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Collective behavior of M bosonic modes interacting with a single two-level atom
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The Hamiltonian describing„without the rotating-wave approximation I,'R%A), the linear interac-
tion between M bosonic modes with an Einstein spectrum and a single two-level atom is exactly and

canonically transformed introducing I suitable collective independent field modes, in such a way

that only one among them is coupled to the atom. Some physical consequences of this fact are ana-

lyzed and, in particular, the existence of radiation-trapping phenomena together with the possibility
of atomic absorption suppression is established. The applicability of the R%A to this system is dis-

cussed and the importance of the effective-field statistics for the time evolution of the system is

pointed out.

I. INTRODUCTION

The bosonic nature common to the electromagnetic
field as well as to the elastic vibration field in a crystal
justifies investigating theoretically radiation-matter in-
teraction, both in solid-state physics and in quantum op-
tics, using formally equivalent Hamiltonian models. All
of these models are constructed introducing suitable hy-
potheses which unavoidably lead to an idealized represen-
tation of the real situation. The most studied models as-
sume that the interaction between matter and radiation is
bilinear in the field and atomic coordinates and that the
internal degrees of freedom of each atom can be
represented by a pseudospin operator S =—,'.

Notwithstanding the rather drastic assumption that
direct processes play a dominant role, the linear Hamil-
tonian model, sometimes called the Dicke model in the
literature, ' is far from being trivial; on the contrary„ow-
ing to the mathematical difriculties it raises, its physical
implications have not yet been completely understood. It
is for this reason that analytically more tractable versions
of this linear model have been considered with great at-
tention by theorists„beginning with the completely solv-
ab1e Jaynes-Cummings model, which has been succes-
sively generalized in many nontrivial ways. Theoretical
investigations based on these oversimplified models„how-
ever, have also gained experimental significance: In
solid-state physics, for example, the theory can be related
to experiments on crystals which undergo cooperative
Jahn-Teller transitions or on materials containing parae-
lastic, paraelectric, or paramagnetic centers, whereas in
optics the recent development of cold-cavity techniques
with Rydberg atoms has opened up the possibility of
testing Inany of its predictions. The system we consider
in this paper is that of a single two-level atom which is
linearly coupled to M modes of a bosonic field with an
Einstein spectrum. The antiresonant contributions to the
interaction term are not neglected and the coupling con-
stants are taken as mode dependent. This model is not
new in literature, having been used both in solid-state
physics and in quantum optics.

The purpose of the present paper, which emphasizes

II. HAMILTONIAN MODEL AND CANONICAI.
TRANSFORMATION

Our Hamiltonian model is

H =Ato g a„a„+AtooS, + g e„(a„+a„)(S++S ) .

(2.1)

Here e.„ is the real coupling constant between the atom
and the pth radiation mode which is represented by Bose
operators a„and a„. S, (t =+,z) are usual pseudospin —,'

operators describing the internal atomic degrees of free-
dom. It is not restrictive to choose c„as a real c number
because all phase factors can be canonically eliminated.
Let us introduce the following canonical transforma-
tion

U=U2U3 . . U . . U~, 2&m &M (2.2)

U = exp[y (a,a —a a, )] . (2.3)

In (2.3) y is a free parameter to be fixed later. The uni-
tary operators U satisfy the following relations:

the cooperative nature of the interaction between the field
and the atom, is to study the dynamical behavior of the
system. This aim is achieved in a physically transparent
and direct way by constructing exactly and explicitly the
M collectiv bosonic modes through which the actual in-
teraction with the atom takes place.

Our main result is that only one among these M new
collective modes is cou led to the atom and that the new
coupling constant is M times the mean coupling con-
stant. These facts provide us with a simple way of pre-
dicting the existence of radiation-trapping phenomena as
well as of absorption suppression in the system. More-
over, we point out the inhuence that the presence of
M —1 unexcited modes has on the field statistics of the
excited mode and discuss its implications on the time
evolution of the system.
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[U,S,]= U, g a„a„=0,
@=1

U o;, U =o., cosy +o. siny

modes described by the untransformed Bose operators of
(2.1), M collective field coordinates described by the new

Bose operators in (2.14). The meaning of this result can
be best appreciated by considering

U~ Q~ U~ =Q.'~ cosy —o,'1 siny

Using (2.4) to transform H yields

(2.5)
Ua1U =

M
p

(jM) P '

(j —1) —1E.
1

(j) j ~ (j) (j —))
s=1 &1 1

(2.15)

+U g s„(a„+a„)U(S++S ) . (2.6)

To obtain an explicit form for the second term on the
right-hand side of (2.6) we proceed as follows:

U X &„a„U=Usr Uj)r )' ' ' U-i U2(&)a(+&2a2) U2
p. =1

(2.7)

where (2.2) and (2.3) have been used. From (2.5) we easily
obtain

U2(sia, +e2a2) U2 =(E,, cosy2 —E2 siny2)a)

+(e2cosy2+s) siny2)a2 .

Putting y2
———arctan(s2/s) ), (2.8) takes the form

U2(e)a)+e2a2) U2 =e)' a»(2)

(2.8)

(2.9)

s(2) ( s2+ e2 )1/2

It is easy to generalize this procedure to yield, from (2.7),

M
U g a„a„U=e() 'a),

p, =1

with

y = —arctan( a /a() "),
' 1/2

&(m) y &2
P

p=1

From (2.12) we have, in particular,
' 1/2

~(M) ~2
P

)M=1

Inserting (2.10) in (2.6) we obtain

(2.10)

(2.1 1)

(2.12)

(2.13)

H=))i~ g a„a„+AruoS, +s')~)(a, +a))(S++S ) .
p. =1

(2.14)

This is our central result. From (2.14) we see that the ac-
tion of U on 0 introduces, in place of the M true field

III. PHYSICAL MEANING OF H

Formally H represents two independent subsystems: (i)
a simple single-mode, single-atom system consisting of a
fictitious radiation mode with the same frequency as the
original bosonic modes of (2.1), linearly coupled to the
(old) two-level atom with an efFective coupling constant
given by (2.13); and (ii) M —1 fictitious radiation modes
described by the new Bose operators a&, o;3, . . . , o;I,
decoupled from each other and from the first subsystem.
The appearance of these collective field coordinates has a
transparent physical meaning: when M modes of a bo-
sonic field with an Einstein spectrum interact with a
two-level atom, they must be considered as a single quan-
tum system and should not be treated as independent. In
other words, the canonical transformation of 0 accom-
plished by U clearly shows that the two-level atom in-
duces among the field modes coherence properties which
are responsible for the collective behavior of the field sub-
system of (2.1). This result, although obtained for a
different system, is intimately related to that of Dicke"
who was the first to point out the cooperative nature of X
two-level atoms with a single bosonic mode. Recently,
using a mathematical approach very similar to that
presented here, we have discussed some of the features of
such an atomic collective behavior. ' %e remark that if
we modify (2.1) by simply getting rid of counterrotating
contributions in its interaction term, obtaining in this
way a model describing exactly the action of circularly
polarized light for instance upon a magnetic sublevel,
our approach is still applicable. In fact, if we had written
(2.1) in this form from the beginning we would have again
obtained (2.13) with y and eI ' still given by (2.11) and
(2.12), respectively, but with the counterrotating contri-
butions absent from the interaction term. Moreover, it is
interesting to note that as this simplified version of (2.1)
can also be obtained by doing the so-called rotating-wave
approximation (RWA) our before-mentioned results sug-
gest that a certain caution must be exerted in adopting
such an approximation in (2.1). In fact, our exact treat-
ment of H by U clearly evidences that the correct param-
eter to be used in establishing the applicability of the
RWA to (2.1) is eI '/fico (the detuning

~

co —coo~ is the
same for H and H) which, according to (2.13), scales with
M as &M (at least in the homogeneous case E„=c,).
Thus it may happen that, as a consequence of the in-
creased value of the effective coupling constant, the
single-atom, single-mode subsystem present in H cannot
be treated in the R%'A. This implies that the justification
of the RWA version of (2.1), on the mere basis of the
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smallness of g„c,„/Mero, is incomplete and it might give

incorrect results.
Exact analytical eigenvalues and eigenvectors of H for

arbitrary values of the parameters are not known, essen-
tially because the simple one-fermion, one-boson linear
model has been solved without approximations only ln its
R%'A version. In this case, the eigenstates and eigenvec-
tors of (2.1) were given by Quattropani many years ago
using a long algebraic method. In what follows we will
not reobtain these results, although we mention that, us-

ing U together with the well-known unitary operator'
which diagonalizes the Jaynes-Cummings system, they
can be easily obtained in a rather compact and elegant
form. For the single-atom, single-mode linear system
some general exact properties as well as approximations
of the associated eigenvalues and eigenvectors in various
coupling regimes have been given. ' Swain' has present-
ed formally exact continued fraction expressions, whose
usefulness is limited only by the fact that results can be
extracted from them only numerically. Although we are
not able to give here exact explicit solutions of (2.1), how-
ever, we can predict some of its interesting physical prop-
erties that can be directly related to the structure of H
and, more precisely, to the circumstance that the atom
exchanges energy with the field through only one of the
collective modes. In Secs. IV —VI we shall discuss three
different e8'ects: (a) radiation trapping, (b) atomic absorp-
tion suppression, and (c) field-statistics modifications.

IV. RADIATIQN TRAPPING

Suppose that at r =0 the system has been prepared in a
state with an arbitrarily assigned energy distribution in
the (old) field modes and with the atom in its ground
state. This should lead, in general, to an exchange of en-

ergy between the field and atom. We have shown in
(2.14), however, that such an exchange is governed by a
single-atom, single-mode effective Hamiltonian. It is then
natural to take into account in detail how the energy is
distributed among the field collective modes. In general,
a certain amount of this energy is initially present in the
M —1 uncoupled collective modes: this energy will
remain rigorously trapped in these modes both in the
sense that it shall not be exchanged with the atom and
also in the sense that no intermode (new) energy transfer
shall take place. It is interesting to note that trapping
phenomena are present for any M ~ 1 and that we may
conceive extreme initial conditions for which radiation
trapping is total or completely absent. To illustrate this
last point we consider an initial situation corresponding
to a ground-state atom in the presence of only one excita-
tion conveniently distributed in the old modes of the 6eld.
This state, described by

I f), is chosen to be of the form

(4.1)

ap'ap I
00~ ', 1, . . . , 0~, —)

To express
I

((() in the new representation we apply U,
obtaining

(I) U apUU IO(, . . . , 0(.. .0~, —) .
E)

(4.2)

(M(a„'U I o(

a(101&' '' &0 &' ' '&OM&P

(4.4)

(4.4) means that only the atomic coupled collective mode
is excited (in its one-excitation Fock state) so that no en-

ergy trapping will be observed. The dynamics of the sys-
tem will be dominated by the elective coupling constant

' and, in particular, for the RWA version, we should
observe Rabi oscillations in the energy exchanges at a fre-
quency QM=a((~'/()i. To illustrate the total radiation
trapping we consider, for simplicity, an initial state

I (p)
of the form

I %) = exp —0 (I( (a( al )

E)
X exp, z, (a2 —az) I

0„.. . , 0„, . . . , OM, —),
E)

(4.5)

where o. i and a2 are old field coordinates and g is a real
nonzero number. In the new representation (4.5) be-
comes

U
I (p) = U exp —q, , (a( —a, )

Ep

F)

X exp rl, , (az —az) UU
E, )

X IO(y tO t )Ogy) (4.6)

Using (4.3) and the transforming properties of U, (4.6)
can be put in the following form:

(4.7)

(4.7) illustrates the meaning of radiation trapping in our
context, which is characterized by the absence of excita-
tions in the coupled collective mode associated with an
initial state such as (4.5), where the energy expectation
value is Aruq ——,'4~0&0. As a consequence of this energy

(4.3)

usllig the properties of U, (4.2) carl be cast iil the forlil
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trapping, atomic time development becomes independent
of the excitation number in the system at t =0. In our
example this means that the atomic dynamics is
uninfluenced by the value of i) chosen in (4.5). Time evo-
lution of the two-level variables depends on the CCective
coupling regime, and it is rather complicated because of
the prcscncc of virtual proccsscs. In thc R~A model, to-
tal radiation trapping, in particular„ implies exact decou-
pling between the atom and field.

We thus see that when M increases 5 decreases towards a
positive value which vanishes only for a homogeneous
or quasihomogeneous distribution of the coupling
coeScients. This means that the presence of many
modes, even if in their vacuum state at t =0, changes in a
sigai6cant way the atomic absorption of radiation with
respect to the single-atom, single-mode case, leading, in
particular, to its asymptotic suppression if virtual ex-
changes are totally ignored.

V. ATOMIC ABSORPTION SUPPRESSION

%hile energy trapping is independent of M, atomic ab-
sorption suppression, on the contrary, becomes more and
more CHective as M increases. This CFect in our model is
related to the existence of initial conditions for which the
atom is in its ground state and the probability amplitude
of the collective coupled-mode excitation decreases to
zero when M increases. Again we prove our statement by
giving an explicit example in which the initial state ! c )
1S

where

=e e 101~02» 0M& (5.2)

A =rl, (a, —a, ) =5(a",—a, ),
E, ]

I I
1=2 E1 El

= exp[rl(ati —a, )]!0„.. . , 0„, . . . , 0~, —), (5.1)

where a, is an old field coordinate. Transforming ! c ) by
U yields

(o, —a)U'! c)=U'e" ' ' UU'! o, ,o„.. . , ol, —)

VI. FIELD-STATISTICS MODIFICATION

The importance of and the role played by the collective
behavior of the M modes in their interaction with the
atom can be further appreciated considering the fact that
the statistical properties of the field associated with its
collective coupled mode are, in general, very dift'erent
from those associated with the old modes. Some exam-
ples may help to clarify our point. If initially the system
is in a state such as ! c ), given by (5.1), the coherent dis-
tribution of bosons in the first old field mode is
transferred as such to the coupled mode [with i) substi-
tuted by rle, /eI '; see (5.3)]. In this case the cooperative
effect which originates from the presence of M —1 unex-
cited modes at t =0 has only the consequence of scaling g
by the factor c. , /E', '. Thus time evolution of the atomic
dynamical variables is characterized by a behavior quali-
tatively similar to the single-atom„single-mode case. In
R%A, in particular, periodic spontaneous collapse and
revival' of the atomic inversion should exist starting
from this condition. If, on the contrary, at t =0 the field
is supposed to be in a Fock state (with n quanta in the
first old mode and with the other modes in vacuum),
while the two-level atom is in its ground state, then the
statistical distribution of the quanta in the coupled mode
is greatly modified with respect to the case M =1. In
fact, we have

U
I ni, o,o, . . . ,0,—) =

nI +n2+ - +n& ——n

Ei
n, n ],n 2. n~ ~ (~)

E]

E, ]E

E(s)E(s —] )
(6.1)

where the meaning of the symbols is obvious. (6.1) shows
significant changes in the statistical distribution of bosons
induced by cooperativity. Moreover, it indicates that the
dynamical response of the system must be related to the
boson distribution electively present at t =0 in the cou-
pled mode only. If we look at (4.3) from this point of
view we may say that the field vacuum state has statisti-
cal properties which are not modified by U. A physical
consequence of this fact is that the spontaneous emission
of the atom is completely governed by the coupled sub-
system of H; in the R%'A, in particular, Rabi oscilla-
tions occur with a frequency O~ ——e', '/iri.

VII. CONCLUSION

%'e wish to conclude this paper with two remarks. The
first concerns the possibility of experimental observation
of such effects. Meystre et a/. have described a Gedank-
en experiment, where an atom placed in a Fabry-Perot in-
terferometer is irradiated by an electromagnetic field.
Assuming that the scattering on the aton1 is elastic, they
have shown that, as in our model, only modes with the
same frequency of the electromagnetic field are taken into
account. Our model may also have relevance to those ex-
periment where the tridin1ensional character of the radi-



37 COLLECTIVE BEHAVIOR OF M BOSONIC MODES. . .

ation field cannot be ignored. The second remark con-
cerns the significance of our results to a weakly dispersive
model. It seems reasonable also in this case to assume
that during spontaneous decay the atom interacts mainly
with a collective mode, which is a suitable linear com-
bination of old modes of the field with frequencies lying
in a band such that modes amplitudes are very little de-
phased during the decay. The condensation from many
modes to a single mode has been discussed in the litera-
ture.

As an example we indicate the work of Lang et al.
these authors, considering the theory of an optical maser,
based on a model of the cavity having a semitransparent
wall as one of the mirrors, have stressed that the narrow-
ness of the laser linewidth could be regarded as a conse-

quence of a locking phenomenon between the many
modes of the universe corresponding to each of the Fox-
Li —type quasimode.

Other examples are the paper of Ernst et al. ' and
those of Bonifacio et a/. ,

' in which these authors have
shown the combined role of atomic collective behavior
and of cooperativity between Aeld modes in the emission
of X two-level atoms in a quasimode.
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