
PHYSICAL REVIE% A VOLUME 37, NUMBER 12 JUNE 15, 1988

Alternate orderings: A new tool for the study of phase and photon statistics
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A new may to expand an arbitrary boson-Sield operator into ordered products of creation and an-
nihilation operators is introduced: alternate ordering. A continuous order parameter s character-
izes the order and takes the value s =+1 for normal-alternate order, s =0 for symmetric-alternate
order, and s = —1 for antinormal-alternate order. All of the alternate moments of a number of
favell-known states of light are calculated. The expansion of density matrices and operators in terms
of alternate products is briefly discussed as well as the relation with the concepts of phase and
higher-order phase dependence. Finally, the relevance of the new ordering scheme in the study of
photon statistics is outlined and illustrated in the derivation of moment equations for phase-
sensitive light amplifiers and absorbers.

I. INTRODUCTION

The expansion of boson-Geld operators in series of
products of creation and annihilation operators, I + and
8, is a technique well known in quantum optics and phys-
ics. Because of the noncommutativity associated with
8 + and 8, ordering prescriptions must be used to lift the
ambiguity of order. Usual operator ordering prescrip-
tions include normal ordering, symmetric ordering, and
antinormal ordering. '

Ordering prescriptions concerning position and
momentum operators g and P have appeared as early as
1927 in the context of the quantum classical correspon-
dence for functions of operators, and werc later related
by Moyal with the operator ordering associated with the
Wigner function. More exotic prescriptions have also
been formulated, but they are not widely used. %ith
the advent of the laser, ordering prescriptions in terms of
a + and 8 were developed because they werc especially
well suited for the description of the harmonic oscillator
and therefore, light fIelds. " Nowadays, these tech-
niques are used widely, spreading into many branches of
physics and mathematics. '

In this paper my aim is to introduce a new ordering
prescription for & + and 8 which is well adapted to the
study of photon statistics and phase-dependent effects.
The main reason for this is that it is often tedious to reor-
der the conventionally ordered products into powers of
the photon-number operator. ' ' In fact, it is not exag-
gerated to say that usual ordering prescriptions are not at
all adapted to study the higher moments of the photon-
number distribution (say, larger than two). In connection
with the current interest in phase' ' and in phase-
sensitive devices, ' as well as the interest raised by the
possibility of using, generating, ' and detecting am-
plitude (photon-number) squeezed states, one may antici-
pate that the new ordering scheme proposed here wi11

prove useful. %ith each operator ordering prescription
one can generally associate quasiclassical distribution
functions which are powerful and extensively used tools

in the study of quantum-mechanical problems. The
problem of constructing the associated quasiclassical dis-
tribution fun'ctions will be dealt with in a future publica-
tion,

In Sec. II we will introduce the generating function for
s-alternate ordered products, where s is a continuous or-
der parameter. Various forms of this generating function
are given. In Sec. III the explicit form of these alternate
products is derived for particular values of s correspond-
ing to normal-, symmetric-, and antinormal-alternate or-
der. In Sec. IV the relationship with usual ordering
prescriptions is briefly studied. %e will define in Sec. V
the alternate characteristic function of the density matrix
and discuss briefly why the expansion of the density ma-
trix in s-alternate products is unique (although not neces-
sarily convergent). In Sec. VI we evaluate all the alter-
nate moments for a number of well-known states of light
and discuss in Sec. VII their relation to phase and phase
operators. The concept of high-order phase dependence
(or sensitivity) is introduced. Finally, to demonstrate the
power of the method of s-alternate moments in the study
of photon statistics in phase-sensitive devices, we recall in
Sec. VIII the master equation for phase-sensitive reser-
voirs, and explain how to obtain equations of motion for
the s-alternate characteristic function and s-alternate mo-
ments. The discussion of the solution of the equations for
the low-order phase-sensitive moments brings new light
on the behavior of phase-sensitive light amplifiers and ab-
sorbers.

Appendix A contains a number of useful or lengthy
formulas and Appendices 8—0 contain a number of
lengthy proofs for the benefit of the particularly interest-
ed reader.

II. THE GENERATING FUNCTION
OF s-AI.TERNATE PRODUCTS

%'e consider the creation and annihi1ation operators
& + and a of a dynamical system described by a pair of
canonically conjugate Herrnitian observables q and p pos-
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sessing a continuous spectrum over the full range of real
numbers and satisfying the commutation relation
[g,p] = iiri. We can then define & + and 8 by

1/2

]/2
1

Ag+ p

%=a +a (3)

has an integer spectrum associated with a complete set of
eigenstates

i
n ) = =,-(8+ )"

i
0)

constructed from the ground state ~0). This is the
unique vector in the kernel of 8:

a ~0)=0.
The annihilation operator a has an overcomplete set of
nonorthogonal eigenstates:

a ia)=aia), aCC.

a + and a satisfy the commutation relations

[&,a +]=1 .

These familiar relations obviously hold for many systems
including the harmonic oscillator and boson fields. %e
will use the terminology relevant for the light fields of
quantum optics. It is well known' that the algebraic
properties of the operators (1) ensure that the number
operator

Therefore, multi pie differentiations of this generating
function will construct products of & + and a containing
more (or as many) annihilation operators a than creation
operators a + in the following way:

gj+k
i A, (,il)

B(i g)JB(i t))
qgy~ k

%e call this ordered product a normally alternate or-
dered product, alternate because there is always an opera-
tor 6' between a + operators, normal-alternate because
the latter are placed, as much as possible, on the left in
analogy with standard normally ordered products. ' Our
definition (10) looks asymmetric in the creation and an-
nihilation operators. However, we will see later that this
asymmetry corresponds simply to the choice of a direc-
tion for positive anglelike variables. Obviously, it is easy
to form normal-alternate products containing more 8 +

than a' with the adjoint generating functions

A +(g, i)) =[A, (g, ri)] (13)

Let us now return to the definition (10) of the generating
function. It can be east in various forms using the formu-
las (Al) —(A3) given in Appendix A:

e
—iS(/2

A, ((,ri}= exp i' & exp(i(a +a)
2 cos /2

later identified with the ordering parameter. To under-
stand better the form of A, (g, ri), let us focus for a while

on the case s = l. Using the relations (Al) —(A3} of Ap-
pendix A, it is possible to show that A, (g, i) ) can be
disentangled

e Ij&Q e !7fB'

This state can also be generated from the vacuum:

with the displacement operator

D(a) = exp(aa + —a'a ) .

(7)

—is(/2

2 cos(g/2)

= exp(i)& +8) exp(irie " "~ & )

(14)

The well-known characteristic function for the moments
of the photon-number operator 8 is '

G(z, t)=Tr[pe' ] . (9)

Such a characteristic function is very useful in problems
where the evolution of the field density matrix are cou-
pled along lines parallel to the diagonal in the

~

n ) repre-
sentation, but it does not allow study of a fully arbitrary
quantum optical problem (an example is the phase-
sensitive reservoir treated in Sec. VIII). In fact, we wish
to find here the generalization of (9), such that, in partic-
ular, the moments of the photon-number operator can be
obtained as a byproduct. To this end we propose the fol-
lowing generating function:

= exp(itic "'+'"~ a)exp(i/a +a) .

Every form has been found useful. Equations (14)—(16)
can be summarized with the following general disentan-
gled form:

where zI and zR are tight by the constraint

—ig/2, I g/2 —is j/2

Let us define now the s-alternate ordered product of
8 + and a 1+"using the analogy with Eq. (12)

—&s g/2

&,(g, i))= exp iga+a+ii)~ a
2 sin(g/2)

gj +k
I(a +a )'a ],„= . A, (g, i))

8( i g) B(i' )
' (19)

In this expression s is a complex parameter which will be
This abstract definition does not show the simple form
which alternate products may take for special values of
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the ordering parameter s. This question is studied in de-

tail below.
[(& +a)ja "],„=a"(a +&)j . (20)

III. EXPLICIT EXPRESSIONS FOR
s-ALTERNATE ORDERED PRODUCTS

In the case s =1„we have already given the rather sim-

ple explicit expression of the alternate products, Eq. (12).
For the equally simple case s = —1 we find [by
differentiating the form (16) of the generating function]

The alternate order corresponding to s =0 will be called
the symmetric-alternate order. A simple explicit form
has been also found but can be established only at the end
of this section.

Let us first express an s-alternate ordered product as a
sum of s'-alternate ordered products: with the help of the
definition (10) and (19) we can write

gJ +k
( (g +~ )j~ kI g (g

—i(s —s'lg/2)

B(ig)'B(i rj)

a
i3(i ()

e
—ik(s —s')g/2 A, (g, n')

8 i 7/ (=q'=0
(21)

where rj'=i) exp[ i(s——s')g/2]. Using Leibniz rule
(A4), we find the following general decomposition of an
s-alternate ordered product in a sum of s'-ordered prod-
ucts:

tator (2), and find

& I (a +a )ja "I & =(8 +a+ —'k+1)'" '+'

+~)jg k+iI

i j
[(a "a)'a "I,.= X

rn =-0

J —rn
(s' —s)k This recurrence relation allows us to prove easily by in-

duction that

%riting down this expression for s'=+1, two closed
forms for the s-alternate ordered product emerge:

J

( (a +a )jB '(,„= 8 +a+ k 8" (23)

I (a +& )'a "Io„——a '(a +a )ja "

I(y +g)j 2k+1~ g k(g +g+ 1 )ja k+1
2

k+1(~ +Q 1 )J~ k
2

(29)

The expression (28) for the symmetrical products with
even k is particularly simple. In the case of odd k, the al-
ternate products do not take a so much appealing form,
except when j =1:

=a a a— ~ +~ 2k+1) ~ k+]~ +~ k+la a
I 0„—a a a (30)

%e recognize on the right-hand side the normal- and
antinormal-alternate ordered products, respectively. The
inverse relationships can also be easily obtained with the
general expression (22).

Having obtained the explicit expressions (23) and (24)
for the s-alternate ordered products, we seek now simple
explicit expressions for the symmetric-alternate order
(s =0). This can be achieved by recurrence. Let us cal-
culate

J

a I(a +a)'a ")o„a=a a +a+ — a +'
2

IV. RELATION BET%'KKN s-ALTERNATE ORDERING
SCHEMES AND STANDARD ORDERING SCHEMES

The generalization of standard ordering schemes with
a continuous order parameter was introduced in 1969 by
Cahill and Glauber. ' They show that s ordering reduces
to standard normal ordering when s =1, standard sym-
metric ordering when s =0, and standard antinormal or-
dering when s = —1. These ordered products, called here
simply "s-ordered products, "are generated by

n +rn

To simplify the right-hand side we use the formula

[a, (a +a)']=(a+&+1)'a —(a a)'a

I(a +)"a I,=, D, (a)
i3( —a )"8(a' ) a=a =0

where the generalized displacement operator is

D, (cx)=e' ' D4,'o. ) .

(31)

rn =0

which is easily proved with the help of the basic commu-

In Appendix 8 we show that the generating function
A, (g, rj) can be expressed as the following sum of s'-
ordered products:
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A, (g, i))=
l

2
(e'~ —1)+1

(e'&—l)e+a+ii)e "'-'ir"a
exp

2
(e'~ —1}+1

S

(33)

(34)

(35)

Through multiple di8'erentiations of this formula we may express an s-alternate product as a sum of s'-ordered prod-
ucts. Let us obtain, for example, an expression for the normally ordered expansion of an s-alternate product:

((8 +& ya "I,„=--- .
k

Iexp[(e'~ —1}Q +8+irje " '+~'8])
g'+ k

'" =
a(jgya(i~)"

Expanding the exponential and its argument, and remembering that (e'~ —1) is the generating function of the Stirling
numbers of the second kind I'„' (Ref. 25) we find, eventually,

h

J —fn

t(g +")jg kI y y
j 1 s

k I~n~g +~" ~+k
sA I =On =0

This formula can be obtained more directly from Eq. (23)
with the help of the well-known expansion of (a +8) in

normally ordered products.

V. THE DENSITY MATRIX AND THK s-ALTERNATE
CHARACTERISTIC FUNCTION

Following the usual practice' the s-alternate charac-
teristic function of any density matrix p can be defined as

X,„(g,rj) =Tr[p A, (g, rj)] (36)

which generalize the usual photon-number distribution
P(n)=(n

~ p ~

n ). Such distributions are quasiclassical
in the sense that n and o, =e' can play the role of
action-angle-like variables. However this extension is
beyond the scope of the present paper and will be report-
ed elsewhere.

Often it is possible to find simple equations of motion
for the characteristic function (36) directly. Then, one
can straightforwardly obtain the equations of motion for
the s-alternate moments

and forms a generalization of Eq. (9}. Since p is Hermi-
tian and since it is generally possible to expand the densi-

ty matrix as an ordered power series in 8 + and a, we can
write

M, „"=(I("+a)u "~,„),
with the help of the relation

gj+k

wgya(iq)' '"

(38)

(39)

y r jk(s)((a+a ya k~, „
j =Ok =0

+[rjk(s)]@[t (y +g )jg kj (37)

This program is carried out in Sec. VIII on the instruc-
tive example of the phase-sensitive reservoir.

All "diagonal" moments M, A contain information on
the photon statistics of the state p since

where we have chosen of course the alternate ordering
prescription. In (37) the coefficients rj"(s) are umquely
defined. Although the definition (36} is not syminetrical
in 8 + and 8', it is easy to see that the characteristic func-
tion depends on and only on all the coefficients r j"(s) and
therefore constitutes a unique characterization of p. The
convergence of the ordered expansion (37) will not be dis-
cussed here in general. In Sec. VII we will see that the
Susskind and Glogower phase operator does not possess a
convergent expansion. Such problems are dificult be-
cause many useful operators do not have a convergent ex-
pansion in a standardly ordered power series already.
One must resort to (and be content with) weak conver-
gence over a limited set of states like coherent states, for
example. '

We note that the expansion (37) has a form similar to a
Fourier expansion or a multipolar expansion in cylindri-
cal coordinates. Indeed, for the sake of completeness it is
necessary to mention that the combination of a discrete
Fourier transform (with respect to g) and an integral
transform (with respect to i)) of Eq. (36) can lead to useful
"quasiclassical distribution functions, " noted P (n, a ),

M,'„=(¹)= g n'P(n),
n=0

where P(n) represents as above the probability of finding
n photons in the field. The new "ofF'-diagonal" moments,
Mj„'"(k ~ 0), contain information on the phase of the field

state p. In order to gain some intuition on the role of
these moments„we calculate them for a selected set of
states which are frequently met in quantum optics.

VI. s-ALTERNATE MOMENTS OF SOME
%'KLL-KNO%'N LIGHT STATES

The first states encountered in our study were the pore
Fock states

~

n ). The evaluation of Eq. (38} is straight-
forward in this case and we find

j,k
Msw I number 6k, on

Of course the "oF-diagonal" moments vanish since the
state is totally phase i~sensitive.

The second kind of state we encountered was the
coherent state

~

a). The evaluation of its alternate mo-
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ments can be carried out directly with the help of the
normally ordered expansion (35):

Itn)
i i

2m

The "o8'-diagonal" alternate moments vanish as expect-
ed.

Finally we wish to consider a squeezed vacuum state

where (=re '~ and

As expected, the "off-diagonal" moments do not vanish
since the coherent state is a phase-dependent state. In
fact much more precise statements, illuminating the
physical meaning carried out by some of the low-order al-
ternate moments, can be issued at this stage: since the
1Tlean

$(g)= exp[-,t(g*& —g& + ) j .

The evaluation of the characteristic function

I,"„(g,7/) = & g; 0
~

A, (g, r/)
~
g; 0)

= & 0
~

& (g) &,(g, r/)&(g)
~

0) (53)

we can infer that the state has a coherent (phase-
dependent) amplitude. Moreover, introducing the com-
plex parameter

:
f

tz [
"a" as [ a

f

'~ N) . (45)

As it should for a classical limit, this expression is in-
dependent of the ordering parameter s. We note t'he simi-
larity of this expression with the limit expectation value
of the generalized phase operators defined by Paul.

A thermal state is represented-by the density matrix

pth=(1 —eP") exp( —PeiQ'+& ),
where P= I/k Tpis the temperature and ei the photon
frequency. In the

~

n ) representation, the characteristic
function is easy to evaluate:

yth (g ~) (1 e Pro) y —eti( Pcv)n—

which bears some analogy with the Q parameter of Man-
del, a straightforward calculation shows that when P
vanishes, the state possesses a quadrature-phase-
insensitive (or independent) noise (/t)P =/}tg ). Substituting
Eq. (42) we can infer that the coherent state has indeed a
quadrature-phase insensitive noise (P„„=O). Finally the
highly excited limit behavior of the alternate moments of
the coherent state can be checked

(sq denotes squeezing) is very tedious and carried out in
Appendix C, together with the evaluation of the s-
alternate moments which read

~),2k+1 [ {}

(2k)!
2~ e~' ~slnh r cosh"rk!

(54)

J Jx g
1=0

M, „' ~,„=ei'~sinhrcoshr,

M, „' ~,q ——3e '~ sinh r cosh r,
M,'~ ~, = sinh r,
M,'z ~, =e '~sinhr coshr(1+3 sinh r),
M,'„~,q ——e '~sinh r cosh r(6+15 sinh r ),
M, „' ~,q=2sinh r+3sinh r .

(56)

(57)

(59)

(60)

(61)

The squeezed vacuum (r&0) is a state which has no
coherent (phase-sensitive) amplitude

(k+m ——,')!
)gI 'sinh r . (55)

(k ——,
' )!

Apart from an overall phase factor these moments do not
depend on ((}. For the first nonvanishing symmetrically
ordered moments the formula (55) reads explicitely

leading to but possesses, on the other hand, quadrature-phase-
sensitive noise since

M '"
~ th

——5k 0( 1 —e ") g m e (48)
P,q

——e '~ sinhr coshr &0 . (63)

Using the relation Equation (55) can also be used to evaluate the highly
squeezed limit (

~
smhr

~
&& 1) of the moments

d( —Pei)
(49} -k itk )'

2 e '"~sinh"r cosh rk!

and the formula (A10) of Appendix A we find an elegant
closed form formula for the moments of the thermal state

(k+j——,')!
sinh Jr as r~+at) . (64}

(k ——,
' )!

J
MJ, k

~

g y Itm) t( P~ 1)—m (50)

Quite remarkably this limit does not depend on the or-
dering parameter s. %'e can also evaluate the weakly
squeezed limit (

~
sinhr

~
~&1) where we retain this time
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only the lowest order:

Mj„'
~

„=2j 'sinh r if j&0,
Mj, 2k

~

( "
2

—k 2ikg(12k&t
s A %vsq

(65)

VII. RELATIONSHIP BETAKEN AI.TERNATE
ORDERED PRODUCTS, PHASE OPERATORS,

AND HIGH-ORDER PHASE SENSITIVE'Y

The 6rst definition of a phase operator is due to Dirac
who constructed one from the consideration of commuta-
tion relation in his 1927 paper. ' Although Dirac was
aware that his operators were, to a certain extent, ill
defined, it is only much later that one has widely realized
the seriousness of the difficulties involved in the definition
of a proper phase operator. Basically, the quantum-
classical (QC) correspondence imposes commutation rela-
tions for the Hcrmitian sine and cosine phase operators
which in turn are incompatible with the desirable proper-
ty that these would be functions of a common phase
operator. Therefore one usually works with exponential
(or Hermitian sine and cosine) phase operators. Lerner '

has shown, however, that onc could not even define, on
the basis of the quantum-classical correspondence, a
unique exponential phase operator. In fact, suitable sine
and cosine phase operators must obey two requirements.
The first one (QC correspondence)

(e*~',8') =~e "t'

is called the Lerner criterion. The second one, which can
be cast in following form:

sing
Spec ' ~ ' = [—1, 1]CI,

cosP
(67)

stems from the necessity to bc able to interpret the result
A, A,

of a measurement ( (sing ) or ( cosP ) ) as the phase of the
field. Ifantis, in a series of papers, has most rigorously
and beautifully studied the consequences of these two re-
quirements. On a difw'ercnt basis, other authors have pro-
posed various phase operators. ' The most simple and
widely used exponential phase operator is duc to
Susskind and Glogowcr

,' et(A'+1)-'"' . (68)

At this stage we may note that the cosine (sine) phase

operator

s4 ——'[(8'+1) '~28+8+(&+1) ' '] (69)

naturally takes the form of a normally alternate ordered

gk~sinh r cosh r if k gO .

The diagonal moments and the oft-diagonal moments
with k = I dominate.

In this section we have seen that the oN'-diagonal alter-
nate moments carried phaselike information of
paramount importance for the state characterization and
classification. In order to understand better the relation-
ship with the concept of phase we will study in Sec. VII
the relationship with the phase operators defined in the
literature.

expansion if the operator (8'+1) ' j can be expanded in
a Taylor series. Unfortunately, the radius of convergence
of the Taylor series of (1+x) ' is equal to unity and 8'
is an unbounded operator. Thus we are led to conclude
that the Susskind and Glogower cosine (sine) phase
operator do not possess any convergent alternate ordered
series expansion in 8 + and a.

The question of most crucial interest about the physi-
cal definition of a quantum phase operator is: "How does
one measure the phase of a microscopic quantum
field~". ' ' Which operator corresponds exactly to the
measurement procedure Which operators can be mea-
sured? Barnett and Pegg have argued recently' that, in
fact, the most natural exponential phase operator corre-
sponding to usual experimental procedures was the un-
bounded operator I itself (suitably normalized by a c
number). In this light it is interesting to note that our al-
ternate products look like natural extensions of this un-
bounded exponential phase operator. Moreover, Paul
has argued that his generalized phase operators Alk,
which closely resemble ours (modulo a different ordering
convention if l & k), are accessible experimentally in the
case I & k through a measurement of high-order intensity
correlations in interference experiments. Certainly, this
conclusion applies also directly to our alternate products
which can thus be viewed as a hierarchy of measurable
generalized phase operators connected with higher and
higher-order phase- and amplitude-sensitive properties of
the field. With respect to Paul's operators, they present
the obvious advantage of a clear separation of the two
parts and a consistent ordering prescription.

In the large-n limit, many approximation procedures
have been found where the phase becomes like a classical
variable. In particular, photon-number states can be
considered as classical statistical states with a given am-
plitude and evenly distributed phase. Therefore it is not
surprising that the Susskind and Glogower phase opera-
tors have proven especially useful to carry out 1/n ex-
pansions in that limit, although care must be taken when
one approximates the unbounded exponential phase
operator & by the bounded Susskind and Glogower ex-
ponential phase operator. In the low-n limit thc
Susskind and Glogower exponential operator seems to
suN'er from a lack of good physical interpretation. It be-
comes obvious if we consider, for example, vacuum ex-
pectation values. A comparison shows that the unbound-
ed exponential phase operator retains a sensible behav-
ior.

In Sec. VIII we demonstrate that the alternate ordering
technique permits us to treat systematically a practical
quantum optical problem and show that, indeed, the re-
sult can be interpreted in simple physical terms at all field
intensities.

VIII. PHOTON STATISTICS
IN THE PHASE-SENSITIVE RESERVOIR

Following the scheme sketched in Sec. V we will start
from the master equation for the density matrix, derive
an equation of motion for the characteristic function, and
then, through multiple differentiations, And the evolution
equations for the alternate moments.
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A. Equation of motion for the characteristic function

The master equation for the phase-sensitive reservoir has been obtained in Ref. 40 from the rigged reservoir response:

f»fa+, p]]+C [&' lu p]]+&++[~ [~.p]]+C [~ fa ' p]]I

2
IX [a, [&+,p], ]+X [&+,[»p]+]I

where C++ and X++ are the symmetric correlation function and the linear susceptibility, respectively {A, is a coupling
As discussed in Refs. 40-42, we have taken into account the fact that for most cases X++—X =0 in Fq.

(70).
To obtain an equation of motion for the characteristic function X,„(g,ri) we must multiply Eq. (70) by A, (g, ri) on

the right-hand side and take the trace. For clarity, the procedure is carried out term by term. We shall treat here is de-
tail the term 88 +p to show how the procedure works. The form (15) for the generating function will be found most
conveniently by calculating [again with the help of Eqs. (Al) —(A3)]

Tr[M +pA, (g, ir)]=Trapexp(i(8 +8)(88++irie " '@~ a)exp(iree "' "«~ I)I

X,~(k n)+
2

l'ri . X.~(k n)+X.~(k ri) .a 1+s . a
(71)

In the same way, terms like 8 +pQ and 8 p can be translated into

Tr[c) +plied, (g, g)]=e'« . X,„(g,ri)+e'«+' i' . X,„(g,ri)+e'«X, „(g,li),
l 2 C) lT/

'2

(72)

Tr[a p A, (g, ri ) ]=e'"
cl lr/

On the other hand, terms like 8 p could not be expressed as a function of the characteristic function X,„(g,ll). How-
ever, we will see later that these terms do not create a major problem: for the time being let us only transform them as a
function of the two quantities:

X+„(g,ll)=Tr[pexp(i(& +8)a + exp(ice " "«~'g)],

X', g(g, r)i= Tr[pe x(pi(8 +Q)a +
exp(ingle '~'-"«'g)] .

These operations allow us, finally, to write the full equation of motion for the characteristic function:

Cl a
Bl + + C)(ig)

(C +C ) 2[1—cos(g)] . + Is[1—cos(g)] —i sin(g)jib . +(1 e'«) X—,„(g,r))
c)(i ri)

+C++ e "«2[cos(g) —1]
C) IT]

X,„(g,ri)

+C [(1 . '«)'X,'„'—(g,-q)+2iq. '" "«"(1 -e '«)X+„—g(, ~-)+i(~ ")"'-"
«X, „(g,q)]

2i sin(g') — . +[1 is sin(g) ——cos(g)]iq . +(1 e") X,„—(g, q)
C) . . . C)

a(g) B(iq)

+X + 2i sin(g) . +[I+is sin(g')+ cos(g)]i' . +.(1 e") X,—„(g,g)
B(i C)(i g)

In fact, it is not surprising that we cannot express the two terms X+„(g,l) ) and X,z+(g, g) as a function of X,„(g,q): they
contain a few products which have more 8 +'s than 8's and represent a coupling to the adjoint part of the density ma-
trix. These terms are adjoints of usual alternate products and, as it will become soon apparent, they will not hinder us
to obtain closed sets of evolution equations for the s-alternate moments.

8. Rules for obtaining moment equations

Through multiple dilferentiations of Eq. (76), we can obtain the evolution equation for the moments (39). We note
that this operation is greatly facilitated if aH circular functions in (76) are decomposed into exponentials. Then the
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Leibniz rule reduces to

e "~f(() e"rf(g) . (77)

In the same way we deduce also the following useful rules:
k k

j3

~(, ) '"a(;) '"' „,=" a(;, )
(78)

i rif (rt)
cl t 'r/

(79)

rk
8

(80)(i rt) f(g) =k(k —1) . f(rt)
r) t 't) g=o q=O

Equations (77)—(80) allow to find easily the moment equations, except for the terms involving X+„((,q) and X,~+(g, g).
Let us show briefly how to manipulate them.

+k

k X,g+(, g)
B(ig)'B(it) )" m=0

r

Tr p(8+8)~ (& +)
Pl

1 —s
Pl TrIp[(g +rl )m+2 (g +g. )m+1]rt k —2I

The last term can be considered as a sum of normal-alternate moments which can be put in the form of s-alternate mo-
ments with the help of Eq. (22). X~+„((,rt ) can be treated in the same way if k & 1.

If 0&k &1,

y+k
k X,'g (,g)

B(ig)JB(i'�)"

J —m

J j= X
m=0

TrIp[(a +a )
+' —(8 +t) ) ]a +] . (82)

The last trace can be written in the form

Tr[ r [(ra +rl)m+1 (r +rt)m]Ie (83)

We recognize in (83) antinormal-alternate moments
which we can again express as a sum of s-alternate mo-
ments with the help of Eq. (22). The same kind of treat-
ment applies to the case k =0 [for I+„(g,g) as well].

The procedure above allows us to treat the terms
X+„((,g) and X,~+(g, ri) and to complete our translation
of the evolution equation for the characteristic function
(76) into an evolution equation for the s-alternate mo-
ments of the density matrix. The full equations are
presented in Appendix 0 since they are quite involved.
As far as the calculation length was concerned, the whole
calculation was found highly competitive with respect to
the %'igner function approach of Ref. 15. For the high-
order moments we note that the new hierarchy of
differential equations is more complicated than the
%igner hierarchy. This is the price paid for the great
simpli6cation to produce directly the coupled equations

of motion for the quantities of interest: the moments of
the photon number. It is impossible to obtain such equa-
tions with standard methods. ' lf we are interested only
in the low-order moments we can restrict the procedure
by directly averaging the equation of motion (70) with the
corresponding low-order alternate products. This pro-
cedure is Uery expedient and straightforward.

Generally the moments of the photon number are also
coupled to other quantities of interest, the "oft'-diagonal"
moments, in the following way:

MJz is coupled to

—M~ if j'&j
~ —MJz rf j'&j —1

—MJ„' ~f j'&j and k &2 .

Such a coupling allows us to form closed sets of low-
order moments whose exact evolution describes the evo-
lution of the photon statistical distribution with a
refinement increasing with the size of the set. The full re-
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suits in Appendix D have proven useful to ensure the ac-
curacy of our calculations in Ref. 15, The reader will
also find there the discussion of the solution for the low-
order diagonal moments. To end our investigations it is
necessary to discuss and interpret the behavior of the
low-order o6'-diagonal moments in the phase-sensitive
light amplifier and absorber.

C. Evolution of the love-order phase sensitivity
in phase-sensitive linear amplifiers and absorbers

The evolution equations for the alternate moments can
be written with the help of Eqs. (Dl) —(D7}. For the low-
order off-diagonal moments M, A and M, A they take the
simple form

sA

dt

dM, '
sA

dt
= —2iA, X, ~M, ~

—2A, C

(84)

(85)

Equations (84) and (85) can be more straightforwardly ob-
tained by directly averaging the master equation (70) with

and I 8 I,„. We introduce now the notation of
Ref. 1S:

gives us information on the critical value of the integrat-
ed gain (absorption) for which the output has a phase-
insensitive quadrature phase noise:

(a) if Im('Poe '~)&0, the device gives always an output
containing phase-dependent quadrature phase noise.
(b) if Im('Poe '~) =0, the critical integrated gain (absorp-
tion) is

—,
' sinh(2r} coth(pai/2)

Po + —,
' sinh( 2r ) c ot h( pai /2 )

(92)

where I'0 Poe '~E——R. The conditions under which

6„;, exists will be now discussed separately for the case
of the amplifier and the absorber.

The amplifier case is characterized by 6» 1,p» 0. '

When (and only when) the parameters satisfy the inequal-
ity

which depend only on the value of the signal input pa-
rameter Po and the reservoir parameters. The solution of
the equation

—lk. g + —g )
~ 2

r 50, ——,
' sinh(2r) coth(Pai/2)»~POSQ (93)

2A, C:——,
' sinh(2r) coth(pa&/2}e (87)

Here g is the gain (absorption) coeIIicient, r the squeezing
parameter, (() the squeezing angle, and p characterizes the
rigged reservoir temperature (in the unsqueezed case).
With these definitions the solution of Eqs. (84) and (85) is

M, „'(t)=M, „'(0)&G

M,"g (t) = [M, „' (0)+—,
' sinh(2r ) coth(pai/2)e '~]6

——,
' sinh(2r) coth(Pc@/2)e '~,

(88)

(89)

= [Po+ —,
' sinh(2r) coth(pai/2)e '~]6

——,
' sinh(2r) coth(pro/2)e '

where G=t. ~.
Let us discuss the behavior of the first moment (88): the

output of the amplifier (6» 1) retains forever an initial
coherent amplitude M, „'(0). On the other hand, asymp-
totically (6~0) the absorber destroys the coherent am-
plitude (it is, in fact, the definition of an absorber). In
both cases we note that the device does not alter the ar-
gument of M, z'(t), i.e., the phase of the signal. This con-
clusion is fully independent of the signal intensity and is a
consequence of the fact that 7 =7++——0 for most
rigged reservoirs.

In Ref. 15 the discussion of the diagonal moments was
carried out as a function of the second moment
A.0=M, A (0), However, the most relevant physical pa-
rameter depending on the second moment is the parame-
ter P. Equations (88) and (89) lead to

can the output of the amplifier have phase-insensitive
quadrature noise for G=G„;,p1. If the reservoir is
unsqueezed (r =0), an input with phase-insensitive quad-
rature noise gives rise to an output with the same proper-
ty.

The absorber case is characterized by 0 ~ 6 & 1,p» 0.
To have a phase-insensitive quadrature noise at the out-
put for 6 =6„;,E.(0, 1], the parameters must satisfy the
inequality:

r ~~0, Po~+0 . (94)

Asymptotically, if the reservoir is unsqueezed, the ab-
sorber always suppresses phase-sensitive quadrature noise
[P(6=0)=0].

IX. CONCLUSIONS

In this work we have advocated the use of a new way
to order the creation and annihilation operators in the
quantum theory of any many-boson system (photons,
phonons, helium atoms, etc. . . ). We expect it to be most
helpful in quantum optical problems where one is in-
terested in the photon statistics of the field and its phase-
dependent properties. Although many interesting inves-
tigations remain to be done (some of them were men-
tioned in the course of this work), we expect to have con-
vincingly established the following main points: (1) The
problem of obtaining a quantum-mechanical multipolar-
like expansion of the density matrix in successive powers
of the field intensity (photon-number operator) and the
field phase (annihilation or creation operator) can be
solved completely using the unambiguous and consistent
alternate ordering prescription for a and a +, (2) The
hierarchy of alternate moments characterize the field
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completely and are measurable properties (expectation
values of a generalized phase operator) which probe
higher and higher-order amphtude- and phase-sensitive
characteristics of the field, and (3) The alternate ordering
technique is a valuable and eScient tool for the calcula-
tion of the boson statistics and generalized phase opera-
tor expectation values in practical quantum-mechanical
(for the present instance quantum optical) devices which
works at all field intensities. As an illustration, a few new

results pertinent to the behavior of phase-sensitive light
amplifiers and absorbers have been obtained.
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n n d m d n —rn

„ff(x)g(x) j= g tf(x)l „„ fg(x)l
m =o

(A4)

This rule is necessary when using Eqs. (19) and (38).

APPENDIX A: USEFUL FORMULAS

%e quote or demonstrate a number of useful formulas
which are extensively used during the course of the
present study.

1. Identities concerning exponential operator "sandwiches"

Let f(z„z2 ) be any analytic function of two variables
near the origin. The operator-valued functional

f(8,8 + ), obtained by replacing z, and zz with 8 and & +

in the Taylor expansion, satisfies the following identities
(see, e.g., Ref. 1):

3. Integrals issuing from the coherent state representation

We reproduce here the formula (A2) of Cahill and
Glauber, ' which helps to calculate Gaussian integrals
obtained by using the coherent-state resolution of the
identity

Q
exp —z a '+ax +cx*y =z - ' exp z

- 'xy

(A5)

%hen we take the derivative of this expression with Leib-
niz rule we also obtain

d cx
cr.

" a™exp —z a +ax +a'y
n

m —
k~ n —k n —m —k —l

CXp(Z
—

(Xy )k (m —k)!
(A6)

These formulas are used in Appendix B. i J
g J —IeQl

t=o . . dtI
1

1 —be

4. A miscellaneous differentiation formula

The evaluation of the high-order alternate moments of
the squeezed state (and the thermal state) requires a
closed-form formula for the expression

1

1 —be '

Now we apply the Faa di Bruno formula to calculate
the multiple derivatives of the composed function

/ k
d
dt

d
dt

e al

(1 b )k( with a, b, k ER+
I (k —1+m). 1 I, ) b, )

(k —1)( (1—be')'+- (A9)

The application of the Leibniz rule gives the result
Inserting this into the previous expression, we get the
final result

dt ( 1 be' )" ( 1 —be ')", I — (k —1 ).'
be

1 —be ' (A 10)

Of course, ollcc ollc kllows thc cxpllclt cxpI'cssloIls (A9) and (A10) lt becolncs possible t(l plovc them by recurlencc also
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APPENDIX 8: STANDARD s-ORDERING OF THK GENERATING FUNCTION 2, (g, i) )

We proceed to derive the s-ordered expansion (33) of our generating function A, (g, ri). We draw heavily, in this ap-

pendix, on the notation and techniques used by Cahill and Glauber. ' Their formula (5.18}allows us to calculate the

coeScient
2

f„(s')=(n!m!) ' fTr[FD, (a)]( —a)"{a') (81)

of the expansion

F= g f„(s')I&+ &

n, m

In our specific case we have

d2
Tr[A, (g ii)D, (a)j= Je" ''! ' exp(aP' a'P—+ice '" "&~~P)(P

~

e'&s a ~P) (83)

Using the well-known expression'

()33
~

e'~
~
P) = exp[(e'~ —1) j f3

~

']
cated.

Using the disentanghng theorem of SU(1,1) (Refs. 44
and 45), we can write the squeezing operator {52)as

and Eq. (A5) of Appendix A, we find

Tr[A, {g,ri)D, (a) j

1 2 1 —s' 1
exp

i
a

i

1 —e'& e —1

5(g) = exp[ —,
' 4"( & +

) j exp[ —ln(coshr )(8 +&+ —,
'

) ]

X exp( —
—,'S8 ), (Cl)

—i (s —1)E/2

+l Q'7/
e t!

With the help of Eq. (A6) we can calculate now the
coefficient (81)

.r=e i'&tanhr .

The commutation to the left of all exponentials in Eq.
(53) containing 8 + can be made with the rules (Al) —(A3)
except the following one:

f„(s')= 1 1

n!(m )!ne—'~

—[rn + 1}
1 —s' 1

e'& —1
+

exp( —
—,'Za ) exp( —,

'4'*e "8 ),

~

e
—i (s —1)(/2

X
e'& —1

(86)

The final summation (82) can be written as Eq. (33) of the
main text.

APPENDIX C: s-AI.TERNATE MOMENTS
OF THE SQUEEZED VACUUM

The squeezed vacuum (51) possesses nontrivial alter-
nate moments. To evaluate them we will apply the fol-
lowing strategy: (1) disentangle the squeezing operator
(52) and use a disentangled form of the generating func-
tion in the expression of the characteristic function (53),
(2) bring all functions of the operator a + on the left-hand
side and functions of & on the right-hand side (it is a kind
of normal ordering}, (3) evaluate the action of the opera-
tors between the vacuum "sandwiches", and (4) carry out
the multiple differentiations required to 6nd the moments
and evaluate them in /=ii =0. It must be noted that in
principe/e the same strategy can be applied to calculate the
moments corresponding to a squeezed coherent state.
The actua1 calculations would, however, be more compli-

where the left (right) term issues from the squeezing
operator on the left (right) in Eq. (53). This commutation
cause a problem (in the case /=0) since we have been un-
able to carry it out with the help of the usual operator ex-
ponentiation formula and the usual disentangling
theorem of SU(1,1) (Refs. 44 and 45) (because of a singu-
larity in the coefficients). Therefore we developed a
disentangling theorem of our own, using the faithful 2 X 2
matrix representation of SU(1,1), as suggested on very
general grounds by Gilmore. %e only quote the resu1t:

exp( ——,'4'8 ) exp( —,
'4'*e "& )

= exp[ —,
'4'*e '&(1+

~

4
~

'e '&) 'a + ]

X exp[ —,'(1+ ih'i e ") (8+8+—,')]

X exp[ ——,'$(1+
~
4~ e '&) '8 ] .

%hen the action of all the experimental operator on the
vacuum state is evaluated the characteristic function is
expressed in closed form:
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X,g((, 2)) =
1/2

1

1+ tanh'r e "&

1
X exp —ln[(coshr ) ]2

ice "' "~ e '~tanhr+
1+ tanh re '&

,q ( 1 (2k)! 2;1,g tanh"r
k! coshr

X',q„(,7) =— e '

g=0
—2i g(s —1)k/2

X
(1—tailh2r e2I&)k+1 /2

(C7)

This is the most important intermediate step of our calcu-
lation. To obtain the s-alternate moments we derive now
arith respect to ig first. Using the identity generating
Hermite polynomials

k

The differentiation of this expression with respect to i(
can be directly carried out using the formula (A10). Then
Eqs. (54) and (55) of the main text follow.

-z2 k —g~
e ' =( —1) H1, (z)e (C6) APPENDIX 0: s-AI.TERNATE MOMENT

EQUATIONS OF THE PHASE-SENSITIVE AMPLIFIER

Hk(z =0)=(—1)" '
if k is even,

(k/2)!

H1, (z =0)=0 if k is odd,

The s-alternate moment evolution equations have ex-
actly the same structure as the master equation (70) and
the characteristic function equation (76). We give here,
therefore, only the coefBcients. The coeScient of
C+ +C + is

[1+( 1)m]~j —m+i k+ k + ™
Mj m k k

—( —1)( —1)™ 1 ——
sA sA ~j—m, k+~j —m, k

sA (D 1)

The coefticient of g+ is

[1—( —1) ]M' +'"+skJ
pl sA

m=1

The coeScient ofg + is

~ --"+k '+'-"
sA 2

~j—pal, k +~j—m, k
sA sA

+ y [1 ( 1) ]~ + + k
—( —1)

M +k 1+(J
m=1

sA + ~j—m, k+~j —m, k
sA sA

The coefBcient of C++ is

(D3)

J
[2$m (S + 1)m (S 1)m]Mj —m, k+2

m=1

The coefficient of C (case k =0) is

(D4)

J j—m J —~
( —1) (2 —2)

m =0

The coeflicient of C (case k =1) is

( 1+ )j —m' —m(Mm, 2)» (D5)

J g —m'm+1
( —1) (2 —2) g

m =0 I =0

g —m' m+1
I

' j—m' —m ' 'm+1 —I

(M/, 1)»
2 sA

1 —s
P2l

m m »J —m —m
1+s (~m, 1)» (D6)

The coefficient of C (case k &2) is
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j J J —m m+2
( —1) (2 —2)

m=2 . m=O 1=0

J —fff fn +2
( 1)m+2 —t

m

j+2—I —m'

J —m'm+& J —m' m + I— X X I 1)m+1 —I

m=0 1=0

j, —s
k

J+1—1 —m'

J—2k
m'=1

m 'm'
j—m'm+& J —SPY Pl +1

1)m+1 —t

g+1 —1 —m'
1 —5

(k —1)
j J

2 si ~ S sA
m=0
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