was calculated
saith 5000—10000 samples.

In this paper we have compared the dynamics of ran-
domly asymmetric Ising systems with the predictions of
the asymmetric spherical model. The results of the
Monte Carlo simulations indicate that, at 6nite tempera-
ture, the autocorrelation function decays completely to
zero for all values of the strength of the asymmetry,
denoted by k. Thus the asymmetric system does not un-
dergo a spin-glass freezing at any finite T. %'hen the
strength of the asymmetry decreases, the autocorrelation
relaxation time v.E~ grows as GAEA(k) =k, k ~0, at low
temperature, in agreement with the results of the spheri-
cal model.

The results of the dynamics at zero temperature are
more complex. In the fully asymmetric systems (k =1)
there are, at most, few states which are stable (to single
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spin fiips} and the system remains unfrozen, even at
T =0, as shown by the mean-field theory (Secs. IV and
V). This suggests that the spin-glass freezing, at T~O,
predicted by the spherical model for all values of k ~ 0, is
an artifact of the quasilinearity of that model.

As for partially asymmetric systems (k ~ 1 }our numer-
ical simulations show that also these systems exhibit an
extremely long-lived disordered "paramagnetic" state at
T=O. This is despite the fact that there is an exponen-
tially large number of stable states. The lifetime of the
disordered phase, r, fiuctuates enormously from sample
to sample. For large systems, it obeys a log-normal dis-
tribution, which scales with the system size X, i.e., the
average and the width of 1nr are proportional to N. At
times which are long compared to r the system converges
to one of the stable states, and becomes completely
frozen. The exponentially long lifetime of the disordered
phase implies that the basins of attraction of the stable
fixed points are extremely small. A similar phenomenon
of a disordered phase which has an extremely long (but
finite) lifetime has been found in a recent study of tur-
bulence in the Kuramoto-Sivashinsky equation. ' A
disordered, phase-turbulent state has been found to be
stable with a lifetime which grows exponentially with the
system size. At larger time scales the system settles in a
spatially ordered, "cellular" state.

Finally, let us emphasize that we have focused in this
work on a dynamics which is stochastic even at T =0,
where the order of updating is kept random. This sto-
chasticity destroys the cyclic attrsctors that msy exist in
algorithms with fixed order of updating, as found in Ref.
15,

APPENDIX A

In this appendix' we ealeulate averages of the type

f(&)=(F{&+P(0))F(&+P(&)))~, (Al)

where F(x) is any function of x, —~ gx ~+ oo, for
which the Fourier transform exists, and the average over
P(t), i.e., (( ) )&, is defined as

&( ~ ~ )) Z-'f-D)( )4

ddt1

2 2i7'

X (co )P( —co), (A2)

where C(co) are the Fourier components of C(t) and Z is
a normalization factor. Equation (2.21) is the particular
case of F(x)=tanh(px ) and a =Jam. Let us define g(a }

F(x)=f g(a)e2'
so that f(t) can be written as
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I

f(t)=Z ' fDP f g(a)g(a')exp[ ia(a+—a')]
277' 2iv'

+exp —— cu t m —co +ia m + —m +ia' co e ' '+ —co e'
2 2m

da da
g(a)g(a')exp[ —

—,'[a +a' +2aa'C(t)] —ia(a+a') I .2 ~2

2' 2m
(A4)

In deriving Eq. (A4) we have used the properties C(t =0)= 1 and C( —t) =C(t) By definit. ion we have

g(a)= f dx e' "F(x)=I3fdx e' '"+'F(x+a),

which when substituted in Eq. (A4) yields

f(t)= fdx F(x+a)f dy F(y+a) f expI ——,'[a +a' +2aa'C(t)]+iax+ia'yI .
2iT 2i7

Carrying out the integrals over o. and a' we obtain, after a straightforward algebra,

(A5)

f(t)=, fdx F(x+a)f dy F(y+a)exp
1 x +y 2xyC(t)—

2m.[1—C'( r )]'~' 2[1—C'(t)]
2

e " I' 1 —C tx+ C tz+a&2~, &Z~
L

as can be easily veri6ed performing the integration over z.
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APPENDIX 8

In this appendix we show how, using the method explained in Appendix A, (tanhIP[Jom(t)+P(t)]] )& can be calcu-
lated. From Eqs. (A2) and (A3) we have

(tanh[P[J, m(t)+P(t)]] )& Z—— ' —fDP f g(tz)e

Xexp —— Ip(co)C '(co)P( —co)+iaP[P(co)e '"'+P( c—o)e' ']I
2 2m'

GfA p2~2
g a exp —ia Jom )-

2m 2

do! p2~2= f dx tanh(x) f exp — +tct[x —PJ&m(t)]
2m 2

=f —e " tanhIP[J&m(t)+x]I .
&Zm
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