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Hard-sphere dispersions: Small-wave-vector structure-factor measurements
in a linear shear flow
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Small-scattering-wave-vector structure-factor measurements have been made for model hard-

sphere suspensions undergoing a steady linear shear How. The samples are comprised of sterically
stabilized silica particles in cyclohexane and have been well characterized previously by rheological,

light scattering, and neutron scattering measurements. These combined measurements provide a
strict test of recent theories of microscopic order in suspensions undergoing shear and suggest a pic-
ture which uni6es several intuitive notions about suspensions undergoing shear fiow: distortion of
the pair correlation function, clustering, layering, and nonequilibrium phase transitions.

I. INTRODUCTION

The enormous success of statistical mechanics, in relat-
ing equilibrium microstructure to macroscopic properties
and phase transitions, has been paralleled by a similar
search for connections between mierostructure and mac-
roscopic properties in nonequilibrium systems, One area
of active research is the relation of rheological properties
to microscopic particle order in pure fluids and in parti-
cle suspension undergoing shear Now. ' In pure-Auid
systems the studies have mostly been done by molecular
dynamics (computer simulations) because the
structural relaxation times are rapid (picoseconds) and
shear rates must compete with these times (10' sec ') to
have observable effects. One exception to this rule is the
shear-induced structural changes seen in binary liquid
mixtures near the critical mixing point. Here, of
course, the structural relaxation times are greatly slowed
and modest shear rates produce observable effects. In the
molecular-dynamics studies the expected shear-induced
distortion of the pair correlation function has been ob-
served, ' " as well as transitions to more ordered
quasisolid or liquid crystalline phases. ' ' These struc-
tures include the formation of particle layers with the
shear direction normal to the layers and the formation of
strings of particles parallel to the velocity direction which
are closely packed in a plane normal to the velocity.
These structural changes produce highly non-Newtonian
behavior, even in systems where the interparticle interac-
tion is spherically symmetric. ' Care must be-exercised,
however, because the methods used to control the tem-
perature of the system may introduce artifacts. ' Thus it
is unfortunate that experimental verification of these phe-
nomena is so di%cult.

Alternatively, colloidal suspensions provide another
class of systems with which to study similar nonequilibri-
urn phenomena. Here the large-particle overdamped or
diffusive dynamics is sufticiently slow that experiments
are easily performed. In dense colloidal suspensions slid-
ing layer structures have been observed. ' ' The breakup
of these layers has been associated with a shear thicken-
ing transition. ' Ordering into layers has been reported

for semidilute charge-stabilized systems, but this may
be associated with cell-surface ordering effects. Dilute
and semidilute charge-stabilized suspensions, which or-
ganize, respectively, into body-centered-cubic and face-
centered-cubic structures in equilibrium, undergo a series
of structural changes as the systems are "shear melted"
by increasing the shear rate. These structures in-
clude a Rowing crystal, sliding layer, string, and amor-
phous ordering of particles. A close-packing criterion for
the melting order is followed.

While organization into layers is observed in "dense"
systems (e.g. , systems which are solid or glasses at rest),
the notion is often employed to explain the shear thinning
transition observed' ' ' ' in many systems. Here it
is felt that Brownian motion at low shear rates keeps the
system disordered; at larger shear rates hydrodynamic or
direct interaction effects organize the system into a slid-
ing layer structure, which reduces the measured shear
viscosity. However, there are relatively few measure-
ments made on shear-induced structures for systems
which are known to have interparticle Auidlike order in
equilibrium. ' Conversely, a number of theories have
been developed which predict viscosities and interparticle
order in such systems. Surprisingly the theories predict
only weak ordering or even a disordering with increasing
shear rate. These theories described below should be test-
ed.

In addition to the direct interparticle interaction in
suspensions, the solvent introduces hydrodynamic and
Brownian-motion effects. Most of the current theories
for structure and viscosity include Brownian Inotion but
may or may not include the interparticle hydrodynamic
interactions. The viscosity theory of Beenakker and
Mazur ' neglects Brownian motion, but takes the hydro-
dynamic interaction between an arbitrary number of
spheres into account. The shear-induced structural dis-
tortion theories of Ronis "' ' ' and of Schwartzl and
Hess "' ' ' neglect hydrodynamic interactions but in-
clude general inter particle potentials and Brownian
motion. These theories make steady-state scattered-
intensity predictions in terms of the static structure fac-
tor S(k) for a full range of shear rates and particle con-
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centrations. On the other hand, Batchelor has made
detailed and intuitive calculations for both the structure
in terms of the radial distribution function g(r} (Ref. 35}
and the viscosity of hard-sphere suspensions. These cal-
culations include Brownian motion, direct interactions,
and hydrodynamic interactions, but are limited to small
shear rates and volume fractions. These calculations
have been extended by Russel and Gast using a poten-
tial of mean force approximation and a two-particle hy-
drodynamic interaction approximation to predict behav-
ior at larger volume fractions.

At low shear rates most theories are analytic in the
rate of shear and predict S(k) directly ' ' ' ' ' or in-
directly through g (r) (Refs. 36 and 37) to have the fol-
lowing form:

S(k)=SO(k)[1+k„kyyA(k, g)] .

Here S(k) is a generalization of the equilibrium static
structure factor and represents a Fourier inversion of the
nonequilibrium radial distribution function g(r). It is a
function of scattering wave vector k, particle volume
fraction P, and rate of shear y. So(k) is the equilibrium
structure factor, where x designates the How velocity
direction, y designates the shear direction, and A is a
function of k and P. The functional form of A depends
on the theory being discussed. Thus it is possible, in
principle, to make direct comparisons between light
scattering measurements of S(k) and the various theoret-
ical predictions for A(k, g) at suSciently low rates of
shear.

Computer simulations have also been used to investi-
gate suspension behavior. %oodcock suggests direct ap-
plication of damped Newtonian molecular dynamics to
suspensions. His calculations, ' which neglect interparti-
cle hydrodynamic interactions, indicate a shear-rate-
dependent, nonequilibrium phase behavior. Here it is
suggested that colloidal suspensions, which exhibit liquid-
like or amorphous interparticle ordering in equilibrium
and at low shear rates, exhibit srnectic or layering order
at large rates of shear. The pure amorphous and pure
smectic regions are separated by a finite range of shear
rates where both phases coexist. This coexistence region
extrapolates to zero shear and zero width as the equilibri-
um freezing transition is approached from low volume
fractions. The coexistence region is also associated with
the rheological shear thinning region. Similarly
suspension-dynamics calculations for hard disks in two
dimensions, which neglect Brownian motion but keep hy-
drodynamic interactions, find a distortion in the local col-
loidal particle order, particle clustering, and particle lay-
ering phenomena. Particle clustering has been pro-
posed as an important mechanism for increasing the
shear viscosity at Inoderate volume fractions.

The microscopic structural changes which give rise to
shear thinning behavior remain clouded. The experimen-
tally observed layering in concentrated systems, which
exhibit shear thickening, suggests strong ordering e8'ects.
Yet systems which crystallize in equilibrium have also
been shown to shear melt, to decrease their order with in-
creasing shear rate. For systems which have liquidlike
order in equilibrium, the computer simulations suggest a

weak ordering or a distortion of the liquidlike order at
low rates of shear followed by strong ordering of particles
into strings, layers, or smectic structures at large rates of
shear. On the other hand, analytic theories, which exhib-
it distortion of the liquidlike order at low rates of shear,
indicate a decrease in overall order at large rates of shear.

Model colloidal systems exist which have liquidlike or-
der in equilibrium and which exhibit a shear thinning
transition. The associated microscopic order is not
known. Do these systems exhibit "weak" or "strong" or-
dering with increasing shear rate? %'hat is the degree of
distortion of the equilibrium pair correlation function'?
Are string or layer phases formed? In an effort to address
some of these questions, we have performed small-wave-
vector static structure-factor measurements on such mod-
el hard-sphere suspensions. These measurements probe
the "long"-wavelength shear-induced distortions of the
pair correlation function for the colloidal particles, or in
other terms, the nonequilibrium compressibility of the
macroparticle system. Measurements were made for a
broad range of shear rates and volume fractions. The
spheres are well characterized by light and neutron
scattering, and the rheological properties of the same sus-
pensions have been determined. ' These measurements
prove to be very useful in answering many but not all of
the questions asked above. In the following sections we
discuss the experimental details, then results are present-
ed and are followed by a discussion and conclusions.

II. KXPERIMENTAI. DETAII.S

A. Mechanical construction

A mechanical drawing of the parallel-plate shear cell
employed in this experiment is presented in Fig. 1. The
rotating disk (R) is an optical flat of radius 5 cm. The
upper and lower cell surfaces are round glass plates of
slightly larger radii. All three plates are commercially
available windows obtained from Melles Griot. A conical
adapter (as used in milling machines) is glued to the ro-
tating plate at one end and fixed to a belt-driven gear box
at the other. A small trough is glued to the top plate.
When it is filled with water and the Teflon cap (S) is im-
mersed, the cell is efFectively sealed against evaporation
losses. The sample is contained and sheared in the gap
(G) between the rotating plate and stationary bottom
plate. The sample volume required to fill this gap is nom-
inally 8 crn . It is introduced and withdrawn through a
small hole drilled in the center of the bottom plate. The
rotating plate, gear box, and stepping motor (M) can be
moved vertically as a single unit. %ith the help of two
high precision spindles and "rollers, " the position of the
upper assembly can be adjusted reproducibly with mi-
crometer precision. Uniformity of gap spacing is critical
and controlled by adjustment screws (A). Alignment is
achieved using a small auxiliary laser directed along CD
in Fig. 1 and by making adjustments so that all reAected
beams from the glass plates are coincident and colinear.
Any deviations from colinearity are due to lack of paral-
lelism in the rotor (R} plate. The advantage of this shear
cell is the ability to adjust the gap. This is important in
defining the scattering volume and testing for boundary
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FIG. 1. Diagram of the sample cell. Here {A) is an adjustment to bring cell bottom parallel to rotating plate {R). {L)is one of four
precision guide shafts for controlled motion of the upper carriage to adjust the cell gap {6)spacing. The seal {S)is fil}ed with a non-

volatile liquid to prevent sample evaporation and allows motion of the upper carriage to set the gap without disturbing the seal. {M)
is the stepping motor. {P}is a prism for coupling the incident laser beam into the sample. The incident and collected light lie in the
shear-velocity plane, which is normal to the plane of the page and parallel to CD.

layers. However, there is limited optical access and the
cell gap must remain horizontal. We also have available
a quartz couette cell.

positions in k space may be examined as depicted in Fig.
3. The scattered light intensity is monitored by a pho-
tomultiplier (PM). This signal is electronically divided by
the amplified signal from a photodiode which monitors
the laser output intensity. The resulting signal is record-
ed an a chart recorder.

B. Gptics and detection

The scattering geometry is shown in Fig. 2. The plane
of this Sgure is normal to the plane of Fig. 1 at the posi-
tion cD. The incident laser beam (I,=6328 A) is directed
normal to the surface of an isoceles prism which couples
the beam into the gap containing the sample. The in-
cident beam continues through the sample and is totally
internally reflected by the rotating plate out of view of
the detection optics. The scattering volume is deter-
mined by a 1-mm stop placed on the upper glass plate
and another 1-mm stop positioned approximately 50 cm
from the scattering volume. Both stops are positioned to
determine one of two scattering angles (8& and 82) with
respect to the incident beam in the sample. The scatter-
ing volume is also viewed through the detection optics
and is adjusted to be nearer to the lower stationary plate
than the rotating plate. The important scattering param-
eters are the scattering wave vectors k& and k2, which are
each the difference between a scattered wave vector (k„
or k, 2) and the incident wave vector (kl). The scattering
wave vectors lie in the shear-velocity plane, where the
largest shear-induced distortion eKects are expected. By
reversing the direction of plate rotation two additional
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ROTATING
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FIG. 2. Detailed view of the scattering volume in the shear-
velocity plane. The incident {I)and scattered light paths {5,)
and {S2) are indicated by dashed lines. {Note that the light
paths are refracted mostly at the rotating plate-air interface. }
The incident kz and scattering wave vectors k, =k„—kJ and
k2 k l ki are shown for the scattering angles 0, and Oz in the
sample.
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FIG. 3. Sketch of k-space structure in the shear-velocity

plane. The ring (radius kDs-=m/a) represents the position of the

primary intensity maximum in the equilibrium colloidal particle
static structure factor. The ellipse represents the expected dis-

tortion when the suspension is subjected to the linear shear indi-

cated by Vv and v. The vectors represent the positions in k
space where experimental intensity data was collected. The
lengths of these vectors (k& ——0.7/a and k& ——1.2/a) pre much

less than kos, indicating correlations over several particle diam-

eters are being probed.

C. Samples

The samples used in these experiments are synthesized
in our laboratory as described by van Helden. They are
suspensions of spherical silica particles sterically stabi-
lized by octadecyl chains grafted to the particle surfaces.
The solvent is cyclohexane, because it is a good solvent
and has a refractive index (n =1.43) which closely
matches that of the particles (n =1.44). The maximum
turbidity occurs at a volume fraction P=—0. 13 and de-
creases with increasing P due to suppression of density
fluctuations. The static (equilibrium) and dynamic (equi-
librium fluctuation) properties have been studied and re-
ported elsewhere. ' The steady-state shear viscosity
and complex viscosity ' have been measured for the same
suspensions used in the experiments reported here. The
earlier studies of these systems are well described by
hard-sphere fiuid theory. Therefore we view these sus-

pensions as model hard-sphere systems.
Hard-sphere systems are expected to exhibit a freezing

transition at P =-0.494 and a melting transition at

P -=0.545. However, we have not observed crystallization
in our samples. Because the mean particle radius is
a =76 nm and the polydispersity is o =0.1, crystalliza-
tion may not be observed. The small particle radius
means that any Bragg scattering of visible light will be
backscattering or not physically possible. Alternatively,
the polydispersity may be sufBciently large to frustrate

crystallization. For the scattering angles and scattering
wave vectors monitored in these experiments, collective
particle order is examined. This corresponds to a small
wave-vector limit where

l
k, z I

&&ir/a. Figure 3 indi-

cates the magnitude of the scattering wave vector corn-

pared to the position of the Debye-Scherrer ring
(

~
kDs

~

-=~/a ), the first intensity maximum in the static
structure factor S(k). Such measurements in the k~0
limit correspond to equilibrium compressibility measure-
ments or to generalized compressibility measurements in

the case of an applied shear.

D. Data collection protocol and tests

After alignment of the cell and 6lling of the shear gap
with the sample, we always adjusted the photodiode sig-
nal to the same level. The photomultiplier signal was
also set to the same predetermined level by adjusting the
high voltage. All other electronic adjustments are left the
same. (Different settings did indicate linearity of the elec-
tronics. ) The photomultiplier signal is divided by the
photodiode signal and recorded on a chart recorder for
several revolutions of the rotating disk in any given mea-
surement. All measurements in a given run (at a given
concentration P) are frequently referenced to a predeter-
mined shear rate and rotation direction to account for
any systematic drifts during the run. The measured in-
tensities at zero shear rate are then used to scale the data
for a given run to the equilibrium intensity measurements
determined in other experiments. Thus all intensity mea-
surements in these experiments are relative measurements
but are scaled to absolute measurements made previously.

Because intensity measurements are necessarily made
through adjustable moving surfaces, we performed
several experiments to test our apparatus. An aqueous
suspension of submicron polystyrene spheres was diluted
to have approximately the same maximum turbidity as
seen in the silica suspensions. This very dilute sample
((f = 5 X 10 ) exhibited no variation in scattered intensity
as a function of shear rate and rotation direction. This
expected result indicates good mechanical stability of the
apparatus, even on reversal of the rotation direction. In-
tensity measurements at given volume fraction P were re-
peated by each of the authors independently, at different
times and for different loadings of the cell. The results
were in agreement. There are no operator dependent ar-
tifacts. The micrometer measurement of the gap setting
was checked by monitoring the scattered intensity as a
function of gap setting. The measured intensity extrapo-
lates to zero intensity at zero spacing. This result also in-
dicates that boundary layer effects are not significant for
the length scales in our experiments.

The shear rate can be varied by adjusting the stepping
motor speed, changing the driving gear belt ratio, or
changing the gap spacing. All the methods appeared to
scale, indicating that results did not depend on mechani-
cal properties of the apparatus. In the end all settings are
referenced to a gap setting of 0.52 mm with the scattering
volume 9.0 mm from the edge of the 50-mm-radius disk.
At 1 rev s, this corresponds to a shear rate of
y=2+(41/0. 52) s '=495 s
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III. RESULTS

Figures 4 and 5 present the logarithm of the scattered
intensity versus the logarithm of the shear rate for
scattering wave vectors k, a =+0.46, k, a =0.49,
k„a =0.0, and k2, a =+0.97, kz a =0.64, k2, ——0.0, re-
spectively, where a is the particle radius. The shear rate

y is given in terms of the Peclet number,
=ya jDo ——6mrioa y/kz r, where Do is the free-particle
di8'usion constant, go is the solvent viscosity, and kz T is

the thermal energy. The curves are parametrized by the
particle volume fraction, which ranges from 0.06 to 0.55.
The intensity measurements, which are relative values, as
described in Sec. II, are scaled to the proper hard-sphere
limit at zero shear for each volume fraction. This (po-
lydisperse) hard-sphere value is given approximately by
exp( —7.6P) and has been shown to fit previous absolute
intensity measurements quite well.

Measurements at these values of the scattering wave
vector show systematic variation with increasing volume
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FIG. 4. Experimental results at k& a =+0.46, k»a =0.49,
k„a =0.0. Scattering intensities (I) are relative to scattering at
zero shear rate (Io). The data are brought to an approximate
absolute scale by multiplying intensity by exp( —7.6$). This
value represents the equilibrium osmotic compressibility.
Volume fractions are indicated in parentheses. The horizontal
axis represents the Peclet number N p,

——y a /Do
=6mqoa y/kT. Lines are drawn to guide the eye. Note that
two independent experiments were done with samples with
/=0. 12. The circles and crosses give the data points for the
two independent experiments.

FIG. 5. Experimental results at k&„a =+0.97 and
kz~a =0.64, k „a=0.0. Scattering intensities (I) are relative to
scattering at zero shear rate (Io). The data are brought to an
approximate absolute scale by multiplying intensity by
exp( —7.6$). This value represents the equilibrium osmotic
compressibility. Volume fractions are indicated in parentheses.
The horizontal axis represents the Peclet number

Np, ——ya /Do ——6mgoa'y/kT. Lines are drawn to guide the
eye. Note that two independent experiments were done with
samples with /=0. 16. The circles and crosses give the data
points for the two independent experiments.
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fraction and shear rate. At low shear rates the measure-
mcnts foI k y 0 lncrcasc with lncrcaslng shear rate,
while measurements for k ~0 decrease with increasing
shear rate. fhis behavior is in accord with the expected
distortion of the static structure factor at low shear rates,
as depicted in Fig. 3. In this figure the primary max-
imum in the equilibrium static structure factor So(k) is
represented by the circle (of radius k=m/a for hard
spheres of radius a) in the k„-k plane. The low-shear-
rate distorted S(k) given in Eq. (1.1) is represented by the
ellipse in Fig. 3. The shift in the primary maximum in
S(k) depends on the direction k to produce an elliptical
shape, and the magnitude of S(k) may vary from point to
point on the ellipse. The vectors in Fig. 3 represent the
diiferent scattering-wave-vector positions at which S(k)
was monitored in our experiments. %hen the ellipse col-
lapses toward the origin along the k„=kz„ line, the in-
tensities near thc origin are expected to increase along
the same direction. Conversely, when S(k) is measured
along the k„=—kv„ line, the values are expected to de-
crease as the maximum in S(k) moves outward with in-
creasing rate of shear. However, this systematic behavior
does not continue indefinitely with increasing shear. At a
certain shear rate, which depends on the volume fraction,
the decreasing intensity reaches a minimum and then in-
creases. The intensities for both k, ~0 and k„g0 now
increase at roughly the same rate with increasing shear
rate. Then the upper intensity reaches a maximum and
begins to decrease with the lower intensity following suit.

The variation in intensity with increasing shear rate
scales to smaller rates of shear as the volume fraction in-
creases and is at slightly diA'crent rates of shear in Figs. 4
and 5. At the hard-sphere freezing transition (volume
fraction equal to 0.494) little variation is seen except the
initial splitting of the k, p0 and k, g0 intensities. For
larger volume fractions the k„yO and k„~O intensities
split as before but are followed by a decrease in both in-
tensities with increasing shear rate. A "phase diagram"
has been constructed in Fig. 6 from the data in Fig. 4 by
determining the minimal position in the k„~0 data and
the maximal position of the k„g 0 data and plotting these
shear rates as a function of the corresponding volume
fraction. A similar (but not identical, see Fig. 7) plot re-
sults for the data from Fig. 5. This phase diagram shows
that the shear rates producing maximal and minimal in-
tensities are well separated at low volume fraction but
converge to the same low-shear-rate value at the hard-

0.7

I I

0 1

log a'y/D.

FIG. 6. Phase diagram. Loci of the scattering extrema in

Fig. 4 as a function of the Peclet number. Circles are charac-
teristic Peclet numbers obtained from steady shear viscosity
measurements t,'Ref. 42).

sphere freezing volume fraction. Also plotted is the
characteristic shear rate, where the reduced shear viscosi-
ty is halfway between its limiting Newtonian large viscos-
ity low-shear-rate value and its small viscosity high-
shear-rate value. It is seen that these shear-rate values
are bounded by the maximal and minimal values and also
converge to the same shear rate at the freezing transition.

IV. DISCUSSION AND CONCLUSIONS

Both Ronis and Hess give forms for the nonequili-
brium structure factor S(k), which depends on integrals
of the equilibrium static structure factor So(k), that ap-
ply to arbitrary values of the scattering wave vector and
rate of shear. Both results are based on a di8'usion equa-
tion and neglect hydrodynamic interactions. In Ronis's
case a diffusion equation with a k-dependent difF'usion

constant is treated Rs a Langevin equation by adding a
random force. The random force is assumed to have sta-
tistical properties based on the equilibrium So(k). The
shear is introduced via a convective term. S(k) is deter-
mined as the k-dependent equal time density correlation
function determined from the di8'usion-Langevin equa-
tion. The result is given as follows:

S(k) = f, dy(y +k„+k, )e " ' f dy'(y' +k„+k, )/So(y'k„k, ), (4.1)

where T=ao/2)'a . (Note: a is radius, not diameter cr).
In Hess's theory the shear is also introduced through a
convective term. An expansion about the equilibrium
structulc factor ls assumed and thc diffusion operRtor ls
replaced by a single k-independent relaxation rate ~. The
relaxation rate is treated as a free parameter. The result
ls glvcn Rs follows:

S(k)= f dae So(k, k +aT'k„, k, ),
0

(4.2)

where T' =y ~.
Figures 8 and 9 present the predictions of the Ronis

and Hess theories, respectively. In both cases the S(k) is
evaluated for k,„a=+0.46, k 1 a =0.49, k &,a =0.0,
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low concentration. This ordering reduces the level of
scattering at small wave vectors because the collection of
particles becomes incompressible and density Auctuations
are reduced. Ronis argues that increasing the shear rate
disrupts this equilibrium order. The morc random posi-
tioning of the particles results in an increased scattering
at small wave vectors. Thus a disordering process is re-
sponsible for the increasing scattered intensity with in-
creasing shear rate. Furthermore, this disordering is de-
layed to larger shear rates with increasing P in Figs. 8
and 9, because the system becomes more incompressible
as ()) increases. It requires larger shears to disrupt the
structure. One might think that the same argument may
be made for the increasing intensity region of our hard-
sphere data. However, the equilibrium distribution
would seem to be the Inost disordered that hard spheres
can be. By definition the particles are placed anywhere
in space with equal probability, provided that the parti-
cles do not overlap. %'hat then gives rise to the observed
increase in intensity? Brady and Bossis have observed
distortion of the pair distribution function and particle
clustering in suspension dynamics simulations in two-
dimensional systems. Such clustering or inhomogeneity
could increase forward scattering, given larger scattering
at smaller angles. A comparison of our data at k, with
the data at k2 sho~s that the former data have a relative-
ly larger scattering intensity that occurs at a smaller mag-
nitude of the total scattering wave vector. Furthermore,
the region where the intensities both increase with in-
creasing shear occurs at shear rates where the Peclet
number is order unity, where hydrodynamic efl'ects begin
to dominate the Brownian-motion efFects.

The phase diagrams presented in Figs. 6 and 7 are
qualitatively similar to that suggested by Woodcock. At
low volume fractions the two transition lines are shifted
to relatively larger shear rates than at larger volume frac-
tions. The phase boundaries intersect at low shear rates
at the volume fraction for freezing of hard spheres, sug-
gesting a connection with equilibrium phase properties.
The characteristic viscosity is bounded by these two
phase boundaries as suggested by %'oodcock. Neither
the theory of Hess nor Ronis produces a similar phase di-
agram: There is no maximum intensity predicted by
these theories. The phase boundary determined from the
intensity minima increases in shear rate with increasing
volume fraction. This is contrary to the prediction of
%oodcock and the trend of our data. It is not known at
this time if the inclusion of hydrodynamic efI'ects in the
theories of Ronis or Hess will improve the prediction.
%e can make an ad ho@ correction for hydrodynamic
efFects by replacing the solvent viscosity in Ronis's theory
with the low-shear-rate limiting solution viscosity. This
correction improves the agreement between theory and
experiment but the qualitative behavior remains opposite
that of the data.

%'hile the data presented here support the theory of
%oodcock in many ways, there are several points to bc
made. %oodcock views the region at shear rates less
than the low-shear-rate phase boundary as a Quid phase.
IIl our case it 1s a distorted fluid phase. Thc 1cglon be-
tween the two phase boundaries is viewed by %oodcock

as liquid-phase-smectic-phase coexistence region. If the
two phases have diferent scattering properties, then a
mixture of the two phases could produce the increased
scattered intensity that we observe. On the other hand,
we are reluctant to rule out the formation of clusters as
described by Bossis and Brady. In the large-shear-rate
region %oodcock claims that a smectic-ordered phase ex-
ists. This is consistent with our data if the smectic order-
ing produces a lesser scattering in the region where we
are making measurements. Presumably such structures
will produce strong Bragg scattering (from the layers) to
wave-vector values larger than is accessible in our experi-
ments using light scattering. However, we do not really
know what order exists in this shear-rate region. It could
be smectic ordering, string ordering, or something else
entirely. Preliminary experiments using larger hard-
sphere particles have not yet given clear evidence for
smectic or stringlike order at low volume fractions.
However, the distortion of the Debye-Scherrer ring has
been observed and is consistent with the low-angle data
reported here.

The phase transition boundaries determined from our
data do not represent sharp first-order transitions as indi-
cated in Woodcock's results. Difkrent scattering angles
produce slightly di8'erent positions of the phase boun-
daries. Failure to see sharp first-order transitions may be
related to the length scale of our measurements (on the
order of ten particle diameters) and will become first or-
der in the limit of forward scattering, k =0. On the oth-
er hand, the transitions may not be first order at all. The
shear field is a symmetry reducing field and the transition
from liquidlike order to solidlike order may be via a
second-order process, and not contrary to our equilibri-
um statistical mechanical intuition. We also need to be
very clear about what we mean by a phase transition in a
nonequilibrium system. Cell boundaries could also pro-
duce a transition which appears second order, as ordering
may start near a boundary and grow into the bulk. We
have ruled out this possibility, as discussed in Sec. II 0,
by monitoring the scattered intensity at di6'erent gap
spacings without seeing a quantitative change in behav-
1or.

Future measurements will probe regions in wave-
vector space further removed from the origin, near the
l3ebye-Scherrer ring radius. These measurements will be
an effort to establish the large-shear-rate structures. The
two phase region proposed by %oodcock may exhibit in-
homogeneous Aow (Hess and Loose ) and velocimetry
measurements should exhibit anomalous line broadening
due to the inhomogencities. The establishment of sharp
phase changes in shearing systems Inay require long times
to develop. Such experiments will be more difficult to
perform but should prove interesting. Finally, large
volume fraction samples require further investigation to
understand the effect of shear on the glass transition and
on the solid phase.
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