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Structures at the electrodes of gas discharges
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A phenomenological model is developed to explain single spots or regular patterns of spots at the
electrode of gas discharges. The electrodic discharge parts are described by bistable layers,
governed by a time-dependent Ginsburg-Landau equation or reaction-diLsion equation; the space
between the electrodic layers is taken into account by a resistive region. The steady state of a bi-

stable layer is characterized by an 5-shaped voltage-current density characteristic. If one bistable

layer dominates the interelectrodic space, one single spot may occur. A resistive region may help to
stabilize a system of spots and causes a Coulombic interaction of the spots. From a Lyapunov func-

tion, equations of motion of the spots can be derived. An initial system of spots relaxes to a stable
or metastable state. Experimentally found patterns of anode spots in a glom discharge can be repro-
duced.

I. INTRODUCTION

During the last few decades structures as a result of
self-organization have fascinated scientists of various dis-
ciplines (see, e.g., Nicolis and Prigogine, ' Haken, and
Ebeling and Ulbricht ). However, in the field of gas
discharges, which are well known by their colorful phe-
nomena, a variety of structures still are to be explained.
This investigation is focused on plasma structures at the
electrodes of gas discharges.

At the anode of a glow discharge on a background of a
faint anode glow, a regular pattern of bright anode spots
occurs (Thomas and Duffendack, Rubens and Hender-
son, and the left part of Fig. 1). These patterns show a
strong resemblance to vortex patterns in rotating
superfluid He (Packard ). Regular patterns of cathodic
spots have been detected in an arc discharge (Kesaev )

and in a pulsed beam-driven discharge (Nechaev et al ).
A structured glow discharge can be found between a me-
tallic and a semiconducting electrode (Radehaus,
Dirksmeyer, Willebrand, and Purwins ).

The structures mentioned above can be characterized
by a transport of electric current to an electrode concen-
trated in one or several spots. In the case of the anode
spots with increasing current, the transport undergoes a
succession of transitions from a homogeneous state to a
highly structured one. The following basic effects con-
nected with the formation of structures can be isolated
(Miiller' ).

(1) Existence of two phases of low (or vanishing) and
high current density.

(2) Separation of the phases, spot formation.
(3) Formation of several spots.
(4) Ordering of the spots, pattern formation.
In this paper a simple phenomenological model is

developed explaining these basic effects. A bistable layer
in front of an electrode will be shown to be responsible
for spot formation. The bistability is introduced by an
S-shaped voltage-current density characteristic U„(j) of
the layer (see Fig. 2). For the current density j a non-
linear partial differential equation is derived, known as
the time-dependent Ginsburg-Landau equation or as the

reaction-diffusion equation. The one-dimensional analo-
gue of this equation has been applied by Ross and Lit-
ster" and Landauer' to describe the ballast resistor pos-
sessing a range of constant current in its characteristic.
%'ith the help of this equation the existence of one spot
can be explained. Several spots and patterns occur if the
spots at the electrode are embedded into a resistive medi-
um contacting the layer. To describe a structured glow
discharge Radehaus et al. derived a model, leading to a
system of two coupled reaction-diffusion equations.

In our model the current transport through a discharge
is governed by a variational principle into which a gen-
eralized potential F with a dimension of a power or an en-
ergy dissipation enters. The resistive medium contributes
to F a repulsive interaction term of the spots. Stochastic
elements are neglected. Patterns of spots as metastable or
stable states can be constructed and compared with the
patterns of anode spots found experimentally. This ap-
proach to structures is analogous to that of Campbell and
Zi6 who calculated distributions of vortices in
superAuid He.

II. BISTABLK KLKCTROMC LAYER,
KXISTKNCK OF A SPOT

A. Model zones

As a basis of a phenomenological model an electric
discharge is described by model zones (see Fig. 3). The
total volume between the electrodes is divided into three
zones: an electrodic layer in front of each electrode and a
resistive region representing the bulk of the discharge. A
1ayer includes the sheath and the electrodic plasma, and
mediates the current transition between the bulk and the
electrode. For a glow discharge this description by mod-
el zones is illustrated by Table I. Analogously, the model
zones of an arc discharge can be defined. The discharge
parts described by an electrodic layer show the typical 5-
shaped voltage-current characteristic of a bistable resis-
tor, Fig. 2, with a low and a high current mode (see Table
II).

In this paper structures in one layer are investigated.
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The other layer is taken into account by a contribution to
the external resistor RE. According to our model the in-

terelectrodic space is built up by one thin layer adjacent
to the cathode or anode, and a resistive region. Both
zones contribute to the discharge voltage

Un = Ur, (rL ~l+ URtt(rL. 'l .

rL gives a position in the negligible thin layer, An exter-
nal circuit, consisting of a battery or power supply of
voltage Uz and of a series resistor Rz, couples the total
current I through the discharge and the discharge voltage
UD.

NX

UD
——U~ —E.FI .

0, 00

I: ~ .
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17 37 18.35

I h l

FIG. 2. Representative bistable, S-shaped voltage-current
density characteristic U, (j ). At the voltage U, = U„;, the areas
+ and —are equal: Maxwell's construction (see Sec. II D).
I,m, h: existence regions of the low, medium, and high current
modes. The subscript r indicates "resistive;" the expression S-
shaped was introduced for a plot with U as abcissa and I as or-
dinate.
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As a first step, in this section a reduced model is used,
where the interelectrodic space is dominated by one lay-
er,

URR(rL. l=o

The layer voltage UD becomes spatially constant.

8. Layer model
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A thin layer in front of an electrode is investigated; the
radius of curvature of the electrode is assumed to be large
compared to the radii of the spots discussed in the follow-
ing. The current transport through the layer is governed

208.00 208. 13 208.20 208.30 208.38

C'
242. 94 242. 95 242. 97 242. 97 243.03

FIG. 1. Observed (left) and calculated patterns of spots at a
hemispherical anode (see Sec. IVA); experimental discharge
current: (200+20%) mA; N: number of spots. The numbers
give the value of the potential function F„*„ofEq. (68); C, =2;
C2 ——6; n =1.5.

FIG. 3. Gas discharge, described by modes zones, in a simple
external circuit; — —:electrode, ~~~~~~~' layer, Kr~: resistive medi-
um.
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TABLE I. Model zones and discharge parts of a glow

discharge.

Cathodic layer Cathode fall region,
negative glow

Resistive region Faraday's dark space,
positive column

Anodic layer Anode fall region with
anode glow, anode spots

by a voltage balance describing how di6'erent e8'ects con-
tribute to the total voltage UL across the layer. A homo-

geneous steady layer only shows the resistive voltage
drop U, (j) with an S-shaped characteristic of the type of
Fig. 2. For the representative example of the cathodic
parts of the glow discharge one may try to explain the
bistable U„(j) characteristic. The maximum close to

j=0 corresponds to the breakdown voltage. The basic
mechanisms in the cathode fall region determining the

U„(j) characteristic of the ignited glow discharge are
electron multiplication, ion motion in the 6eld of their
space charge, electron emission of the cathode due to in-

coming ions, and ion Row from the negative glow (see,
e.g., Ward' ). According to the measurements of
Melekhin and Naumov' the minimum of the U„(j)
characteristic is correlated with the maximum of electron
multiplication.

Relaxation effects of the layer can be included in the
description by assigning an inductance I to an unit area of
the layer; a simple model arises, allowing stability
analysis of homogeneous layers. However, the spatial
distribution of the current density still is inde6nite. In an
inhomogeneous layer the elements of the layer are cou-
pled; the current distribution becomes defined. Electron
or ion transport from neighboring elements influences via
the balance of the charge carriers the voltage of an ele-
ment. This effect can be taken care of by adding to the
voltage U„(j) a diffusive term proportional to —h, ~~j.

%ith these contributions the voltage balance of the layer
gives the voltage across the inductance

J=0 for r=r& .

In some cases a free boundary of a spot exists,

J =0 for V'))„J =0, (5b)

where V'~t„describes the component of the gradient paral-
lel to the surface and normal to the free boundary of the
spot. The layer equation (4) can be normalized

= UL —(U„(j)—&~(j)
Bt

using the dimensionless variables

J J
Jsc

(7b)

(7d)

the characteristic length
1/2

'VJ SC

where UI is the total voltage across the layer, U„(j) is
the voltage due to the nonlinear resistance, yh~j is the
voltage due to difrusive coupling; h~( is the component of
the Laplacian parallel to the electrode, y is the coeScient
of diffusive coupling of neighboring elements of the layer,
and I is the inductance of an unit area, taking into ac-
count relaxation e6'ects. This equation represents a
Ginsburg-Landau equation or a reaction-diffusion equa-
tion; eiTects of relaxation and difrusion are taken into ac-
count by linear terms. At the border line r=rb of the
electrode the current density disappears,

TABLE II. Low and high current modes of di8'erent electrodic layers.

Discha
parts

Cathodic layer
of the glow
discharge

odel
ones

Low current
mode

non-ignited
mode

High current
mode

cathodic parts
of the glow
discharge

Bistable
characteristic

(Reference

Hantzsche (Ref. 14}

Anodic laycI'

of the glow
discharge

anode glow anode spots Rubens and
Henderson (Ref. 5)

Cathodic layer
of the arc

cathodic parts
of the glow
discharge

cathode spot,
of the arc

Finkelnburg and
Maecker (Ref. 15)
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the characteristic tim. e The gradient term in I' provides steady states with
smooth density distributions j(r), analogously to the sur-
face energy of s droplet.

and the scaling quantities U,j to be taken from the
U„(j ) characteristic. From the current density j through
the layer the total current can be calculated by integra-
tion over the total area A of the electrode,

D. Steady spotlike pro6les

Steady spotlike profiles j(p) of radial symmetry located
on a plane electrode shall be investigated. Here the nor-
malized layer equation (6) can be reduced to

I=J dA j. (10) dj 1 dj 1 dj dV

dp p dp p dp dp
(20)

C. Variational mesc;ription

The right-hand side of Eq. (4) shall be reformulated
into a variational description. The current density j is
taken as independent variable; the variation is performed
at a fixed time t and with the boundary condition (5).
Contributions of the layer and the external circuit to a
generalized potential I' are introduced,

FL ——f dA I U, (j)dj+ —,'y(V~j)

V(j)=f [U—U„(j)]dj
0

(21)

is introduced. At the border of the electrode, Eq. (5a)
shall be fulfilled. Equation (20) is analogous to the (nor-
malized) equation of motion of a particle under the
inffuence of a force of potential V(x ) and a time depen-
dent damp1Qg terIIl

p being the radial coordinate and U the voltage of the
steady spot. The wavy lines, indicating the normalization
of the variables, Eq. (7), have been omitted; the potential

The corresponding varistional derivatives are
dx 1 dx dV

t dt dx
(22)

5I'E

5j
= —U~+RFI,

5FI = U, (j)—yh~j,j

(13)

(14)

using Eq. (10). The equation of motion of the layer, Eq.
(4), can be written as

aj sFI= (15)t j
with a generalized potential,

With the help of this analogy the formation of a spot can
be discussed qualitatively; the S-shaped characteristic
U, (j) of Fig. 2 shall be used. The lower diagram of Fig.
4(a) shows a small spot located on the background of con-
stant current density j&, at the boundary of the electrode
the current density goes to zero. In the particle picture
of Fig. 4(a) the particle starts from the position indicated
by a dot. Due to the initial damping it just reaches the
left maximum at x =xI, coming practically to rest there;
eventually it continues its course to x =0. In Fig. 4(b) a

(16)

During relaxation of the distribution j towards a steady
state, the value of Fdecreases,

Cl j

until a minimum,

5F=0,
i.e., a stable (or metastable) steady state (dldr =0) is
reached. In the neighborhood of this state the condition

holds. Thus I' represents a Lyapunov functional of the
diff'erential equation (4). A local minimum represents a
metastable state, a global minimum a stable state.

A layer obeying Eq. (15) is governed by the principle of
minimum I". Analogous situations in gas discharges have
been discussed by the author recently. ' According to
GlansdorfF' and Prigogine, ' the increment 5I', derived
from Eqs. (11), (12), and (16), in the neighborhood of a
steady state may be termed "excess energy dissipation. "

FIG. 4. Potential distribution V(j) or V(x ) (upper part} and
radial density profile j(p) or motion of particle x(t} (lo~er
part). (a) UL jU, , =1.15, small spot; (b) UL /U, „;,=1.02, large
spot.
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large spot with the density j& in the center on the back-
ground of the density ji is shown. For a very large spot
of density jj, on a very large background of density ji,
i.e., in the asymptotic case„ the two maxima of V at
j=jI,j& are equal:

This method is not unique; before integration Eq. (15)
may be multiplied by an arbitrary function f(j ). Howev-
er, since Eq. (28) represents a power balance, f(j ) is set
equal to 1. Using Eqs. (13), (14), (26) and (27), the contri-
butions to Eq. (28) can be written as

f dA/ 5j=g L(I ) 5I+M(I ) 5r

This leads to Maxwell's construction, originally applied
to van der Waals's relation for a real gas (see, e.g.,
Huang ),

U = Ucrit (25)

E. Quasisteady spots, equations of motion

in Fig. 2. Here two homogeneous phases ji and j& exist.
Due to the discussion above it becomes evident that

the existence of two phases is coupled with the existence
of an S-shaped U„(j ) characteristic of the layer. The sep-
aration of the phases and thus spot formation is caused
by the gradient term in FL of Eq. (12) analogous to a sur-

face energy.
Integration of Eq. (20) leads to a voltage-current

characteristic U(I ) of a spot. As indicated by the exam-

ples of Fig, 4, the spot voltage U decreases with increas-
ing spot current I, and the differential resistance dU/dI
is negative and vanishes in the asymptotic case I~~.

For a special shape of U„(j), the current density j& of
the background may be negligible ("dark" background); a
free boundary exists [Eq. (5b)], a definite radius of a spot
can be given. Steady solutions of Eq. (20) may be built up
by superimposing the individual profiles of N spots not
overlapping each other and each possessing the same
voltage and thus the same currents and radii.

QFL—f d3 5j = —g U(I~)5I
A 5J

N
= —5 g f U(I )dI,

a=1

5FE—f dA . 5j =(Us REI) —g 5I~
5J

= —5( —UaI+ ,'REI ) =—5Fs,—
with the inductance of a quasisteady spot

dj, (p, I )
L(I )=2nl f pdp

o M~

and its frictional coeScient

"rj), (p, I )
M(I )= 2nl f p dp .

Q Qp

The equations of motion result,

L(I ) = — =UL —U(I ),
dI gF

BIa

dra
M(I )

(29)

(30)

(31)

(32)

(33)

(35)

A system of spots close to a steady state shall be inves-
tigated. Each spot o; located with its center at r, is as-
sumed to possess a quasisteady pro61e j„calculated from
Eq. (20) for the instantaneous value of the spot current
I ( t ). If a current density j& of the background is negligi-
ble, the density distribution j (r, t) of the system can be
constructed by a superposition

(26)

with the total current

NI=+I =gf dAj,
a=1 a=1

(27)

where each integral is extended over the electrodic area
A of the corresponding spot o;.

To And an equation of motion of the spots, governing
the parameters I ( t ) and r ( t ), one enters with the distri-
bution (26) into the integrated and equivalent version of
Eq. (15),

if (Ua RFI) is replaced —by the layer voltage Ut. For
the assumption of quasisteady spots, Eq. (26), the general-
ized potential

.Y
F= —UsI+ ,'RFI + g f —U(I~)dI

a=1
(36)

F. Quasisteady spots, stability analysis

The equatlolls of lllotloll (34) allow a stalNllty allalysls.
From condition (19) or

exists, being a Lyapunov .unction of the di6'erential equa-
tions (34) and (35). The generalized forces BF/dI or-
voltage overshoots [UL —U(I )] change the currents I;
the generalized forces —BF/Br, acting on the positions
of the spot, vanish. Thus the spots show fixed positions
r, given by the initial conditions. By the assumptions of
quasisteady spots each spot is replaced by a nonlinear
resistor voltage U(I ) with negative difFerential resis-
tance, dU(I )/dI in series with an inductance L(I ).

f dAI 5j= 5F. —
Bt

(28)
X g2p

5 F= g 5I 5Is)0,
1

8I RIP
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with

$2F =8~+5 p

0 for a&P
6

1 for u=P,

8 I'

BI,BI
4

B'F
BI.BI.

the stability criterion

8 I'
BI,BI)

0

BF
BI.BI,

~0, 1&cz&X (39)

[see Eq. (1)].
The current transport through the layer shall be con-

centrated in spots ~here the layer is conducting. Outside
of the spots the current density shall be negligible, the
layer insulating.

At a nonsteady pattern of spots relaxing to a steady
state the following interdependent processes may be ob-
ser ved.

Relaxation of the profiles of the spots.
Relaxation of the number of the spots, connected with

birth and death of spots.
Relaxation of the currents I of the spots.
Relaxation of the pattern of spots.

for a steady state can be derived (see, e.g., Salle and
Lefshetz2'). Evaluation leads to

dU(I&) ~ dU(I&)' )0,
p=l P p=1 P

Because of the negative difFerential resistance dU(I)ldI
of a spot, one single spot may be stabilized by an external
resistor

In the following a pattern of S spots at an electrode,
chosen to be the anode, shall be investigated on a time
scale, where the first two processes are very fast.

To take into account the electrodic plasma of a spot,
found experimentally, the contact of the layer to the
resistive region at the spot is modeled by an ideally con-
ducting volume on top of the spot acting as an interface.
The (time-dependent} shape of this volume will be dis-
cussed in Sec. III C. The resistive region can be described
by its electric potential y obeying

d U(I )R~+ go . (41)

G. Application to the normal glow discharge

A pattern of severa1 identical spots is unstable and
changes to a single large spot. For perturbations obeying
the assumption (26) of quasisteady spots, only one spot is
stable,

with the boundary conditions

I= —o f dAV„y
c

at the cathode,

I.= f„d~ J =~ f„d& V„q

at a spot a,

(42)

(43)

(44)

The normal glow discharge only partly covering the
cathode can be interpreted as a spot with a free boundary
[Eq. (Sb)] on a black background (j& ——0). Maxwell's con-
struction [Eqs. (23) and (24), see Fig. 2] determines the
voltage U,„;, for a large spot, i.e., the normal cathode fall.
The resulting value depends on the shape of the U„(j}
characteristic and exceeds the minimum value U;„.
While U= U„;, leads to a distribution j(p}, which drops
to zero at the free boundary, U = U;„produces a homo-
geneous distribution without boundary. Rothhard has
investigated this problem experimentally. The homo-
geneous distribution was realized by a surrounding auxili-
ary discharge. A difference of a few volts between the
normal cathode fall and the minimum cathode fall was
found.

at the layer outside of the spots and at insulating walls,
contacting the resistive region. The area 3 ~ refers to
the part of the anode covered by the spot a, the area AL
to the boundary of the resistive region to the interfacing
volume on top of the spot a (see Fig. 5).

III. LAYER IN CONTACT %"ITH A

RESISTIVE REGION, PATTERN GF SPOTS

A. Model

In this section the interelectrodic space shall consist of
a thin electrodic layer, obeying Eqs. (4) and (5), and a
resistive region of constant conductivity o. Due to the
voltage drop Uaa(rL ) across the resistive region the layer
voltage UI (rL ) depends on the position rI at the layer

0
FIG. 5. Gas discharge model. : electrode; ~»»~~~: anodic

layer; ~ '. ideally conducting volume on top of a spot, interfa-
cial volume; ZZYXd: resistive region; 2„:boundary of the anode
towards the layer; AL .. boundary of the resistive region towards
the layer; Ac.. boundary of the cathode towards the resistive re-
gion.
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8. Variationai description of the resistive region

In this section the description of the resistive region
shall be fitted into the variational description of the layer
of Sec. II with j as an independent variable. For a non-
vanishing voltage drop Uzz(rL ) across the resistive re-
gion, Eq. (15) has to be replaced by

Here the last term to be transformed. From the variation
of the functional

Fka=-,'a f~aR

5(FE+FL )I- -=— —UaR«L } .
Bt 5j

(46)
which represents one half of the energy dissipation of the
resistive region, one finds

5Fit„= ,'a5—f dV(Vy)
~RR

= —o f dV qh5y+a f dA gV„5y+ ,'cr f—dA(Vy)'5s„

=f dA[q)(r L) yc]5—j+ ,'a f —dA(Vq&) 5s„=f dAUaa(rL )5j+ ,'cr f—dA(Vq)) 5s„
A~ A~

(48)

using Eqs. (10) and (42) —(45). The integral over AL in

the last line of Eq. (48) is caused by the change of the
surface AL, i.e., by the "breathing" of the spots during
change of the current; a variation 5j lets the interfacial
volumes expand by a step 5s„ in normal direction. The
integrated version of Eq. (46) reads p (( ~r, —rti~, P~a (53)

R~&(I„.. . , Iiv, r„.. . , riv } .

Reference to the electrostatic analogy (Table III) may
help to evaluate the coefFicient E.~.

For small spots

f dA I- 5j = 5(FE+Ft—+FaR)
A~

+ ,'a f —dA(Vy) 5s„.
AL

(49)

and a distant cathode, nearly the total voltage

1V

Ua.it&= X RapIp
P=1

(54)

dI
L(I~)

d(FE+FL+Fka)
BI

+—,'o f d A(Vp)

Due to the breathing of the spots no Lyapunov functional
can be given.

C. Small qnasisteady spots, motion and stability

The assumption of quasisteady spots, Eq. (26), shall be
connected with the assumption of a hemispherical shape
(radius p ) of the interfacial volume on top of each spot.
Using these assumptions Eq. (49) leads to the equations of
motion

drops in the close neighborhood of the spot a, practically
independently of the currents I& (P&a), of the other
spots. Thus for the relaxation of the spot currents I
fEq. (50)] the voltage U„„can be replaced by

I
UaR ——R ~~I~ = f R ~(I~ )dI . (55}al. o

%ith the net function

N

FaR ——g f R(I )dI, R(I )=R(I )—
a=] 0

one Ands the final form of the Arst equations of motion,

dI
L(I )

dr

=U U„„. U(I.}=—U,. U—(I.), —(50) Due to the approximation (55) the relaxation of the
currents, Eq. (57), is decoupled from the relaxation of the
positions, Eq. (51). In a first phase the currents relax,
governed by a Lyapunov function

The energy dissipation of a resistive region, bounded by
X ideal conductors of area AL, by the cathode, by the
insulating parts of the anode, and some insulating walls
can be expressed as a bilinear form in the currents I:

FRR ———,
' g R IiI Ip

a,P=]

with the coeScients of resistivity

F=I'
F. +I'L+I'RR (58)

Here the interaction terms, neglected in approximation

Since ERR is symmetric in the currents I, in a steady
state all spots possess the same currents. In a second
phase on a larger time scale the positions relax, governed
by the I yapunov function
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TABLE III. Analogy of the current density field with the electrostatic field.

Resistive region of conductivity o. Dielectric region of permittivity e

Electric potential qp

N ideally conducting volumes of
hemispherical shape in front of the spots

Electric potential

X hemispherical conductors

Cathode, reference electrode Reference conductor

Boundaries to insulating material (o =0)
representing the nonconducting parts
of the layer and insulating walls

Boundary to material with @=0

Current I to the spot a Charge Q of the conductor a

0.5X energy dissipation:

2cr f (Vg)2dV=
2 g R,pI, Ip

a, III= 1

Electrostatic energy (see e.g. Jeans [Rcf. 23]):

,'Ef (V—q)'dV=—,
' g P pQ Qp

a, /=1

CoefFicient R p of resistivity (8 p
——Rp ) Coefticient P ~ of potential

Voltage URR between the
conductor a and the cathode

U„„=g R,pIp
g=l

Voltage U between the conductor
and the reference conductor

N

U. = X P.pQp
g=l

(55},are important.
Now the stability of a pattern of spots is analyzed with

respect to a perturbation 5I analogously to Sec. II F; in
Eqs. (37)-(41) U(I ) has to be replaced by the total volt-
age, sustamlng a spot:

U„,(I )= U(I )+R(I )I

The stability criterion (40) leads for a single spot to

d U„,(I )
RE+ gO .

(60)

(61)

Since in a steady state all spots possess the same current,
for a pattern of spots condition (62) must hold for each
spot. It can be shown that the global minimum for a pat-
tern of many spots, X &g 1, can be constructed by
Maxwell's construction applied to the characteristic
U(I )+R (I )I.

D. Application to anode spots in a glow discharge

1. PIane anode

The electrostatic analogy of the spot system is con-
structed by starting with X positively charged spherical
conductors, their centers located in a plane. The Geld is

The resistive region acts as a nonlinear series resistor E. in
front of the spot and helps to stabilize it. For a pattern of
spots the criterion (40) asks for at least (E 1) spots posi-—
tive differential resistances

dU„, (I }

dI

symmetric with respect to the plane; no 6eld line crosses
this plane. The electrostatic field at one side of this plane
represents the electrostatic analogy of our spot system; its
energy is given by

W=-,' g P pQ Qp, (63)
a,P=1

Q being the charges of the hemispheres. The term
P Q /2 represents the field energy if only one conduc-
tor a is charged. Neglecting for small conductors [condi-
tion (53)] the polarization of the other noncharged con-
ductors one can write

1 2
,'P Q =——. Q2 0'7T'6p~

(64)

2P pQ Qp=
4 Q Qp (&WP) . (65)

From Eqs. (64) and (65) the expressions for the analogous
coeScients R & may be constructed.

Now the relaxation of a pattern of X spots is discussed.
The currents I shall already be relaxed to the constant
value I, . The generalized potential FRn of Eq. (52) reads

X a —1 2Fan=I' X X + constant terms .
p i 4wo'

i
1 rp'

where the factor 2 is due to the restriction to the half
space. The term P pQ Qp gives the interaction energy of
the two charges Q, Qp, which for small conductors be-
comes
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The spots show s Coulomb-type of repulsive interaction.
For a small number of spots all spots will move to the
border. Berezin investigated Coulombic interacting
spots on a circular disc and calculated the configuration
with the global minimum of energy. For X & 11 all spots
were located at the border, for %=12 one spot in the
center appeared. Problems occur at an experimental real-
ization of the calculated situation; the anode hss to be
embedded into an insulating plane such that the current
density field cannot extend behind the plane given by the
surface of the anode.

2. Hemispherical or spherical anode

In this case no simple method exists to calculate 8 &.
For a spherical or hemispherical anode of radius r„ the
Coulombic interaction terms in Eq. (66) shall be adapted
approximating the distances

~

r —rp~ of the spots by
their distances along the anode surface

r
& rz arc——cosfsin8 sin8yos(g y&)—

+cos8 cos8&] .

Here spherical coordinates (8„p ) are introduced.
Up to now the inAuence of the cathode or of the

grounded collector in the analogy has been neglected.
This assumption is valid, e.g. , as in the experiment of Ru-
bens snd Henderson, if a spherical anode is surrounded
by a large concentric cathode. Spots equally distributed
over the anode are found. In our experiment, however
(see Fig. 6), the influence of the cathode has to be taken
into account; here the resistance R depends on the lo-
cation of the spot on the anode and is smallest for 8 =0,
the position closest to the cathode. Taking into account
the prolonged path of the current from the spot to the
cathode by an additional contribution to 8 being pro-
portional to Ã, the potential ERR reads

S a=1 r~ W

F„'„=C,g g +Cz g 0"+ const terms,
a=1 P= 1 +P a=1

(6&)

1 ~~RR.

M(I, )r„

1 ~~R.R.

M(I, )r„sin 8&

(70)

(71)

IV. ANODE SPOTS, EXPERIMENTS
AND NUMERICAL CALCULATIONS

A. Experiments

Our experiments have been performed to produce pat-
terns of spots in a glow discharge st a hemispherical
anode. The experimental setup is sketched in Fig. 6.
Within a metallic vessel a glow discharge in 82 (p =10
mbar, I=0.2-1.0 A) was run between a cyhndrical
cathode and the anode. The vessel and electrodes con-
sisted of steel. The anode wss conditioned by cathodic
operation. Symmetrical patterns of anode spots appeared
(see Fig. 1), which were photographed through the win-

dow in front of the cathode. As s function of the
discharge current the number of spots showed a pro-
nounced hysteresis, whereas for a given number of spots
on a freshly conditioned anode practically no geometrical
hysteresis of the patterns was found. However, for cer-
tain spot numbers, two diferent patterns could be found,
each occurring in a nonreproducible way in different runs
of experiments. Visual appearance supports the assump-
tion of approximately equal current I, per spot in a given
pattern. For the comparison with the calculated patterns
situations with approximately constant current per spot
were chosen.

B. Numerical calculation

C2-I, r„/cr(I, ) .

The open parameters, namely the ratio C, /C2 and the
exponent n, are assumed to be independent of the current
and are fitted by comparison with the experiment; C, is
set equal to 2. The resulting equations of motion read

with

C~ -I, /[o (I, )r„], (69a)

The results of Sec. III D2 are used. To find a steady
pattern of N spots an initial pattern (8~,qr~) is assumed.
Depending on the initial conditions diferent steady pat-
terns with di6'erent values of ERR msy occur. For a cal-
culated pattern the positions (8,y ) of the centers of the
spots are projected on s plane orthogonal to the axis of
the electrodic con6guration. In this projection each spot
is marked by a full circle (see the right part of Fig. 1).

C. Discussion

pU fTlp
I

FIG. 6. Vacuum vessel with electrodic configuration; inner
diameter and length of the cylindrical cathode: 4 cm and l2 cm;
diameter of the hemispherical anode: 1.5 cm. The electrodic
configuration is drawn in scale.

The theoretically and experimentally found patterns
agree surprisingly well. In most cases the patterns with
minimum values of I'RR, i.e., the global minima, are real-
ized. During other runs of the experiment some of the lo-
cal minima and the global minima not realized in this ex-
periment could be found. The success of these calcula-
tions support the basic ideas of the model, namely, the
description of the discharge by an electrodic bistable lay-
er and a resistive region.
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The pattern of cathodic spots shown by Nechaev et al.
in a pulsed beam-driven discharge resemble those found
at the anode of a glow discharge. Here our model of a
bistable layer in contact with a resistive region should be
applicable.

Formation of a single spot at the electrode of a gas
discharge can be explained by a phenomenological model
in which the electrodic phenomena are described by a
bistable layer with an S-shaped voltage-current density
characteristic. Patterns of spots occur if the bistable lay-
er contacts a resistive medium, providing a series resistor
for each spot and leading to a repulsive interaction of the
spots. The model possesses a generalized potential or
Lyapunov functional by which stable states as global
minima and metastable states as local minima can be dis-
tinguished. Basic properties of electrodic plasma struc-
tures in gas discharges are explained. By adjusting two
parameters of the model, patterns of anodic spots in glow
discharges can be constructed in close agreement with
the experimental ones. No e8'orts have been made to
derive the parameters of the model equations, especially

the voltage-current density characteristic, by starting
from the elementary processes in the anodic region (see
Emeleus ).

The calculation of anodic patterns may be compared
with that of similar vortex patterns in a rotating
superfluid (Campbell and Ziff' ). The interaction of two
anodic spots enters into the generalized potential ERR by
a three-dimensional Coulombic interaction term
1/

~
r, —rtt ~

[see Eq. (66)], whereas the interaction of two
vortices produces a two-dimensional Coulombic term
ln

~

r —rtt ~

in the free energy of the vortex system .In
addition the free energy contains terms of the repulsive
interaction of the vortices with the image vortices due to
the radial boundary of the superfluid. Corresponding
terms in ERR for the anode spots may occur if an insulat-

ing plate is brought close to the anode, and thus hinders
the current transport from the spots to the cathode. Re-
cent experiments on Coulombic interacting single ions in
a rf trap show regular patterns similar to those of Fig. 1

(Diedrich, Peik, Chen, Quint, and Walther ).
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