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Quantum theory of optical bistability without adiabatic elimination
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A quantum theory describing S two-level atoms in a coherently driven single-mode optical ring
cavity is presented. The usual approximation that one may adiabatically eliminate either the cavity
or atomic variables is not made. Hence the results are valid for a range of relative cavity and atomic
relaxation rates. The theory is based on the linearized equations derived in the positive I' represen-
tation. A simple analytical solution is presented, including the effect of detunings, for the steady-
state transmitted spectrum. The transmitted intensity and squeezing spectra are discussed.

I. INTRODUCTION

Recent experimental interest and success in measuring
quantum Suctuations in optical systems make necessary
quantum theories modeling realistic experimental situa-
tions. The experiments of Slusher et al. ,

' Shelby et al. ,
2

Maeda, Kumar, and Shapiro, Wu et al. , Raizen
et al. , and Mschida, Yamsmoto, snd Itaya measuring
fluctuations in quadrature phases of the field are certainly
at the limit where theories predicting quantum Auctus-
tions are testable quantitatively. These experiments have
been successful in reducing the noise in one of the
quadrature-phase amplitudes below the standard quan-
tum limit ("squeezing").

An important theoretical system is an ensemble of
two-level atoms in an optical cavity. This is the simplest
model for at least two recent landmark experiments —the
cavity experiments of Slusher et al. ' and Raizen et al. s

Quantum treatments of optical bistability have been
developed by Agarwal et al. ,

' " Lugiato et al. ,
'

Drummond and Walls, ' and Sargent et al. ' (for a re-
view, see Ref. 17). The first calculation of squeezing in
such a system was presented by Lugiato and Strini. '

Calculations of the squeezing in the field transmitted
through a multirnode cavity were subsequently carried
out by Reid and Walls' ' and Holm et al. 'ii Ho, Ku-
msr, and Shapiro have developed a theory to describe
multiwsve mixing in two-level atoms without a cavity.
The theories predict considerable enhancement of squeez-
ing for cavity side modes detuned from the pump. At
saturation intensities, the favorable detuning approaches
the Rsbi frequency. ' The Stark splitting of the two-level
atom provides a mechanism for enhancement of non-
linear coupling between 6elds at the Rabi frequencies.
There hss been recent success in obtaining agreement be-
tween theory and experiment.

This enhancement of squeezing is also present in a
single-mode "low-Q" cavity, where the atomic relaxation
rate is much smaller than the cavity relaxation rate.
Carmichael had noticed such a low-Q cavity to give
better squeezing than the high-Q cavity in the absorptive
limit. Good squeezing is predicted at much lower atomic
detunings and intensities than possible in the high-Q
single-mode cavity situation. The recent work of Raizen

et al. and Orozco et al. gives experimental evidence of
vacuum-6eld splitting, ' an effect occurring at low in-
tensities and for cavities with comparable atomic and
cavity decay. rates. There is an associated strong
squeezing detected in the wings of the spectrum, in agree-
ment with theoretical predictions.

The composite system for two-level atoms in a single-
mode cavity gives equations involving 6ve variables. In
most theories to date' ' ' ' s reduction in the dimen-
sionality is made possible by assuming that the cavity re-
laxation rate is much greater (low Q) or much smaller
(high Q) than the atomic relaxation rates. One may then
adiabatically eliminate the fast-decaying variables. Of
course one or the other of these adiabatic limits does not
always provide the appropriate theory for a given experi-
mental situation. Different physical features are
demonstrable in the spectra in either case. The amount
of squeezing possible in low-Q or high-Q limits divers
signi6cantly, and it is not clear what the behavior will be
in s realistic situation of arbitrary relative cavity and
atomic relaxation rates.

A 6rst analytical treatment of absorptive optical bista-
bility in two-level atoms without adiabatic elimination
has been given recently by Carmichael. He points out
an important new feature not present in the high- or
low-Q adiabatic limits. This is vacuum-field Rabi split-
ting, ' a splitting of the 6rst-degenerate excited-energy
levels of the cavity-atomic system. Carmichael points out
that the splitting may be evidenced in absorptive bistabil-
ity, provided the field and atomic relaxation rates are of
the same order snd the cavity cooperativity is suSciently
large. This vacuum-6eld Rabi splitting occurs in the lim-
it of low-6eld intensities snd is distinct from the usual
Stark splitting which occurs at high intensities saturating
the atoms.

The case of absorptive bistability is, however, restric-
tive both from a theoretical snd an experimenta1 point of
view. For example, designs to reduce fluctuations in a
quadrature-phase amplitude generally do better in disper-
sive situations. In the dispersive case, analytical solutions
were thought to be too cumbersome, snd numerical
methods ' have been used to solve for the transmitted
spectrum. Raizeo et al. have recently reported
enhancement of squeezing in regimes of vscuum-6eld
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Rabi spllttixlg ls dispersive blstability.
In this paper we solve analytically for the transmitted

field spectrum in a linearized approximation without adi-
abatic elimination. The method used to derive the solu-
tion is presented in a wide context, since it has a general
applicability. %e show that, contrary to popular belief, a
simp/e analytical solution is possible in the nonadiabatic
elimination limit. %e say simple because the solution is a
straightforward superposition of the results for high-Q
and low-Q cavity limits and is no more difficult computa-
tionally than either even in the dispersive limit. %e use
the basic equations derived by Drummond and Walls" in
the positive I' representation. In the original treat-
ment' these equations were solved in the high-Q limit.
We solve these same equations but for arbitrary Q, show-

ing that the solution for the field spectrum is the same as
tlia't obtained ill the high-Q hliilt, , bllt with tlM varlolls
drift and dimusion coeScients becoming frequency depen-
dent. We then point out that these broadband frequency
coeScients have been published previously by Sargent
et al. and relate to the low-Q cavity solutions. The
solutions obtained previously by either adiabatically elim-
inating the atomic or field variables are accessible from
the full solution in obvious limits.

The simple form of solution allows some physical in-

sight into the structure of the spectrum. We discuss first
the spectra in the high-Q limit where the atomic variables
may be eliminated. This is essentially revision of the
work published previously although a number of new
points are discussed. Vfe provide physical reasons as to
why the high-Q cavity limit is less favorable for inducing
squeezing. The low-Q cavity limit where the cavity vari-
ables are adiabatically ehminated is also presented. The
particular structure of the solution encourages us to plot
particular coefficients against frequency and hence pro-
vides some insight. Good squeezing is possible at the
Rabi sidepeaks of the spectrum, for low atomic detun-
ings, because of resonant scattering induced by the Stark
splitting. The transmitted intensity and squeezing spec-
trum for the more general cavity where neither the high-

Q nor low-Q adiabatic elimination limits are valid is also
discussed. We present explicit solutions for the eigenval-
ues in the low-intensity limit including nonzero atomic
and cavity detumngs, and hence discuss where the
vacuum-6eld Rabi splitting is evident. At low intensities
squeezing may be enhanced, as already reported and ex-
perimentally investigated in the work of Raizen et al. , at
the vacuum-6eld Rabi side peaks. %e discuss in terms of
scattering diagrams the effect of cavity detuning and Q
values on the enhancement. Results are also discussed
for higher intensities.

II. QUA. NTUM-MECHANICAL EQUATIONS

%'e consider an ensemble of N identical two-level
atoms in a single-ported optical-ring cavity pumped by an
external driving Geld. The cavity is assumed to be of
sufficiently high Q (i.e., the re8ectivity of the mirrors is
sufficient) that one may assume the mean-field approxi-
mation and neglect spatial fluctuations. We write the fol-
lowing model Harniltoaian in the electric-dipole and

rotating-wave approximations:

—ikr, . y ikr,.
H, =iong g (o;a e ' cr;a—e '),

i=1

N

H, = g (Iot+I to;+l~o„},

a, =ar', +a'r, .

a, a are the boson creation and annihilation operators,
respectively, for the resonant cavity mode of frequency
co, . o, ,o;,o „are the Pauli operators for the ith two-
level atom with atomic transition frequency eiu gi.s the
electric-dipole coupling constant describing the interac-
tion between the N two-level atoms and the field. The
cavity mode a is driven by an external coherent input
field c. of frequency coL. The ese voi s I,I describe en-

ergy loss from the atoms via spontaneous emission and
phase damping (e.g., collisional processes}, respectively.
The dissipation of the cavity field mode through the cavi-

ty port is described by the reservoir I, .
Quantum theories of optical bistability using the Ham-

iltonian (1) have been developed by Agarwal et al. ,
' Lu-

giato, ' Drummond and %'alls, ' and Sargent et aI. '

We use here the method of Drummond and Walls who
derive c-number stochastic differential equations in a pos-
itive I' representation. These equations are the starting
point of our paper. For the sake of completeness, we
summarize the method used to derive these equations.
Firstly, a master equation is derived for the density
operator p in the MarkoSan approximation. Following
the technique of Haken, a normally ordered charac-
teristic function is defined and a probability distribution
I'(a, a, u, u, D) in a five-dimensional complex phase
space is then de6ned in terms of this characteristic func-
tion. One thus establishes a correspondence between c
numbers and operators as follows:

—ikr,.u~S= go, e

t
u S'= y o,'e

D~S, = g o„. ,

0.'~a, o,'~a
The c-number averages defined by the probability distri-
bution I' are the averages of the corresponding normally
ordered operators. In the representation used U, U, a,
u, and D are independent complex variables. This is in
contrast to the standard representation used by Haken in
laser theory ~here a~=a, U =U*, and D is real, and
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which does not in general provide a Fokker-Planck equa-
tion with a positive-definite diffusion matrix. Such gen-
eralized representations involving twice the usual number
of dimensions were developed for the radiation Seld by
Drummond and Gardiner.

Following Haken, the equation of motion for I' is de-
rived and contains in6nite-order derivatives. %ith N
large one can use scaling arguments to ignore aH but first-
and second-order derivatives and to imply that the quan-
tum noise terms (second-order derivatives) are small com-
pared to the semiclassical ((irst-order derivative) terms.
One can then transform the resulting Fokker-Planck
equation with positive-definite difFusion into a stochastic
differential equation.

The final equations derived (in a rotating frame where—lcoL f f t loJL t —fcoL f t f i/dr ta ae, a -+ate, u Ue, u U e )are

a=a —«(1+i/)a+gu+I' (t),
a t =e' —«(1 i P)—at+ gu t+ I t( t),
U = —yi(1+id, )U+gaD+1 „(t),
i) t= —yi(1 ih)U —+ga D+I i(t),

D = —yi(D +N) —2g (u a+Ua )+I D(t),

f=(CO —
GAL )/K aild +=(tpp —

COL )/yi ~

The 1(t) are 5-correlated noise functions with zero
mean. They describe the quantum fluctuations present
and arise from the second-order derivatives (the difFusion
matrix) of the Fokker-Planck equation. If these terms are
ignored, one obtains the semiclassical equations of
motion. The nonzero correlations of the quantum noise
terms I are

yj and y~I are the transverse snd longitudinal relaxation
rates of the two-level atoms, respectively, while y~ is the
rate of collision-induced phase decay of the atoms
yi=yu+yll/2). « is the relaxation rate of the cavity

snd n, & is the mean number of thermal photons in the
ieservolr I

III. LINEA. RKXED THEORY OF FLUi-IUATIONS

%e are interested in the limit where the quantum fluc-
tuation terms are small compared to the semiclassical or
deterministic terms. In this limit of small 6uctuations,
one may solve for the transmitted spectrum by lineariza-
tion of the equations about a stable semiclassical steady-
state solution.

Ignoring quantum fluctuations altogether in the 6rst
instance, one may obtain the steady-state semiclassical or
deterministic solutions ap, Up Dp (ap=ap, up =up )

gapDp N-
Uo= Do=

yi(1+id, )
' 1+I/(1+.b2) '

~ ~ '2
2C

~
2CA

( I+~'+I) (I+~'+I)
(4b)

2C =g (N/yix) is the cavity cooperativity parameter
and I [ ap ( /np and I

~

e [ /Ic np where

np ——yiyi/4gi is the saturation intensity on resonance.
The steady-state solution for the field (4b) is the optical
bistability state equation in the mean-field theory approx-
imation and has been well studied in previous works. '5'

Solutions are obtained in the limit of small fluctuations
by linearizing Eq. (3) about the steady-state solutions

ap, up, Dp of Eq. (4). Writing

(I (t)I i(t'))=2~n, „5(t t'), —

(I „(t)1„(t')) =(2gaU )5(t —t'),
(I t(t)I' t(t')) =(2ga u )5(t t'), —

( I (t)1 (t') )

(3b)

a=ap+5a, p =up+5U, D =Dp+5D,

we obtain the following equation, written in convenient
matrix form, describing to first order the fluctuations in
6eld and atomic variables:

= ( [2y i(D +N) —4g ( U a+ pa )] )5( t t '), —

(1„(t)1,(t')) =((D+&)y )5(t —t') .

d5a
dt

= —A 5a+8 s(t),

where

(6a)

«(1+i/) 0 —g
0 «(1 —iP) 0
gDp 0 y—(1+ii') —gap, F(t)=Be(t)=

yi(1 i b ) —gap—

I' (t)

1 i(t)

I „(t)
I t(t)

I D(t)
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& a(t)a'(t')) =I5(t —t') .

The noise correlations are written

& F(t)F (t') ) =8 & (t) (t') )8 =D5(t t—'),

(6b)

Note &5a) =0. a(t) is a 5-correlated noise vector with
zero mean and such that

steady-state deterministic solution is only consistent if the
deterministic solution Uo, ao, oo is stable. This is the case
only if the eigenvalues of the matrix A have positive real
parts.

0 d y 0

0 0

0 0

0 0

d„„d i 0 =88
0 d t 1,„0
0 0 0 dDD

d„„=2gaouo, d t=(DO+X)y

dDD =2y~(D, +&) 4g(u—,'a, +u, ao

d i =2ICttth

(6c)

IV. EXTERNAL INTENSITY AND SQUEEZING
SPECTRA

Of particular interest to us is the field transmitted
through the cavity port. We are interested in the intensi-
ty and squeezing spectra of the transmitted (output} field.
We summarize here the resultsis ~ enabling calculation
of the spectra from the linearized equations (6).

The squeezing spectrum is deSned as follows:

V(Xe, t0)= f e'"'&Xe(t +r),Xe(t) )d~,

Xe(t)=a,„,(t)e ' +a,„,(t)e'

The difFusion array D is simply that of (3) but with a, u, D
assuming their steady-state values (4).

The procedure of assuming small Auctuations about a

is the quadrature phase amplitude of the transmitted
(output) field. We use the notation &X, F)=&XI')
—&X ) & I') We.rewrite in terms of the boson operators:

V(X,cu) = f e'"'[&a,„,(t +r), a~„,(t) )+ & at„,(t +~),a,„,(t) )

+&a,„,(t+r), a,„,(t))e " +&a,„,(t+r), a~„,(t))e~' )]d~.

[a;„(t),a;„(t')]=5(t—t') .

The theory developed by Collett and Gardiner shows the following key results for the transmitted (or output) field:

[a,„,(t),a,„,(t')]=5(t t'), &a,„,(~),—a,„,) =2~&5a(v), 5a),
& a,„,(~),a,„,) =2a & 5a (~),5a ) .

(10)

The output correlations relate directly to the c-number averages defined in the normally ordered I' representation.
Thus the squeezing spectrum is

V(X, o)t=1+2a f e' '[ &5a, 5(a~) &+& 5a(~),5a)+e ' &5a(t), 5a&+e ' &5a (~),5a&]d~

=1+2rc[S,2(co)+St, (co)+e ' S„(co)+e ' Si2(to)],

For a stationary or (stable) steady-state solution, the statistics will be independent of t„and we have
& a,„,(t +r),a,„,(t) )= & a,„,(r),a,„,). The relation between the output, input, and internal Selds is given by the bound-
ary condition at the cavity mirror which acts as an input/output port. ' We take the optimal situation, discussed
originally by Yurke, of a single-ended cavity with transmission at only one mirror. The input lmld a;„ in this case is
the vacuum, and we ass}ime the commutation relation

where we define the spectral matrix S(co)=[SJ(to)] as the Fourier transform of the two-time correlation function
& 5a~(,}5a' &

S;J.(co)=f e'"'&5a;(r), 5ai)dr . (12)

(The 5a is the jth element of 5a.) The solution for $(tu) is readily derived"' (see next section) for a stationary solu-
tion of the linear process (6). The result is

S(co)=(A it0I) 'D(A +i')I—) (13)

It is fruitful to discuss the result for the spectrum of squeezing of the output 6eld in terms of the frequency com-
ponents. tot is the reference output frequency (corresponding to, for example, the homodyne detector's local oscillator
frequency}. We may consider the quadrature phases Xe(t) for the total output field at the detector as follows:
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E,„,(t)=(AcoL )' [a,„,(t)e +a,„,(t)e ]

=(scot )' [Xg(t)cos(coL t 8 )+Xg+„qi(t)sin(cot t —6)],

where k is a constant. %e now consider a band of frequencies about coL. The field is then written

1/2

E,„,(t)= f Qcoz +co[a,„,(co)e +[a,„,(co)] e )dco .
2~ —00

For practical purposes, at optical frequencies we may assume (cot +co)/coL —1, and we write

QO ~ $ l oo

a,„,(t) = — a,«(co)e ' 'dco, a„„,(t)= — [a,„,(co)] e' 'dco . (16)

The Fourier components are de6ned as the following Fourier transforms:

a,„,(co)= — a,„,(t)e' 'dt .v'2

We write the Fourier transform of a,„,(t) a's a,„,(co), and note that a,„,(co)=[a,„,( —co)] . Thus

at«(co) = —f a,„,(t)e'"'dt .
&Zn.

(17a)

(17b)

We define similarly the Fourier components a (co) of the internal field mode a (t), and the Fourier amplitudes 5cc(co) and
5cc (co) of the c-numbers 5ct(t) and 5ct (t):

5cc(co)= —f 5ct(t)e' 'dt, 5ctt(co) = —f 5a (t)e' 'dt .
&Zm

The quadrature phase X& may be written in terms of its Fourier components as follows:

(17c)

Xg(t)= f [a,«(co)e ' e ' '+[a,«(co)]te'ge' ']dco
2 lP

a„, me '+ a,„, —cu e' e ™dao

Xg Ne d&, (18)

where Xg(co)=a,„,(co)e 'g+a, „,(co)e' is the Fourier transform of Xg(t) We note .that Xg(co) is not Hermitian, in

fact [Xg(co)] =Xg( —co). Xg(t), however, is Hermitian, and we may rewrite

Xg(t)= f IXg(co)e ' '+[Xg( —co)] e'"'Idco . (19)

The correlations of the frequency components for a stationary field are readily deduced using the properties of the 6
function (we define r = t —t'),

(a,«(co),a,«(co')) = f f e'"'e'"' (a,«(t), a,«(t'))dt dt'

=5(co+co )2Kf e (5Q(t), 5cc)d'r=5(co+co )2/cSii(co),

( a,«(co), a «, (co') ) =5(co+co')2xS2, (co),

&~.'„,( )...'„,(~)&=5( + )2.S„(~),
(a,«(co),a,«(co') ) =5(co+co')+ (a,«(co'), a,«(co) ) =5( +co)+co5( +co)2co~S,z( ).co

The commutation relation [a,«(co),a,«(co')] =5(co+co')
is derivable from the output field commutation relation
(10) (or vice versa). It is straightforward to demon-
strate S„(co)=Si, ( —co), Si2(co) =S2i( —co), and

S2, (co)=S,2( —co). We note that a,„,(co) will correlate
only with a,„,( —co), i.e., the field at coL —co couples to the
field at ~L+~. Also we note the transmitted 6eld sta-
tionary intensity spectrum to be given by (to first order in
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tllis llilear theory)

a )
7' Q t =2K Ao 6) +2KSi2 Q3 . 21

The element 2icSiz(co) is the (incoherent} intensity of the
transmitted field at the frequency coL+ co, and 2sS2, (co) is
the intensity at coL —~.

We find from the results (20),

(Xe(co),xe(co') & = (Xs(co),xe &5(co+co'),

where

(22)

(Xe(co),xe & = 1+2ic[Si2(co)+S2) (co )

+e ' S, i(co)+e ' S2i(co)] .

It is straightforward to show that the expression (7) for
the squeezing spectrum may now be expressed

v(x, , )=(x,( ),x, & (23)

V(xe, co) = 1+2'[Si2(co)+Sir( co) 2
I Sll(co) I ] (2&)

for a stationary state. The result is of course the same as
(11).

For a coherent state, V(xe, co) =1 and hence squeezing
occurs for V(xz, co) ~ 1. Perfect squeezing corresponds
to V(x&,co) =0. One may optimize 8 to give the
minimum variance. We note that where S» (co)
= [Sz2(co)]' and S,2(co) =Sz, ( —co), the best squeezing is

V. THE SOLUTION FOR THK EXTERNAL FIELD
SPECTRUM: WITHOUT ADIABATIC ELIMINATION

The solutions (11) and (13}enable us to calculate the
external squeezing spectra V(x&,co) in the linear approxi-
mation. %e have made no assumptions regarding the rel-
ative order of magnitudes of the atomic and cavity relax-
ation rates y~ and ~, respectively. Hence the technique
used here enables investigation of the squeezing spectrum
for a whole range of cavities. However, the direct matrix
solution (13) for the spectrum matrix involves the tedious
calculation of the inverse of 5 g 5 matrices.

A more convenient and illuminating way to gain in-

sight into the various limits of relative decay rates y~ and
ic and to enable a fully analytical solution is to consider
the linear equation (6) in frequency space [cf. (17)]. We
define

5a(co)= f 5ae' 'dt,
2tt co

F(co)=8a(co), (25)

e(co)= f e(t)e' 'dt,
21T

5a (co)=(5a(co), 5a (co), 5u(co), 5ut(co), 5D(co))

The method developed here has a wider applicability.
The approach is particularly useful for systems of large
dimensionality, where eigenvalue solutions are not readi-
ly obtained. Equation (6a) in Fourier space becomes, for
a stable stationary state

ReSii(co) ImS»(co)
cos8=- sln8=—

0=( —A icoI )5a(co)+—F(co) .

Rewriting explicitly, we have
l

(26a)

0=

—ic[1+iP(co)]
0

gao

0
—ic[ 1 —iP( —co)]

0

gao

—y i[ 1+i b, (co ) ]
—y i[1—id, ( —co )]

gao

~ll
~II

( )
. I~(co)

'

5 t( )
I t( co )

5u (co) + I', (co)

5u (co) I t(co)
5D(co) p ( )

where we define P(co)=P —co/ic, b(co) =b, —co, and co=co/yi.
We notice the two scalings co/ic and co=co/yi appearing. The cavity detuning P=(co, —coL )/ic has been replaced by

the true cavity detuning P(co)=(co, —coL —co)/ic for the spectral amplitude 5a(co) at frequency cot +co. Similarly the
atomic detuning h=(coo —coL }/yi becomes the true atomic detuning b(co) =(coo coL —co)/yi for the spe—ctral ampli-
tude at frequency coL +co. The noise correlations in frequency space are, from the definitions (25) and using the result

(6b), in matrix notation

(e(co)a (co') & = f f e' ' '"e'( (ta), (at') &dt dt'
2 7T oo oo

(F(co)F (co') & =8(e(co)e'(co') &8

=I f e' + "dt =I5(co+co')
2 7T oo

(27a)
=88 5(co+co')=D5(co+co') .

Thus explicitly the nonzero noise correlations in frequen-
cy space are
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{I (co)I g(co')) =5(co+co')2«„h,

( I „(co)I „(co')) =5(co+co')2gaouo,

{I $(co)l t(co') ) =5(co+co')2gao u 0

( I D(co)l D(co') ) = 5(co+co')
X [2yi(Du+%) 4g—(uo ao+uoao )],

( I'„(co)l „t(co') ) =5(co+co')(Do+%)yp .

%e now solve the nonadiabatically eliminated equa-
tions (26b) analytically in stepwise fashion. Only the field
spectral correlations [S22 (co),S,z(co),St i (co) given by
(11)]are of final interest to us. We therefore consider the

I

last three lines of the matrix equation {26b) and eliminate
5D (co), to express the polarization 5u (co} in terms of the
Seld alone. %e point out that this is the same algebraic
procedure as that usually taken where one adiabatically
eliminates the atoms (yi, yi»a). The latter situation
corresponds to co=0. We make this comparison more
carefully in Sec. VI. The result is

g5u (co)= Icy(—co)5a(co) Icb —(co)5a (co)+F„(co),
(28a}

g5u (co)= —~y'( co)—5at(co)

Icb
'—( co)5—a(co)+F t(co),

y(co)=y&(co)+iy, (co)= [1+id(co)] 1—2C
II(0)

I I
2(1—ib )H(co) 2[ 1+id, (co)]H(co)

—2C I 1 1

H{0} 2[1+id(co)]H(co) 1+&~ 1 —ih( —co)

H(co) = 1—
2f 2[1+ih(co) ] 2[ 1 i b (——co) ]

where f =yi l2yj. We denote the real and imaginary parts of y(co) by ya (co) and y, (co), respectively.
The stochastic term is

gI „(co)
F„(co)= 1—

ye[1+ id{co) )

I +
2II(co )[1+id (co )]

g aoI D(co) 2g apI" t(co)

yiy [1+i'(co)]H(co) yiyi[1+ib(co)][1 —ib( —co)]II(co)
(28b)

gI' )(co)

ye[1 ib( —co)]-

The correlations are

(F„(co)F„(co')) =«(co)5(co+co'),

F t(co)=

{F„t(co)F„t(co')) =«'{co)5(co+co'),

(F„(co)F t(co') ) =IcA(co)5(co+ co'),

g2aOP (~)
+

2H(co)[1 —ib( co)] — yliy&[1 —iI( —co))II(co)

2g au l, (co)

yiyj [1+id, (co)]II(co)[1—i5( —co)]

(28c)

d(co) =—
2CIf 1— I /

2H(co)[1+ih(co)] 2II( —co)[ 1+i5( —co)]

Il(0)(1+id, )[1+ih(co)][1+ib(—co)]

1—
2CI 2(1 f) 2II(co )[1+i h(co) ]

2H(0)(1+6 ) [1+id(co)][i+id{—co)][1—ib(co)]H( —co)

+ 2C(1 f)I—
4II(0)( 1+6, )

~
1+i'(co)

~ [ 1 i b( —co) )—

I
2II( —co)[1+ib, ( —co)]

2H(0)(1+6 ) [1+i'(—co}][1+id(co)][1 i4( co—)]II{co—)
2CI 2CI f

H{0){I+~')
I
H(}

I
'[I+&~())[i+&~( —)) 4H{0){1—&~)

I
H(~)

I

'
I
l+&~(~}

I

'
I
l+&~( —~}

I

'

2C(l f)I 1——
2H(co)[1+ ih(co)]

H(0)(l+b }
~

1+i'(co)
~

2CI'+ +Re
II(0)(1+5 } )

II(co)
~ ~

1+id(co) [

2CI f 1—
2II(co)[1+id(co)]

II(0)H (co)
~
1+id(co)

~
[1+i'(—co)](1+id)
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The solutions are functions of the following scaled parameters [cf. Eq. (4)]: co=co/yi the detuning of a(co) from the

pump frequency in units of y), b, the atomic detuning in units of yi, the cooperativity parameter C, the scaled intracavi-

ty intensity I, and the collisional parameter f. In this paper, we wiii assume pure radiative damping (f = 1). We note
d(co)=d( —co) and A(co)=A( —co). We have taken, for convenience, the steady-state solution ao to be real. The phase
of az relative to the external driving field s is determined by the optical bistability equation (4b).

One substitutes the solution (28a) into the top two lines of (26b) to derive the final equations for the field alone

ct (co)—ico/)c

b'( —co)

F, ( )+I" (co)

0 "( co—) ia—)/K 5a (co) F,t(co)+I t(co)t +

a (co)=1+ict)+y„(co)+iyt(co) .

The equations are now of reduced dimension, being defined over tioo dim-ensionctl complex phase space. These equa-
tions for the field spectrum, without adiabatic elimination, may be rewritten in the following matrix notation:

0= [ A(—co) + icoI ]5an (co)+P)i (co), (30a)

o(co) b(a)) 5a(co)
A(co)=)c,

( ),( ), 5att(co)= 5 t( )

F„(co)+f' (co)
F)i(a))= =8(a))s(a)) .

In this paper we assume negligible thermal noise (n,h
——0). The noise correlations are determined by the result (28c).

On comparison with the original equation (26a), the reduced equation contains drift and diffusion parts now dependent
on frequency, and we have introduced formally the notation A (co) and 8(co). A frequency-dependent diffusion matrix
D(co) is defined as follows:

&P (co)F (co')&=8(co)&s(co)s (co')&8 (co')=8(co)8 (co')5( + ')=D(co)5(co+ ') .

Thus D(co) =8(co)8 T( —co), and the result (28c) gives us

d(co) I'(co)
D(co) =)c —,, I (co)=A(a))+2)cn, h .

(30b)

The solution for 5a„(co) is readily expressed in matrix form

5a)i(co)=[A(a)) icoI] 'Pn(co—) .

Thus the frequency correlations for the field are

&5a„(co),5a„(co')&=[A(co) icoI] '&—F (co)F„(co')&[A (co') ico'I]—
=[A(co)—ia)I] 'D(a))[A (co') ico'I] '5(co+—co') . (32)

The explicit matrix solution for the field spectrum defined in Eq. (12) of Sec. IV is now apparent. We define
5a)i (t) = (5a(t), 5at(t) ) and use the definition (25), the result (32), and the properties of the 5 function

S(~)=f e'"'& 5a„(r),5a"&dr

e'"'d~f f e' " 'e'" '&5a (co') 5a (a)")&dco'dco"
2K —oo —oo

—ce —oof f e [A(co ) —)co I] D(co )[A ( —co )+ico I] drdco

= f 5(co+co')[A(co') ico'I] 'D(co')[A—( —co')+ia)'I] 'dco'

=[A(co) icoI] 'D(co)[A —( co)+icoI]—
The steps outlined in (33a), relating the spectrum S(co) directly to the frequency correlations &5a(co),5a (co') &, are
known to hold true in general for a stationary Seld and have been presented only for completeness.

The solution (33) for the field without adiabatic elimination is defined in terms of 2 X 2 matrices and is now readily ex-
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A (co) i coI
KS co

K K

pressed analytically. The solution has the same form as that derived by Drummond and Walls' for a high-Q cavity,
but with the drift and diff'usion matrices A and D becoming frequency dependent T. he solution has the normalized form

—1
' ' —1

D(co) A ( —cd) EcoI+ (33b)
K K K

from which the adiabatic limits of high-Q (y~ ~&~) and low-Q (yi &&a. ) cavities are readily deduced. The high-Q solu-
'tion has drift and diffusion matrices at zero frequency (co=co/ye=0). The low-Q solution has icoI/ic going to zero.
The explicit result for the full solution is [S22(co)=S i, (co}and S,z(co) =S2i ( —co) ]

aS»(co) =
I d(co)[a'(co)a'( —co)+q co ]+d'(co)b (co)b ( —co}—f'{co)[b(co)a'(co)+b ( —co)a'( —co)]

/

P( ico)—
/

iq—co &co)[b(co) b( c—o)]—+iqcod(co)[a ( —co) —a (co)]],

vSi2(co) =
2 I

—d (co)b'(co)a '( co) —d "(co—)b (co)a ( —co) —iqco 1 (co)[a ( —co) —a '( —co)]
/P( ico—)

/

+iqco[d(co)b'(co) d'(co)b—(co)]+I (co)[q co +
/
a( —co)

/
+

/
b(co)

/ ]I,

(33c)

where

P( ico)=[—a(co) iqco][a—( co) iqc—o] —b(co)b —( —co)

COco= and g =
VJ.

The transmitted intensity and squeezing spectra KS12 and
V(Xe, co), respectively, are now readily calculated.

The solution (28} to the last three lines of the matrix
equation (26b) has been published previously in a
different context. The atomic expressions y„(co)„.. . ,
A(co) describe nondegenerate four-wave mixing between
weak amplitudes shifted in frequency kco from a pump
field. The classical terms yn(co), yt(co), b(co) were first
derived by Fu and Sargent and Boyd et a/. They have
been discussed with reference to saturation spectrosco-
py,

' four-wave mixing, and side-mode instabilities which
occur in multimode cavities with atoms. The quantum
noise terms have since been derived by Sargent et al. '

and Reid and %alls' ' and Ho, Kumar, and Shapiro
and used in recent studies' of quantum noise in non-
degenerate four-wave mixing. The reader is referred to
the references for more detailed discussions and plots of
these atomic functions.

The functions yn(co), . . . , A(co) describe the response
of the atoms to the intracavity field. The function yti(co)
is the atomic absorption profile. One sees [Fig. 1(a)] a
large absorption peak at the atomic resonance ~0. There
is a smaH gain peak at the frequency 2~~ —~, due to the
scattering process depicted in Fig. 1(b). The function
yi(co) is the dispersion profile, while b (co) is the coupling
{four-wave mixing) coefficient between weak ffelds at fre-
quencies +co and —co. Figure 1(c) plots

~
b(co)

~

for
large intensities saturating the atoms. There are three

resonances, a small central peak at co=0 and two larger
side peaks at the Rabi frequencies co=kyi(h +2I)'
indicating the Stark splitting of the atomic energy levels.
The reason for particularly large coupling at the Rabi fre-
quencies is the scattering depicting in Fig. 1(d). There
is an enhancement of a four-wave mixing process tending
to emit a photon pair at frequencies cot +0, where 0 is
the Rabi frequency. %e will show later that this leads to
signi6cant squeezing at frequencies coL+0 in a single-
mode low-Q cavity. ' The atomic noise function F„(co) is
the source of quantum fluctuations for the amplitude
5a(co) at co. The strength of correlation between ffuctua-
tions F,(co) and F„(—co) is given by d(co). This phase-
sensitive term is responsible for quantum phenomena
such as squeezing and is noise generated by the processes
which couple 5a(co) and 5a( —co), such as depicted in
Fig. 1(d). Even if one could "turn off" all processes
which couple 5a(co) and 5a( —co), the transmitted in-
coherent spectrum 2~S,z(co) is not zero. There are pho-
tons reemitted due to a phase-insensitive fiuorescence
arising from spontaneous emissions. In a saturated reso-
nant cavity [P=yn (co ) =yt (co ) =0], the transmitted in-
tensity in the hypothetical absence of coupling
[b(co)=d(co)=0] is 2lcSiz(co}=A(co)/[1+(co/a) ]. The
term A(co) [which determines the correlation
(F i(co}F,{co))]may thus be thought of as the phase-

sensitive fluorescence source term. It describes the noise
generated at u in the absence of all coupling between
5a(co) and 5a( —co). Figure 1(e) shows A(co) for a pump
intensity suf6cient to saturate the atoms. The spectrum
shows a clear central peak with Rabi side peaks at
co=+yi(2I+b, )'~ . This noise (which tends to detract
from squeezing) is more significant at higher intensities
and near the pump frequency (co=0). The functions
yti(co), . . . , A(co) describe the response of the atoms to
the intracavity Seld and depend on the cavity variables
(a,P,g) only in the sense of scaling I or C. The spectra



37

0.8

4~~)/2c

QUAND~~ g~~~~~ ~~ »~c~z gg~~ AQQ /gal

l

{a) (I3)

-1()
I I

g/)
0

0.1

~(~) /2&

(c)

o
)(

~&~, -n y

J~

A

0
-10

I I

p
I

Qjp
1()

A/pp, i

1

(e)

~= 50
~

Q/p
I()

~~ ~~ t11Q Qfg~~FJQ ) (~
IHQgg egg~ g ~

SQfpfggg p~~g)

OIngg Q~g
p lag g()g@

CAQ +(g) p~~ ~.
Qp

~S ~& 1Afgggjgy g

g ~~~ +~0M/Q gggtt
=~0. (g) Ag~~

~ ~or fg~ ingenue

'~ ~&» & inggg„g, ~, ~ (



M. D. REID 37

b(i—)i, )b '( —i X '
) =0 . (34a)

More directly, the characteristic polynomial is the fifth-
order polynomial of the form

y„(co), . . . show atomic resonances like those of usual
resonance fluorescence and do not reAect cavity reso-
nances.

The full atom-cavity behavior is given by the final solu-
tloI1 (33). Tllc Ilncarlzcd solution (33) holds oillf foi a
stable stationary state, and it is thus necessary to check
the stability of the steady-state solution (4}. The cigenval-
ues A, of the drift matrix —A of Eqs. (6) are the roots of
the following characteristic polynomial. De6ning
X=A/«, A, =A, /yi, the eigenvalues are given by

P(A)= X +X[a(iX)+a ( iA, —')]+a(iX)II*( iX—')

(1) a3&0,

(2) hi ——aia4 —a3 &0,

( 3 ) b 3
—b III 3 + II 3 ( II I II 5 III ) & 0

(4) h4 ——h 30$ IIIa la4+a I (a I
—

usa l ) & 0,
(5) ai &0,

(35)

+05k, +Q4A, +03k. +Q2A, +Q ) =0,
where the coeflicients a; are functions of q, f, I, P, 6, and
C (see below). The stability criteria can be determined
analytically using the Hurwitz criteria for stability. %e
obtain the following conditions for stability:

a5 =2+2q (1+f),
r

a4=1+P'+4q 1+f + +q'[1+6,'+2f (I+2)],

a3 2q (1+f——)(1+/ )+ +2q 4f +1+5, +2fI+ 2f+1—
II 0 II 0 +q 2f (1+6, +I),

a3 ——q (I+/ )(I+5 +4f +2fI)+ (3—pb, }— I + I +4q f(1+6 +I)+
11(O)(1+a') 11(0)'

'2

a, =2fq' (1+$')(1+6,'+I)+ (1—Ph}+ 1—
1+6

The high-Q adiabatic limit («« yi, y~~) displays instabili-

ty only for regimes where the slope BI'/BI of the state
equation (4b) is negative. It is known that regimes of
positive-slope instabilities can occur in single-mode bista-
bility ' for a more general choice of parameters. This
is discussed by Lugiato et al. Self-pulsing instability
has been observed in experiments by Orozco et al,

a(0) i ml«—
b'(0)

F„(~)+I' (~)

F„I(~)+I,t(~)

b (0) 5a(co)

a '(0) i co/«5a—(co)

VI. THE HIGH-Q 641II~ (yl/«, yl/«~ ~ )
a(0) =1+ip+yafo)+i@I(0)

There are two important limits of relative decay rates

yi and «. Before discussing the full solution (33), we ex-
amine each of these limits. Perhaps the most commonly
studied is the "high-Q" cavity, ' ' ' ' ' where the cavity
relaxation rate ~ of the cavity mode is much smaller than
the relaxation rates yz, yI~ for the atoms x &~y~, yI~. In
this case the atomic variables may be adiabatically elim-
inated. This allows one to set 5i) =5i) =5D =0 in Eq. (6}
and then to eliminate 5D to obtain an expression for 5U

and 5U and hence for the 5eld. %'e notice that the equa-
tlolls obtained ill this lllgh-Q 1111llt arc slIIlply tllc Ilolladl-
abatic elimination equations (28) with Io=o. The final
field equations„ to be compared with (29), in frequency
space are

(F„(co)F„(co')) =«d(0}5(a)+co'),

(,F I(co)F„(co'}) =«A(0)5(co+a') .

The solution for the spectrum in this limit of adiabatic
elimination of atomic variables is thus simply Eq. (33),
but saith ~ put equal to zero in the atomic functions
a(co), b(co), d(co), and A(co). We have

S(co)=[A(0)—i~I] 'D(0)[A (0)+icoI) ' . (37)

Thus the explicit solution (33c) has co=0, but is still a
function of co/«=qco which is finite. This is the solution
obtained previously by Drummond and %alls. ' %e no-
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y„(0)=
(1+6,') 1+ I

1+6

'2

tice by examining (33b) that the analytical solution (37)
obtained by adiabatic elimination of atomic variables
does indeed correspond to the full solution in the limit
y~/a. ~ ao. The functions y(0), b(0), d(0), and A(0) are

I+ys(0)) 0,
41

I
a(0) I'=[I+y„(0)]'+[p+y,(0)]')

I
b(0)

I

'.
Clearly, the first condition is always satis6ed. The optical
bistability equation (4b) relates the intracavity intensity I
to the external driving field. The equation has been stud-
ied extensively and criteria for bistability derived. '

The denominator in the expression (33c) for the spec-
trum can be factorized and rewritten as

(1+6, ) 1+ I
1+6

2CI(—1 i 5—)

(I+&')' 1+ I
$ ++2

2

i6) + PCi)

2

—+ ImX) +(ReX) )
K

&&
—+ ImX, +(ReX, )'

(42)

d(0)=
(1+5')' 1+ I The spectrum can thus be rewritten as into the sum of

two Lorentzians. For the case where the imaginary part
of the eigenvalues is nonzero we have

(1 i 5)'f—+i AI(1 —f )(1 i b, )+—
2 (43)

A(0) =
(1+&')' 1+ 1+6

'3

where

ReX= —[1+ys(0)],
I X=I[((+y,(0}]'—lb(o) I'I'",

X (I+&')(I—f)+1[2+&'(I—f )]+
2

The result (37) is perhaps not surprising. The photons
emitted from the cavity are detected and the photo-
current spectrum analyzed. The zero-frequency com-
ponent of the spectrum corresponds to a long detection
counting time (relative to all other time scales of the sys-
tem}. In the adiabatic limit y~, y}))~, the time a photon
is stored in the cavity before being emitted is determined
solely by (2s') '. All times are long compared to the
atomic relaxation times, and hence only the zero-
frequency component of the atomic proftle is seen.

The solution S,2(ro) for the high-Q incoherent intensity
spectrum has been derived and discussed previously'
%e revise these results in order to discuss the squeezing
spectrum.

The characteristic polynomial P(A, ) given by (34) in the
high-Q cavity limit is the quadratic

S&2(co)=
—X) —+ ImXq +X2

K

—+ ImX, +(ReX, )

X( ——ImX) +X3
K

2

——ImX) +(ReX) }
K

X) —— I (0)— 4 ImX,

I (0} 8
4 4IX

I
4ImX,

I'(0} 8 A
X3 ——

4IXI 4lmX,

and the intensity spectrum may be written as

~{A)=X'+X[a(0)+a'(0)]+
I
a(o) I

' —
I
b(o}

I

' (39) where

which has roots

'= —[I+ye(0)]+[ I b(o}
I

'—[4+yl(0)]'I '" . (40)

Thus the stability criteria, that the real part of both ei-
genvalues A. &, A,z are negative, are

& = I (0)[
I
a(0)

I
'+

I
b(o)

I
']

—d(0)b *(0)a '(0)
—d'(0)b(0)a(0),

a =1.(0}i[a'(0)—a(O)]

—i [b(0)d'(0) —b'(0)d(0)],
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Various intensity and squeezing spectra are plotted in

Fig. 2.
In the limit of small I (I &~A ), corresponding to the

stable lower branch, the eigenvalues are

=(ReX) +(ImX)
~i, 2= —[1+)'~(0)]+t

I
{(l+)1(0)

I
(45)

One sees two quasi-Lorentzian peaks symmetrically dis-
placed from the pump frequency. The imaginary com-
ponent of the eigenvalues determines the positions of the
peaks, at least in the limit of small broadening (ReX~O).

and the fluctuation term A(0) is small compared to d(0).
The spectrum in the dispersive limit of large atomic de-
tuning 6 becomes

(a)= ex)0

S„,/I

0.0

8.0

6.0

0.0 ')0 00 )0 10

FIG. 2. The high-g cavity limit. (a) Plots of the squeezing [V(Xe,co)] and incoherent normalized intensity [S~,(cu)/I] spectra,
b, =100, C=1100, /=18, f=1, n, h

——0, I=100 (corresponding to the lower branch of the optical bistability curve). (b) Inelastic
scattering process giving rise to symmetric sidebands at mc and 2mL —wc. For high detunings 5 and low intensities,
cy'c=coc —2Cvlb, . (c) V(Xs, co) and S,2(ro)/I 6=100, C=110.0, /=18, f=1, n, „=0,and I=2400 (corresponding to nearer the
turning point of the bistability curve). (d) V(Xs, co) and S,2(co)/I. 6, =100, C=1100, /=18, f=1, n, h ——0, and I=4000 (correspond-
ing to the upper branch of the bistability curve). (e) Incoherent scattering process induced by broadband fluorescence (thermal-type)
noise A(0).
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phng terms d(0) and b(0) in the solution (43). One ob-
tains

S,z(~)=
—+ ImX +(Rek, i)
K

].

S,I(co)=
A(0) +2icn, h

—„—[4+yi(0)] +[1+y.(o}]'

——Immi +(ReX, )

i
b(0)i'[I +yII(0)]

2/ A,
)

I 1m',

(46)

The spectrum is symmetric about the input pump fre-
quency coL (corresponding to co=0). The intensity and

squeezing spectra [S,2(co) and V(Xs,co)] corresponding
to the lower branch are plotted in Fig. 2(a), for b =100,
C = 1100, $ = 18.

The sidebands are explained by the inelastic scattering
process depicted in Fig. 2(b). The co,

' represents the
true cavity resonance including the refractive index of the
medium [in this case for low I, we have approximately
co,'=a&L+a.

~
tI}+yl(0}

~
]. The scattering process

enhances the frequencies co,
' and 2coL —~,' equally, and

one has a symmetric spectrum, ' indicated by the limit
(46). The squeezing spectrum shows enhancement of
squeezing at the sidebands. This is not surprising„since
squeezing has been long known to result from such
coherent multiphoton scattering.

There is spectral broadening' below threshold due to
significant atomic absorption. This means that the dou-
blet structure need not always be resolved. The absorp-
tion is a phase-insensitive process and reduces the squeez-
ing possible. The eeect of absorption increases with the
cooperativity C value.

Upon increasing I, the nonlinearity of the cavity in-
creases and the squeezing improves. The cavity is closer
to resonance with the external driving field and the side
peaks move in together finally coalescing [Fig. 2(c)] as the
bistable region is approached (and the imaginary com-
ponent of the eigenvalues becomes zero). The spectra be-
come single peaked about ~=0 as the threshold region is
approached. The squeezing is maximum at m=0 and im-
proves as the turning points of the optical bistability
equation are approached. '

Sufriciently high-I values correspond to the stable
upper branch of the bistability curve. Moving along the
upper branch (until [p+yi(0)] ~

~
b(0)

~
), the spec-

trum [Fig. 2(d)] becomes double peaked again, corre-
sponding to the appearance of imaginary eigenvalues. As
the atoms saturate yII(0},yi(0), b(0) . ~0, there is
linewidth narrowing to that of the cavity, and the doublet
peaks appl oacli coL +Icf. For suell lllgll llltensltles ap-
proaching saturation (I~6 ), the fluorescence A(0) at
the pump frequency (corresponding to m=O) becomes
significant. One may study analytically the effect of this
term on the spectrum by letting A(0) dominate the cou-

The intensity spectrum is a single Lorentzian at the cavi-

ty resonance. Thus in general, above threshold the e6'ect
of the increasing Iluorescence A(0) is to make the spec-
trum asymmetric. This asymmetry is also enhanced by
thermal noise n, h and, as described by Drummond and
Walls is due to scattering of the type depicted in Fig.
2(e). Unlike the coherent scattering process [Fig. 2(b)]
discussed above this incoherent scattering will not
enhance the squeezing, and one notes the variance in the
quadrature phase increases at the side peaks of the high-

Q spectrum above threshold.
In conclusion, for the high-Q cavity the atomic profiles

(absorption ya(cu), coupling b(co), . . . ) become broad-
band and show a flat spectrum compared to that of the
cavity. The atomic profiles are seen at their zero-
frequency (co=0) components (remembering as we are in
a rotating frame, this corresponds to the pump frequen-
cy). Thus, for example, b(co) and A(co) for I =SO and
b, =4 take the values indicated by co=0 in Figs. 1(c) and
l(d). As intensities increase towards saturation (I~5 },
there is enhancement of the phase-insensitive fluores-
cence A(0) at zero frequency (corresponding to the center
peak of the Stark triplet). While the Stark splitting pro-
vides a mechanism for significant enhancement of cou-
pling b(c0) at the Rabi frequencies [Fig. 1(d)], no similar
enhancement occurs at zero frequency. Thus in the
high-Q cavity, A(0) dominates at even moderate intensi-
ties, and the squeezing reduces. The phase insensitive
fluorescence A is seen by the cavity as a broadband noise
source and is analogous to a thermal noise term. Such
noise tends to enhance the transmitted incoherent intensi-
ty at the cavity resonance frequency, resulting in an
asymmetric intensity spectrum with increased noise at
the cavity frequency.

In order to achieve best squeezing then, one requires
intensities I in the low-saturation regime. Yet one needs
sufficient nonlinearity b(0). Consequently there is a win-
dow of optimal parameter range for I and C
(b « I«b, 6«2C «b ). This has been discussed
previously. ' ' The value of C used in Fig. 2 for 5=100
is about optimal, with the best squeezing achieved ap-
proaching the bistable regime. Lowering C, one requires
greater intensities I to achieve a significant nonlinearity
and thus squeezing is reduced well before the bistable re-
gion due to increased fluorescence A(0). The spectra for
the lower branch of lower-C cavities show greater asym-
metry. %e notice also the width of the spectral peaks to
be reduced for lower C (y„~O). Increasing C, one in-
creases phase insensitive absorption yz. Also to allow
good squeezing, the cavity detuning (t is optimized to al-
low resonance of the nonlinear cavity with the pump field
for the lowest intensity I possible. ' High-atomic detun-
ings are required.
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%e point out that the linearization procedure used is

justif][ed only where the order of fluctuations, as given by

the intensity (5a 5a ), are small compared to the
steady-state deterministic intensity

~
ao

~

=I/no T. hus2

we assume no (or N) large. The figures reveal an increase

in relative fluctuations Siz(co} near the turning points of
the optical bistability state equation. Our linearization
procedure will break down at the turning point where
Auctuations are large.

VII. THE I.OW-Q CAVITY (yg/z, yl/«'~0}

The second limit of relative decay rates yj and ~ is the
low-Q cavity' "' for which yi, yl ««. In this case the
cavity-mode relaxation rate is much greater than the re-
laxation rate of the atoms. Hence the field variables may
be adiabatically eliminated. This allows one to set
5a=5a =Gin Eq. (6}. The field equationsbecome

a(co) —b(co) 5a(co)

b ( —co) a ( c—o) 5a (co)
'

F„(co)+I (co) '

+ F t(co)+ I,&(co)
(50}

(,F„(co)F,(co') ) =Kd(co)5(co+co'),

(F,t(co}F t(co')) =«d'(co)5(co+co'),

(F t(co)F„(co ) }=KA(co)5(co+co ) .

Eq. (26b) with P(co)=P(0). The solution for the atomic
u(co) in terms of the field a(co} therefore takes the same
form (28) as before. Thus the final equation for the field
in frequency space is

0= —tc(1+i/)5a+g 5u+I (t),
0= —«(1 ig)—5a +g 5u +I t(t}

and for the atomic variables

5u = },(—1+is)5u+gD, 5a

(4g)
The solution for the spectrum in the low-Q cavity adia-

batic elimination limit is thus simply Eq. (33) but with
co/«(i. e., qco) put equal to zero and agrees with the limit
«.~00 of the full solution. The atomic functions y(co),
b(co), d(co), and A(co) retain the frequency dependence.
We have

+ga, 5D+ I,(t),
5u = —yi(l t'b)5u +g—D05a~ f

$(co)=[A(co)] 'D(co)[A T(co)] (51)

+gao 5D+I i(t), (49) The characteristic polynomial for the low-Q cavity lim-
it is given by the cubic

—2gao 5u 2gao5u —+I D(t) .

The equations are rewritten in frequency space to obtain

+ct&X +aiX+ai ——0,

ct& 2+2f+-—4C
(1+P')Il(0)

2

(1+$')II(0) II(0)(1+/')

2C 2CQ

(1+P )II(0) II(0)(1+P')

2CQ

II(0)(1+/ )

4CfI(1+bP)
11(0)(1+6 )(1+/')

(52)

2C(1+hP)
II(0)(1+4 )(1+$ )

2C 2C(b, P) 2CQ—

(1+$')11(0) II(0)(1+6,')(1+/') II(0}(1+/'}

The Hurwitz stability criteria are

(1) ct3) 0,
(2) ct3az —a, ~0, (53)

(3) ct, &0 .
The intensity spectrum S,z(co) in this low-Q cavity lim-

it has been derived and discussed previously. " %e re-
vise the results in order to discuss the squeezing spectra.
Preliminary results were presented in an earlier work.
In principle, the spectrum can be decomposed into three
quasi-Lorentzians, as determined by the three roots A, ; of
the characteristic polynomial.

For small intensities I «» 6 the eigenvalues become
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2(dp- (L)o

tc)

S„/I V

(d)

S,R/ I

2/

1.0

FIG. 3. The low-Q cavity hmit. (a) Plots of the squeezing [V(Xs,cu)] and intensity [S„(co)/I] spectra. 6=100, C=1100, /=18,
f= 1, n,b

—0, and I= 100. (b) Scattering process giving rise~ sidebands at coo and 2cor —coo. For high detunings P and low intensi-

ties, we have approximately cot=coo —2Cy, /4). (c) V(Xs, co) and S»(co)/I 6=100, C=110.0, /=18, f=1, n, &
——0, and I =2400. (d)

V(Xs, ro) and S»(ro)/1. b, =100, C=1100, /=18, f=1, n,„=O, and I=4000. The phase angle 8 for optimal squeezing at the
sidepeaks is 0. (e) V(Xs, cu) for 2) =4, C=5, /=0, f=1, n, s ——0. Significant squeezing is obtainable in the low-Q cavity limit even
with very low atomic detunings 5 and C values. The mechanism for the enhancement in squeezing is depicted in Fig. 14,'d). (f)
V(Xe, ro) for 5=8, /=0, f=1, n,„=O, and I=64.
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-+i2C . $2C
1+/' 1+/'

(54)

The decomposition of the intensity spectrum S,2{co) into
the three corresponding Lorentzians in this low-intensity
limit is given in Ref. 30. The component associated with
the third eigenvalue vanishes, and the spectrum is a
broadened doublet. Both the linewidth and the splitting
of the doublet is modified by the cavity detuning P. Fig-
ure 3(a) plots the intensity and squeezing spectrum corre-
sponding to I =100, the lower branch of the optical bi-
stability curve with 5=100, C=1100, and /=18. The
sidebands are explained by the inelastic scattering process
of the type depicted in Fig. 1(b), but replacing coo with coo,

the true atomic resonance incorporating the shift due to
the cavity. The scattering depicted here [Fig. 3(b)]
enhances both frequencies ~o and 2~L —~o equally and
the intensity spectrum is symmetric. The squeezing spec-
trum shows enhancement of squeezing at the sidebands
due to the multiphoton process.

As the intensity I increases, the peak situated at co=0
appears and dominates as the turning point of the bista-
bility equation is approached. The squeezing at the side
bands improves with increasing intensity [Fig. 3(c)].

SuScient I corresponds to the stable upper branch.
Figure 3(d) plots the intensity and squeezing spectra cor-
responding to I=4000, a point on the upper branch.
Here there are three peaks. As the bistable region is ap-
proached, the sidepeaks move in closer to the central
peak. Far enough above the bistable region on the upper
branch, the atoms saturate, and the spectrum tends to the
usual triplet of one-atom fluorescence. There is a
significant central peak at ~=0 and two sidepeaks locat-
ed at the Rabi frequencies

At such intensities I saturating the atoms, there is a Stark
splitting of the (dressed) energy levels of the two level

atom as depicted in Fig. 1(d}. The resonant inelastic
scattering now involves absorption of two laser photons
at frequency coL and emission of photons at the sideband

frequencies coL+Q. The squeezing is enhanced for these
sidebands since they are generated via a two-photon pro-
cess. The dressed atom also has energy levels separated
by the laser frequency and thus the presence of the center
peak at co=0, but we notice this central peak to corre-
spond to increased noise (reduced squeezing}. Unlike the
sidepeak photons, the photons scattered at the pump fre-

quency (co=0) are not scattered as part of a process re-

sulting in the coherent emission of two photons.
%e discuss also the phase angle 28 at which maximum

noise reduction (squeezing) is obtained. Consider the
high-intensity situation depicted in Fig. 3(d). At co=0,
the optimal angle is 28= —104 . As ~ increases, the an-

gle rotates until at the sidepeaks the phase angle is 8=0.

The fluctuations are reduced in the direction of the
coherent amplitude ao—we have something similar to
photon antibunching. This is usual of situations on reso-
nance with an atomic energy level, for example, absorp-
tive bistability. The Stark splitting of energy levels in this
case provides a mechanism [Fig. 1(d)] for strong ampli-
tude squeezing (antibunching) for frequencies on reso-
nance with an atomic transition.

We compare the spectrum of the low-Q cavity above
threshold with the high-Q cavity result. For the high-Q
cavity the bandwidth of the external field is narrow and
located within the central atomic fluorescence peak. The
phase-insensitive fluorescence A(0) destroys the squeez-

ing and causes asymmetry of the sideband intensities.
The bandwidth of the low-Q cavity spectrum is not re-
stricted by the field relaxation rate x in this manner, and
the frequency components move out to the sidepeaks of
the atomic Auorescence where the coupling process Fig.
1(d) enhances squeezing.

The avoidance of the phase-insensitive Auorescence
A(0) in the low-Q cavity and the coupling possible at the
sidepeaks for large intensities permits good squeezing to
be obtained for a much wider range of cavity parameters
b, C, ({},and I than is possible in the high-Q case. Good
squeezing is possible for low b„C, and I values [Figs. 3(e)
and 3(f)]. We notice from (50} that the particular ampli-
tude 5a(co) will have atomic dispersion yz(co), fluores-

cence A(co) . The effective detuning of 5a(co) from
the empty cavity, however, is P (independent of frequency
ro because of the relative cavity and atomic timescales).
The yl(co } is the change in the resonance frequency of the
cavity due to the atoms, as seen at frequency co [in ab-
sence of coupling b(co)]. In general the greater non-
linearity (hence squeezing) is achieved for P+yl(co)-0.
At low intensities, we have yl —( —2C)lb, for low fre-
quencies and P-(2C)/5 is the optimum cavity detuning.
At higher intensities y, saturates (more readily than the
coupling b), and the better nonlinearity (squeezing) is ob-
tained for smaller cavity detunings, $~0 [Fig. 3(e)]. At
the narrow resonance [Fig. 1(c)] corresponding to the
Rabi frequency, the coupling is large, and good squeezing
is obtained at the Rabi side peaks for a range of detunings

However, the smaller values of P will correspond to
broader sidepeaks and hence broader-band squeezing.
Figure 3(f) demonstrates a variation in behavior with C.
Lower-C cavities require greater intensities for suScient
coupling, which reduces squeezing at the center frequen-
cy, but considerable squeezing is obtainable at side peaks.
Higher-C cavities (2C ~ 5 ) have large absorption ) „at
low and moderate intensities I &6 and hence reduced
squeezing. However at much higher intensities, the ab-
sorption saturates more quickly than the coupling, and
good squeezing is possible at the sidepeaks.

%e point out a connection between the linearized
"low-Q limit" spectrum [S(~) of 33] and results predict-
ed for intracavity (nondepleting) nondegenerate four-
wave mixing. ' In the latter situation, we have two
cavity side modes separated in frequency +co from the
central (driven) resonant cavity mode. One may (provid
ing there is stability) derive the transmitted spectrum
[S(co,co), say] to describe the field at frequency co+co
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from the pump. If we happen to calculate the zero-
frequency (co=0) component of this spectrum, to obtain
S(co,0}, we recover the low-Q limit spectrum
[S(co,O) =S(co)]. This is not surprising, since the intra-
cavity side-mode field at co has the same atomic pro6le as
the single-mode frequency amplitude 5a(co). The side
modes, however, are independent modes [unlike the
5a(co) of the single-mode cavity] and build up in a
diferent manner. In particular, the stability properties of
the two cases differ. The cavity side modes generally be-
come unstable at the cavity-mode frequencies ~ which
correspond to the sidepeaks (and hence best squeezing) in
the low-Q single-mode spectrum. This is because side
modes at these frequencies see enhanced gain. '

VIII. THE GENERAL CAVITY

We discuss the general cavity with ~, yj, yt~ arbitrary.
From (29), we see the field amplitude 5a(co) to be given
by

Ap 3= Re/L2 3+/ Immi 3 ) Ag=Ai, Ay=Ay

(yi+&)
Re2 3 ———

7 2

+ 1 [Z +(Z2 +Z2)1/2] l/2

(yid, + lcg )
Imk2 3

———
7 2

(56a)

+—,'[ —Z„+(Zs+ZI ) ]

sponds to long counting times, greater than both the cav-
ity and atomic relaxation times.

The characteristic polynomial for the general cavity is
now a fifth-order polynomial. In the zero-intensity limit
o:O~O, the inversion decouples from the 6eld and polar-
ization variables in Eq. (6) (to give an eigenvalue
I, , = —yi). The eigenvalues of the coupled field-

polarization system are

0= —a[1+i/(co)+ys (co)+iy, (co)]5a(co)

+lcb(co)5a (co)+F(co)

[and the corresponding equation for 5a (co)], where

((}(co)=P ——=P —qco,

(55)

where

2Z„=(y, .)'—4g'-N (y,—i .4)—'

2 2=(yi —K) —4g N (coo coc—)—2

2Z, =2(y, —.)(y,&- 0)

=2(yi —a }(coo coc )

(,F(co)F(co') ) =Kd(co)5(co+ co'),

(,F (co)F (co') }=lcd "(co)5(co+co'),

(F(co)F t(co') }=st (co)5(co+co') .

Thus the amplitude 5a(co) at frequency co sees the atomic
functions [absorption ys(co), coupling b(co) ] at the
relevant scaled frequency co =co/yi. The amplitude
5a(co) also sees the true cavity detuning P(co) =P—co/Ic.
The full solution for the spectrum is thus now a superpo-
sition of two frequency-dependent functions —that for
the cavity and that for the atoms. Towards the low-Q
cavity limit q=yi/a~O, the cavity function broadens
relative to the atomic functions, thus (t}(co)~P(0). Simi-
larly, toward the high-Q cavity limit yi/~~ao, the
atomic variables take their long-time behavior and the
atomic functions broaden relative to the cavity functions,
thus

In the absorptive limit (where 5=/=0) there is the
simplification

+—'[(y~ —~) —4g N]2 2 1/2

if
~ y, —a

~
)2gv'N

(56b)
2 2 in

2
+—[4g N (yi Ic)]- —

if
~ y, —Ic

)
&2gv'N .

where the upper signs (+ ) in Eq. (56b) refer to A,2 and
the lower signs ( —} to A, &. This case of absorptive bista-
bility was pointed out by Carmichael, and we summa-
rize results. For large Ic (q =yi/x~O, the low-Q cavity
limit) we may write the eigenvalues (provided
q, SCq «1) as

(yi+~) +—[1—q(1+4C)+O(q )] .

(57)

Before discussing the new features of a more general
nonadiabatic cavity, it is important to note that the result
for the spectrum at the central (or pump) frequency co =0
is unchanged with q. This point has been made by Sa-
vage and %alls and is clear from the explicit solution
(33) for the spectrum. The zero-frequency result corre-

The eigenvalues are real. Thus the spectrum will be a su-
perposition of Lorentzians centered at co =0. The
Lorentzians corresponding to k3 and 15 have the broad
cavity half-linewidth x and are noneft'ectual. The eigen-
values A.2, )(,4 become in this low-Q cavity limit

A2 ——A~= —yi(1+2C),
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whicll agrees wltll 'tile adiabatic elimination result (54).
The high-Q limit of large yi (1/q~O and (SC)/q &&1)
may be handled similarly to reveal

(yi+i~ )

~23 ~45

+ 1 ——(1+4C)+0(1/q') . (5&)
2 FEG. 4. The dressed states for a single atom interacting with

a cavity mode (ml. ——mo ——~c and Z, =&~~
——x=0). The splitting

of the 6rst and second excited states are shown.

Again the eigenvalues are real. The eigenvalues A, i, A, 3, A,
&

now correspond to Lorentzians with the broad atomic
linewidth and are nonefkctual. The effective eigenvalues
ai'e ~2, ~4 as in tile adiabatic llinlt (45).

Examining the absorptive solution (56b}, it is apparent
that for a range of intermediate q values the eigenvalues
develop a nonzero imaginary component, the eigenvalues
being

(yi+&)
2 1/2

2, 3 ~4, 5 2
+—[8Cq —(1—q) ] (59)

The spectrum exhibits sidepeaks, with positions depen-
dent on C. This is in contrast to the high-Q and low-Q
adiabatic elimination spectra which never show sidepeaks
in the absorptive limit for intensities below saturation (of
course at saturation intensities the low-Q absorptive spec-
trum shows the three-peak Stark splitting with sidepeaks
at co=+yiv2I). The sidepeaks in this zero-intensity
limit arise because of a splitting in the degenerate 5rst-
excited energy level of the atom-6eld system. This
vacuum-6eld Rabi splitting was discussed by Sanchez-
Mondragon, Narozhny, and Eberly who considered a
Rydberg atom interacting with a single mode of a lossless
cavity. The system is modelled by the Hamiltonian

H =fig(o a t+crta )+Acooa a+ —,'iricoocr, .

It is well known that the degenerate eigenstate with ener-

gy ficoo(n +1) is split by the atom-field interaction. The
energy splitting is RRQ/2, where 0=2gv'n +1 (Fig. 4).
The first excited state is split by +kg. The spectrum cal-
culated by Sanchez-Mondragon, Narozhny, and Eberly
shows side peaks at the frequencies +g. Agarwal
showed the effect to be cooperative. With N atoms the
splitting increases to kg&N. The vacuum-field Rabi
spitting is not observable for the situation of a radiatively
damped atom. However, Carmichael has pointed out
that the splitting might be evidenced at optical frequen-
cies by placing the atoms in a cavity with a relaxation
time comparable to that of the atoinic damping. He
shows that the system in the low-intensity limit may be
modelled as a pair of damped coupled harmonic osc10a-
tors representing the field and atomic polarization. The
normal modes of vibration in the nondamped situation
oscillate at frequencies ml +g&¹This corresponds to a
splitting [Fig. 5(a)] of +g v'N in the degenerate first excit-

ed state of the atom-field system. This may be recognized
in Eq. (3) by noting that in the low-intensity limit,
D = —X and the resulting coupled equations in a and U

correspond to the linearized equations (6) in the limit
exp ——0 and Dp = —

¹ These equations have eigenvalues
given by (56), which in the nondissipative limit

(yi=y~~ ——ir ——O) are kig&N. Carmichael then includes
damping in his model and shows the splitting e6'ect to be
optimized for y~=x, the normal modes being decoupled
and independently damped and the frequencies of oscilla-
tion still coL kgv N. For the more general case yi&~,
the normal modes are coupled and the new term (1—q)
appearing in (59) will eventually destroy the vacuum-field
Rabi splitting as the ratio yi/K becomes too large or too
small 26 The vacuum-held splitting has now been experi-
mentally evidenced both in Rydberg atoms and in the
system of optical bistability.

Figure 5 plots the intensity and squeezing spectra in
the absorptive situation, where b, =/=0, for various q
and C values. The vacuum-Seld Rabi splitting is clearly
apparent in Figs. 5(b) and 5(c) for low-intensity regime
and q —1, in accordance with the eigenvalues (59). We
notice increased squeezing at these sidepeaks. s ii The in-
crease occurs because of the scattering process depicted
in Fig. 5(a} where there is enhancement of coupling be-
tween frequencies coL +g v'N and coL g~N. For la—rger
q values the linewidth is greater than the splitting, the
doublet is not resolved, and the vacuum-Seld splitting is
not evident.

Of particular interest to us in this paper is the behavior
of the spectra including nonzero atomic and cavity de-
tunings. The effect of vacuum-Seld splitting in the
dispersive situation has been discussed and experimental-
ly investigated by Raizen et al. ~ and Orozco er al. ,

~i and
the reader is referred to these works. %e study in the
6rst instance the situation of equal cavity and atomic fre-
quencies (coo ——co„ iiP =yib„or q =/lb, ). We find the ei-
genvalues (56) in the low-intensity limit to be precisely

(y, +r~)
Rek2 3

———
2

1/2
(1—q)Imk, 2 3—— ~/+A 2Cq—

4
1 j2

(ii —yi)= —(coo—a)1 )+ g N
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This suggests a splitting by

1/2
(»—yi)+ gZpf

4)o = 4Jc= LJL

0.0
20

v/x

La~
V

I =80

FIG. 5. Vacuum-field splitting in the absorptive limit. (a)

Scattering processes give rise to sidepeaks in the spectrum at

frequencies ooi kgv X (for y, =»}. (b) Vacuum-field Rabi spht-

ting is evident in the squeezing V(Xq, ~) and incoherent intensi-

ty spectra S,2(oi }/I, for intermediate q values. dt =P =0,
C=20, I=2, f=1, n,„=O. [Only the incoherent part S»(o&1 of
the intensity spectrum is plotted, the 5-function component at

co =0 is not displayed. ] (c) Vacuum-field Rabi splitting. Squeez-

ing spectrum V(Xe,co) plotted for b, =/=0, I=2, q = 1, f=1,
n, z ——0, and for various cavity cooperativity C.

Thus for the situation where SCq &~(1—q) one has
suScient cavity cooperativity that vacuum-field Rabi
splitting may be evidenced. There are now four side-
peaks in the spectrum, at approximately co&+(cu/»),
where (co/»)= —»Pk»&2Cq. The relevant scattering
processes are depicted Fig. 6(a), which illustrates the par-
ticular case where the pump frequency is almost resonant
with the dressed energy state: coL —coo —g &X (i.e.,
»P-«&2Cq or (()-2C/b, ). For this choice of P, we have
sidepeak pairs well separated in frequency, at

~

co
~

-0
and

~

~
~

-2»$. The splitting +»&2Cq about the posi-
tions k»P is vacuum-field Rabi splitting and is predicted
to increase with C. The squeezing spectrum for a situa-
tion of this type is depicted in Fig. 6(b), for C=1100,
I=300, b =100, and /=18. The value q=0. 18 corre-
sponds to coo=co„and we see indeed four sidepeaks (vac-
uum Rabi splitting). The outer sidepeaks are a long way
detuned from the pump frequency and show considerably
less squeezing than the inner peaks. This might be ex-
pected since [Fig. 6(a)] the scattered photon at
ca& »P g&N—is —a long way from resonance with any of
the transitions between the dressed energy levels. Figure
6(c) plots the spectra for varying q values (note now

coo&co, ). For sufiiciently small and large q the second
pair of sidepeaks vanish (vacuum-field Rabi splitting
disappears). We notice that the squeezing obtainable is
almost independent of q. This is a consequence of our
choice of cavity detuning (('i-2C/b, . The low- and high-q
adiabatic situations have been described by Eqs. (45) and
(54) and are depicted schematically in Figs. 3(b) and 2(b),
respectively. The atomic (and cavity) energy levels are
shifted by (2Cyi)/((i [and (2C»)/5], respectively. Thus
a cavity detuning»iI)-(2C»)/b brings the pump into res-
onance with the dressed levels.

Figure 7(a) illustrates the situation (61) of equal cavity
and atomic frequencies (coo ——co, ), but with the pump fre-
quency closer to resonance with the original cavity fre-
quency. Thus [provided SCq is suIIiciently greater than
(1—q ) ], we see a splitting of +»P about the two
(vacuum-field Rabi) positions at 2»&2Cq. The squeez-
ing spectrum is plotted in Fig. 7(b) for b, =S, C=30,
I=10, /=1, and q =0.125 (corresponding to coo=co, ).
The scattered photons are approximately resonant with
the transitions coo+g&N allowed by the dressed atomic-
cavity system, and we see reasonable squeezing is possible
at the inner sidepeaks, which are closer to resonance with
the driving field. The squeezing will drop signi6cantly as
we change q to move close to the adiabatic elimination
limits, since this case of lower cavity detuning does not
allow resonance with the dressed cavity (or atomic) ener-

gy level. The low-Q adiabatic limit is shown in Fig. 7(b)
(q =0.01).

Figure 7(c) plots squeezing spectra, for the case
coo=cue (q =P/6), but with varying cavity detunings iI).

The best squeezing is obtained for the cavity detuning
P-2C/b, (discussed above in Fig. 6) where the driving
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field is resonant with the dressed energy level. Figure
7(d) plots for b, =8, C=30, I=10, and /=6 the squeez-

ing spectra for various q values, again showing the in-

dependence of the best squeezing obtainable on q, if
P-2C/A.

The more general situation (also depicted in Figs. 6 and
7) involves nonequal cavity and atomic frequencies
(~p&cpc or q&P/b, }. For sufficient cooperativity C that

and

g&X ))
2

(yi —a) (cop —cue)

2 2

the eigenvalues are approximately

(No+roc )
Imk2 3 =6)1— + gN+

2

'J /2
~up c ) (62)

0.8-
2 1 /2

Ir(P+qb, ) P —qh)
2

V

0.8-

0.01

The scattering processes are illustrated in Fig. 7(e), and
an example of the squeezing spectrum is plotted in Fig.
7(b) for q=0. 7. We notice good squeezing possible for
the innermost peak [corresponding to the second diagram
of Fig. 7(e)].

An interesting situation enabling a enhancement of
scattering processes (and hence strong squeezing) is
where the cavity is detuned oppositely to the atoms
(P/6 ~0, as in Fig. 8) and the laser is tuned to
( Np+ Cpc )/2 (i.e. q = —P/b, ). With sufficient cavity
cooperativity C that (62) holds, we have

—(yi+a)
Rek, 2 3

——
2

' 1/2
(6)p —Cdc )

Imk23 ————+ g X+

=+a(2Cq+P }'

FIG. 6. 4,
'a) Vacuum-Geld Rabi splitting for coo ——~c&~L, . %'e

have taken the case g N ~~(a —y~) /4. The two possible
scattering processes are depicted, giving rise to two pairs of
sidepeaks in the spectrum. The pump is tuned close to reso-
nance with ihe dressed energy level. (b) Squeezing spectrum

V(X&,co) for h =100, C=1100, /=18, I=300, f=1 n,„=O,
q=0. 18. Two pairs of sidepeaks are apparent, due to the
vacuum-field Rabi splitting depicted in (a). (c) V(XH, m).
b, =100, C=1100, /=18„ I=300, f=1, n, „=O. Various q
values.

The imaginary parts of two pairs of eigenvalues coincides
and we see a single pair of sidepeaks at

' 1/2
(Q)p —roc }

o)=+ g X+
4

(vacuum-field Rabi splitting). This corresponds to a sin-

gle doubly resonant scattering as depicted in Fig. 8(a).
The squeezing spectrum is plotted for 6=8, C=30,
I=10, q=0. 125, and P= —1 in Fig. 8(b). For higher q
values, we again see two pairs of sidepeaks, split from the
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FIG. 7. (a) Vacuum-Seld Rabi splitting for no=~&&~1. As in Fig. 6(a), but the pump is tuned close to resonance with Q)p. (b)
Squeezing spectra V(X&,co) for the situation corresponding to (a). b =8, C =30, I=10, /=1, f=1, n,„=0,and q =0.125. Other
values of q (such that uo&~&) are also plotted. (c) V(X, co) for the situation depicted in Figs. 6(a) and 7(a) where coo——co&, but for
various cavity detunings ((). 5=8, C=30, I=10, f=1, and n, q ——0. (d) V(XB,co) b, =8, C=30, ./=6, f=1, I=10, and n, z

——0.
Various q values. (e) Vacuum-field Rabi splitting for coo~coc&coL. We have taken large g&X as in Eq. (62). An example of the
squeezing spectrum in this case is (b)„q =0.7. 5= [g N+(coo roc) /4 j', 7) =s—P+ y~h.
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FIG. 8. Ia) Vacuum-6eld splitting for ~L ——(~o+uc)/2. S is de5ned in Fig. 7(e). The processes depicted reinforce and give rise to
spectral sidebands at frequencies coL XS. (h) Squeezing V(Xs,co) and incoherent intensity S,z(co) for the situation depicted in Fig.
7(a): 5=8, P= —1, I= 10, C= 30,f= 1, n+ ——0, q =0.125. Also plotted are spectra for q =0.01,0.05,0.5. The optimal phase angle
for q =0.12S is 8= 127, at co/x =2.7. (c) V{Xq,u) for the resonant situation ~J ——(coo+~c)/2 depicted in (a). 5=8, C =30, I= 10,
f=1, n,„=O. Various P are plotted q= —P/h. (d.) V(Xe,m) for 6=8, C=60, I=10,f=1, n,„=O, and q= —(b/h. (e) V(X~,co)

for b, =g, I =10,f=1,n+ —0,$= —1.2,q = —P/h.
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position (2Cq+P )' by a(P+qb, ) in agreement with

(62). There is reduced squeezing as the resonance is lost.
Figure 8(c) shows squeezing spectra for 5=8, C=30,
I =10, and various cavity detunings ((), where one has in

each case the situation depicted in Fig. 8(a), q= —(()/6
for resonance with both transitions. Squeezing reduces as

becomes comparable to 2Cq and as we approach the
adiabatic elimination hmits. Figure 8(d) plots the squeez-

ing spectra for a higher value of C (C=60), showing

good squeezing to be obtainable for greater cavity detun-

ings P. Figure 8(e) shows squeezing spectra for a range of
C values. The squeezing in this case of P/b &0 is
perhaps only somewhat better than that obtainable if one
selects an optimal cavity detuning (f of the same sign as b,

[as in Fig. 7(d)]. The enhancement, however, provides
evidence for vacuum-field splitting. Enhancement of
squeezing in this vacuum-field splitting regime has been
experimentally demonstrated by Raizen et al. 5

We wish to demonstrate in Fig. 9 the effect of varying
the cavity cooperativity C relative to the detunings
coo —roc, for a fixed ratio of decay rates q=yi/x. The
low-intensity solution for q =1, (i.e., yj =«) is exactly

high-Q adiabatic solution exhibits increased noise (and no
squeezing) at the sidepeaks corresponding to the cavity
resonance co,

' and 2coL —toe [Fig. 2(e)]. This noise is due
to the thermal-type fluorescence A(0) [central Rabi peak
of the atomic fluorescence spectrum A(co) of Fig. 1(e)]
and has been discussed in Sec. VI. For relatively "high"-

q values the resonance frequency wi11 fall within the
center peak and the squeezing and intensity spectra will
show the features of the high-Q adiabatic elimination
spectra discussed in Sec. VI. For lower-Q values (q ~ 1),
however, the resonance corresponds to frequencies well
outside the atomic linewidth and squeezing is possible at
resonances of the type depicted in Figs. 2(b) and 8(a). We
notice in Fig. 10(a) the sidepeaks for this moderate inten-
sity have essentially the width and position indicated by
the vacuum-field splitting [Eq. (62)]. Figure 10(b} plots
spectra for still higher values of intensity. The positions
of the sidepeaks (barely visible) indicate Stark splitting as
I becomes sufficiently large relative to C [Fig. 10(c)]. Fig-
ures 10(d} and 10(e) make comparisons with spectra pos-
sible for lower-q values approaching the low-Q limit.

' 1/2
(Ci)0—COC }

g X+

0.002

Sgp/]:

ReA23 ———x . (64)

Thus for

0.0
20 20

we see the vacuum-field Rabi-splitting doublet at Eg&N
[split by (coo+roc)/2 —aiL ] [Fig. 9(a)]. In the other limit

of large coo —roc relative to g~N, we see the usual

fluorescence peaks at the cavity and atomic resonance uo,
co&, respectively,

Imk2 ——cgL —mc, Im3 ——ml —coo

0.002

s„/t

[Fig. 9(b)]. We notice the effect of the thermal-type noise
A (discussed in Sec. VI) in enhancing the intensity at the
resonance coL+ i)—s of Fig. 7(e).

The spectra for higher values of intensity I are illus-
trated in Fig. 10. %e point out that to get squeezing at
all one requires nonzero intensity, and possibilities of
good squeezing often improve with intensity. As the in-
tensity is increased, transitions between the higher excit-
ed states of the dressed atom-field system occur [cf. Figs.
4 and 1(d)]. This is evidenced as an extra peak at co =0 in
the spectra. The appearance of a central fluorescence
peak is evidenced in Fig. 10(a). For such intensities, the

0.0
20 20

FIG. 9. Squeezing V(X&„co) and intensity S,2(m) spectra for

y, =a". 5=8, P= —1, I=10, (coo—cog ——9~). (a) C=30. (b)
C=3.
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FIG. 10. Spectra at higher intensities: (a) V(Xe, co) for b, =g, C=30, C=30, ((= —1,f=1, n+ ——0, I=50. Various q =@~I». The
noise due to scattering of photons at co=0 is apparent. (b) V(Xe, co) for various intensities. 6=8, C=30, P= —I, f=1, n, h

——0,
q=0. 1. (c) Squeezing and intensity spectra for b =8, C=30, P= —1, f=1, n,„=O,q=0. 1, I=5000. (d) V(Xs, co) for 6=8, I=64,
C=30, f=1, n, h ——0. The curve q=0. 1 has P= —1. The curve q=0.01 has /=0 and approaches the low-Q limit. (e) V(X&,co) for
b, =8, I=64, C = 10,f= 1, n,„=O. The two curves correspond to parameters (q =0.125, t)) = —1) and (q =0.01, / =0).
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Similar orders of squeezing are obtainable. The mecha-
nism for squeezed sidepeaks is a Rabi splitting increasing
with both C and I. The lower-q values become more sen-
sitive to the splitting in I and may become advantageous
for lower C values [cf. Figs. 10(d), 10(e},3(f},and 7(e)].

IX. CONCI USIGN

%e have presented a quantum theory of N two-level
atoms in an optical cavity without adiabatic elimination
of cavity or atomic variables. The theory is based on the
linearized equations derived by Drummond and %alls in
the positive P representation. The solution for the sta-
tionary transmitted spectrum of fluctuations is that ob-
tained previously in the high-Q limit but with the atomic
coefBcients showing a frequency dependence. The
transmitted squeezing and intensity spectra are calculat-
ed and include atomic and cavity detunings. The solu-
tions are analytical and are explicit functions of the cavi-
ty and atomic parameters.

The spectra are discussed both in the high-Q and low-

Q adiabatic elimination limits. The high-Q adiabatic el-
imination spectra shows sensitivity at higher intensities to
the phase insensitive atomic fluorescence noise corre-
sponding to the center peak of the Stark triplet. The
atomic noise is broadband compared to the narrow-cavity
linewidth, and the intensity spectrum shows asymmetric
side peaks with enhancement at the cavity resonance.
The spectrum of quadrature phase fluctuations thus re-
veals increased noise (considerably reduced or no squeez-
ing} at these higher intensities. The broadening of the
cavity linewidth relative to the atomic linewidth means
the low-Q adiabatic ehmination spectrum shows three
peaks at higher intensities due to the Stark splitting of
the atomic energy levels. Good squeezing is possible at
the sidepeaks of the spectrum because of resonantly
enhanced mixing.

The spectra without adiabatic elimination are also dis-
cussed. The spectra may exhibit vacuum-field Rabi split-

tin, for sufficiently high-cavity cooperativity C (or

g X ), as pointed out by Carmichael and Raizen
et a/. The splittin~ is at low intensities and increases
with the factor g&N. We have solved for the eigenval-
ues in the low-intensity limit. For the case of equal cavi-
ty and atomic frequencies, one observes four sidepeaks in
the spectrum at low intensities. The squeezing at these
sidepeaks is enhanced, and the e6'ect of the cavity detun-
ing on the order of squeezing obtainable is discussed. We
exan1ine also the more general case of nonequal atomic
and cavity frequencies. Good squeezing is obtainable
over a broad parameter range, with appropriate choice of
cavity detuning. Particularly interesting is the situation
where the pump is tuned midway between the atom and
cavity resonance [coL

——(~0+wc)/2]. The sidepeak pairs
coalesce, and we observe (for sufficient cavity cooperativi-
ty C) a single pair of side peaks at frequencies cur kg&N.
Squeezing obtained in this case is strong because of the
resonant scattering depicted in Fig. 8(a). The effect of
cavity detuning (and relative decay rates q =yi/v) on the
squeezing is discussed.

We also present results for higher intensities. The
higher q values (q ~ 1) show less squeezing at greater in-
tensities being sensitive to the phase-insensitive Auores-
cence, which dominates over a central frequency band at
higher intensities. The employment of lower yi/a ratios
and a suitably tuned laser, however, allows excellent
squeezing to be obtained at higher intensities in the wings
of the spectrum. The mechanism for squeezed sidepeaks
is a general Rabi splitting of the dressed cavity-atom en-

ergy levels.
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