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%'e consider a system in which a ground state is coupled to a general quasicontinuum of levels

and to a true continuum. In the long-time limit, the true continuum spectrum can exhibit zeros, the
positions of which depend on the energies of the quasicontinuum levels. The initial conditions
determine the existence of these zeros. %e describe this phenomenon by studying dressed states for
the complete system and in particular derive dressed states which are ground-state independent.
%'e use these to explain the locations of the zeros and their dependence on the initial conditions.

I. INTRGDUCTIO)N

The time evolution of a superposition of quasicontinu-
um levels excited from a single ground state has been ex-
tensively studied. ' Much of this work has discussed
the model of Bixon and Jortner, consisting of the excita-
tion of a single ground state to an equally spaced
quasicontinuum (QC} of levels. The dynamics of the
ground-state population exhibits a complicated time evo-
lution beginning with a %eisskopf-%igner decay; subse-
quent dephasing and partial reconstruction of the popula-
tion occur. %'e have recently' discussed a semiperturba-
tive treatment for a general QC in which one QC level is
resonant with the ground state and is treated nonpertur-
batively and the other QC levels act to perturb this two-
state evolution.

In this paper the system we consider consists of a
ground state coupled to a general QC of levels and to a
true continuum. We examine the spectrum of final states
in the true continuum. This spectrum can exhibit zeros,
the positions of which are determined by the energies of
the QC levels and the existence of which is determined by
initial conditions. We obtain a general expression (for
any QC} of the true continuum spectrum and consider
the special cases of first, a Bixon-Jortner QC, and second,
a Rydberg series. %e then study the dressed states ' for
the whole system and derive "sparse" dressed states
which contain few continuum levels and, more impor-
tantly, no contribution from the ground state. %e show
that the initial population in one of these sparse dressed
states determines the existence of the corresponding zero
in the spectrum. This is a similar mechanism to popula-
tion trapping in certain systems where the population in-
itially in a sparse dressed state is immune to photoioniza-
tion. In See. II we derive a general expression for the
spectrum. Section III discusses the special cases with
particular reference to the initial conditions. The two-
photon ionization problem discussed by Knight is also
seen as a special ease of our general treatment. In Sec. IV
we discuss the total dressed states and explain the ob-
served features using the sparse dressed states.

II. BASIC EQUATIONS

ObCp= —t g VbCbe —l I Vpcfef
I thbob

i& ———i Vbcoe

iIof t

Cf = —l VpCoe

where 6pb and 6pf are the detunings between
~

0) and

~

b ), and between
~

0) and
~ f ), respectively. We now

put

FIG. 1. Level scheme with the ground state coupled to an ar-
bitrary QC and to a true continuum.

The system under consideration is that shown in Fig. 1,
where a single discrete state

~

0) is coupled to both a true
continuum of states I ~ f ) I and a quasicontinuum of
discrete states I ~

b ) J. For simplicity we take the matrix
element between

~
0) and any state

~ f ) to be Vp (in-
dependent of f); that between

~

0) and state
~

b ) is
denoted Vb Asp. ecial case is the extended Bixon-Jortner
model which we have studied recently. ' The equations of
motion for the probability amplitudes cp(t), c (t), and
cb(t) corresponding to states

~
0),

~ f ), and
~

b are
—ihof t
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so that (1)—(3) become

c = —i g Vbab —i V() aI0 fb

ab ——i baobab
—i Vbco,

a — g +ofaf / Voco ef

111. SPECIFIC QUASICONTINUA

A. The Bixon-Jortner quasicontinuum

\

In this case we assume that one of the levels
! b is res-

onantly coupled to ! 0) and that hob bb,——where b is an
integer, —~ g ~ ~, an b

——b ao and V = V (constant). Then

T 1 these equations we Laplace transform with0 sove
variable s) and take general initial conditions
discrete states:

g (ho/ hob ) = cot
b

(18)

co(0)= A, ab(0) =Bb, a/(0) =0 .

Equations (5)—(7) become

which is required in (17). We shall study two diff'erent sets

(') (0)=1 (0)=0 (so that A=1, Bb ——0). From (17
we have

sc —A = —i X Vbab iVOf Qf0
b f

(s +i bob )ab Bb ——— i Vbc—o, (10)

( s + & b o& )aI ———
& Voto,

where a tilde denotes the Laplace transform. Using the
final-value theorem in (11) gives

+ Aof

and for convenience put

V2

«2i
— coi

{12)a (ac )= —ivoco(s =

idol�

)—f
so that we require 0 oto find the final-state spectrum.
Substituting for Vb and if& in (9) and using (10 and 1

gives

F =rr Vo/b, , 6 =rr y /6, H =rr V2)/b, '-

and x =nb, oI/b, . The resulting spectrum is

(20)

sco —A = i g —Vb(Bb i V c—b)o/( +skip )b
b

0'eo S + ~ ~off (13)

Assuming the states I !f ) I form a true infinite continu-
um of density I/5, then

~

~

—j. (14)(s +i ho& ) = m /5 .
f

Using (14) and rearranging in (13) to find Vo we have

A i g Vb—Bb /(s +i hob
b

(15co(s) =
s+y+ g Vb/(s+ihob)2

V /5 From (15) the final-value theorem re-ere y=~ o . ro
suit {12)can be written

A + g VbBb/(hoI —hob)
b

—iboI+y+i g Vb/(ho/ b()b)

I' sin xSi(x)=
(x sinx Hcosx) +—6 sin x

(21)

S ()()

1 +

In Fig. 2 we plot this spectrum as a function of x for
=6= 1 The spectrum has zeros correspon-

ing to the positions o e
' ' - rf the energies of the Bixon-Jortner

. This ma be thought of as a "multiple hole" in t e
same manner as that studied by nig in
ionization. is resu. H' results can, of course, be retrieve by re-
placing t e y ah ~c b single level. The origin of these
zeros (or o es can eh 1 ) b described by reference to dressed
states for the whole system which we discuss in Sec.
In Fig 3 we plot Si(x) from (21) as a function of x for

so that the spectrum of true continuum .. aanal states is

2A + g VbBb/(boI —&ob )
b Jaa } =P'
—gV/(b, I —b, „)

(17)

In Sec. III we shall examine particular quasicontinua
the eneral resultand their associated spectra using the ge

above.
FIG. 2. Spectrum S, (x) from Eq. (21) for 0—,—y=V =V = =5=1

(Bixon-Jortner QC).
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8D

FIG. 3. Spectrum S»{x) from Eq. (21) for Vo ——y=5=1,
V, =O. l (Bixon-Jortner QC).

Vo —y=&=1 as before but with V&
——0.1, so that the

Bixon-Jortner levels nonresonant with
j
0) are only

weakly coupled. The spectrum has an underlying
Lorentzian structure (a single state is strongly coupled to
the true continuum) with a narrow hole at x=0, as would
be expected from the calculations of Knight; in addition
there are the zeros at the energy positions of the Bixon-
Jortner levels and the approach to multiple conAuences.
%e note here that the peaks all have the same height for
the spectrum S,(x) in (21) since they occur where
x sinx =H cosx and S&(x) then has value F/6 (equal to
1 in Figs. 2 and 3).

(ii) co(0)=0, cb ~(0)=1, c»~(0)=0 {so that A=O,
8~ =1, Bb~~ =0). Here we begin with all the population
in one of the Bixon-Jortner levels b =X, where
%=0,+1,+2, . . . . In this case

V2 V2

(hoJ Nb) 'y —+ hog
m V) @hog

cot

2' (22)

so that using the same notation as before, in (20),
2

(x —¹T)[(x slnx Hcosx) +—G sin x]
Note that the existence of population initially in level

j
b =N ) of the QC generates a factor {x Nn )2 whic—h

will cancel the corresponding zero (of the factor sin x at
x =N~) at the position of this Bixon-Jortner level in the
same manner as at a conAuence. %'e shall describe this
feature again in Sec. IV. In Fig. 4 we plot S2(x) against x
for Vo= V] ——y=b, =1 and %=0. The zero at x=0 has
been removed and the spectrum retains the pair of cen-
tral peaks from Fig. 2, arising from the strongly coupled
states

j
0) and

j
b =0). If we decrease the coupling V,

or increase y we should see the two peaks merge into a
single central peak. To illustrate the effect of large y we
plot S2(x) against x for Vo= V, =b, = 1, N=O, and y =4

in Fig. 5. A single peak is observed but note that the oth-
er zeros persist. In Fig. 6 we again choose
Vo = V, =5=y = 1, but put X= 1 to show an asymmetric
spectrum. Now the zero corresponding to x =m at the
energy position

j
b = 1) has been removed.

B. Rydberg series

We take [ j
b ) ) to be the levels of a Rydberg series

j
n ) with the level

j
n =N) resonantly coupled to the

discrete state
j
0). The detunings are

ho„——D 1—
n

(2&)

and the initial conditions co(0)=1, c„(0)=0 and c&(0)=0
to begin with. Hence in (17), 2= 1 and 8b ——0, and the
spectrum is

~n JQ I I I I

FIG. 4. Spectrum S2(x) from Eq. (23) for Vo ——V» ——y=A
= 1, X=O (Bixon-Jortner QC).

FIG. 5. Spectrum S~(x) from Fq. (23) for go= y» =g —)
X=O, and y =4 (Bixon-Jortner QC}.
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& A,

FIG. 6. Spectrum S, c,
'x) from Eq. (23) for Vo= V, =Q=y

=%=1 (Bixon-Jortner QC).

FIG. 7. Spectrum S, (y) from Eq. (25) for P =Q =R =%= 1

(Rydberg QC).

y 'IQ+[~y —8(y))'l (31)

S)(y) = P
Q+ l~y —8(y) 1'

where

P =m Vo/D, Q =n. y /D, y =Aof/D,

(25)

We illustrate this in Fig. 9 by plotting this spectrum nor-
malized to unit height with Q =8 =X= l. Note the ab-
sence of the zero at y=0 corresponding to the n=1 Ryd-
berg level.

It rs also instructive to consider a Rydberg-like series
where the detunings are as above, Eq. (24), but the matrix
elements are taken to be

oo p2
8(y) =

D „,y —I+X/n
Taking the matrix elements to be

V„=V /n

we may write (27) as

(28)

8(y) =R g
&

n [n (y —1)+X ]

R=mV /D (30)

The function 8(y) can be evaluated in closed form in

terms of digamma functions. We plot S, (y) from (25}
against y in Fig. 7 for P =Q =8 =X= 1. Note that there
is a zero in the spectrum at each position of a Rydberg
level (y =1—1/n =0, —,', —,', —'„', . . . ). The zeros end at
y=1, which corresponds to the upper limit of the Ryd-
berg series and crowd together as y tends to 1 from below
as expected. ' In Fig. 8 we again plot S, (y} against y
with P =Q =8 =1 but choose %=2 (and note that the
zeros now occur at y = 1 —4/n = —3 0 —' —' —" —' )

The zeros of S&(y) in (25) originate from the diver-

gences in 8(y) at the positions of the Rydberg levels. We
can see from (17) that if initial conditions were chosen
with all the population in one Rydberg level X ( A=O,
8~ = 1), then the divergence in the denominator of (17) at
that place is matched by that of the single term in the
numerator. Hence the zero in the spectrum correspond-
ing to the populated Rydberg level is removed and the y
dependence of the spectrum for X= 1 is

V„=V /n

instead of (28). With this choice

8(y) =R
, n (y —I }+X

(33)

FIG.G. g. Spectrum S, (y) from Eq. (25) for p =g =g —1
&=2 (Rydberg QC).

This series can be summed analytically in terms of the
coth function but we do not specifically need the expres-
sion here. With 8(y) as in (33), we plot from (25) in Fig.
10 with P =Q =8 =X= 1 and compare this with Fig. 7.
The two spectra are very similar: the zeros occur at the
same positions in both. The particular form of the ma-
trix elements does not affect these zeros but the peaks
differ slightly in position and shape in the two figures.
Again, a particular zero can be removed by initially
populating the corresponding QC level. We will not
show this here. The importance of initial conditions in
determining the continuum population has been dis-
cussed, in a related context, by Agassi. "

,(y}
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The sums represent the possible couplin s between
I
i )

and any of the states
I
) ) in the case of,„and between

I
i ) and any of the states

I
k ) in the case of 8',„. We re-

quire
I
e}, where A'

I
E) =s

I
e&, and expand I

e& in

terms of the basis states (34)—(36):

IE&=P(e) I(&+ yQ((s) I) &+ f dkcp(e) Ik& . (3&)

2

The procedure is similar to that adopted by Fano and by
Coleman et aI. : Taking matrix elements of the eigenval-
ue equation for

I
s ) with each of (34)—(36) in turn gives

E;—e)P(e)+ QQ((e)V(+ f dkck(e)W, „=O, (39)
I

FIG. 9. Spectrum S,(y) from Eq. (31) for Q =R =X= 1 nor-

malized to unit height (Rydberg QC).
(E( —e)Q((s}+P(e) V, , =0,
(E(, e)—ck(e)+P (s) 8';k ——0 .

(40)

(41)

In Sec. IV we discuss the dressed states for the total
system with a general QC and explain the above features
in t e spectra.

IV. DRESSED STATES

%'e now discuss the dressed states for the whole system
in Fig. 1 in order to more fully account for the features in
the spectra of Sec. III. With labels 0 and 1 to denote the
fields driving the

I
0} to I I f ) I and

I
0) to I I

b) ) tran-
sitions, respectively, with photon numbers no and n, , we

write

()=
I

0, no, n(}

Ik)=
I f no —l, n, ),

I))= Ib, no, n, —1) .

(34)

(35)

(36)

,Iy)

], I, , an I. e wish toThe states have energies, say E* E d E . %
nd eigenstates of the total Hamiltonian

H =H((+ g V(+ g W;t. ,
I A;

~her~ Ho
I
i & =E

I
i &, and similarly for

I
k & and

The sensitivity of the zeros in the spectra to initial con-
itions arises because of the existence of special d d

states
cia resse

s, namely, states which contain no contribution from

I
i ), so that if all atomic population begins in

I
i ), then

these dressed states are initially unpopulated. %e 6
ates. For them to exist there Inust be values

e . e rst

of E, E, say, such that P(e)=0 [see (38) . H ence, from

V(P(e}
((e)= E(—

From 41„since Ek is a continuous variable,

(43)

(44)

(E(—s)Q((Z}=0 .

Note that (42 i& 's a set of equations, one for each I. N
not all the Ee Q((s) are zero (otherwise the dressed st t

ac . Ow

tains no co continuum states) so the only possibihty is that e
equals one particular E( and that the correspondin (s
is the onl noy nzero one. We therefore have a set of ossi-

n lng I E

ble solutions for E n
a se 0 possi-

levels (the o
' '
r E, namely, any of the energies of the C

tra). We c
p sitions where the zeros appear thr in e spec-

dres
e conclude that there are as Inan f thany o ese sparse

ressed states containing no contribution from i) as
there are AC lev els and that their energies are those of
the QC levels. To find these states we first use (40)

where P denotes the principal part and R ( )c must be
self-consistently. Substituting (43) and (44)

(39) gives
an into

(E; s)P(s—)+ g
V;(P(e)
c—EI

+ fdk P(e)~k P +R (e)5(e —Ek) =0 .

FIG. 10. Spe(.-trum S, (y) from Eq. (25) with e(y) given by

(33) and P=Q=R =%=1 (Rydberg-like QC). This is to be

compared with Fig. 7.

(45}

This must be true for all s, so that canceling P (e) gi~es
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+Pf dk +R(E)W,", =0,
c —Fk

(46)

the population in the true continuum states at the special
positions should contain a nonvanishing term for long
times that is proportional to the initial sparse%ressed
state population. We now show that this is the case.

The total wave function would be
where 8'., means that value of 8',-l, such that EI, equals
the chosen c. Hence

V,l.
2 2

R(e)= e E—; —g —P f dk
C, —Elic

I
ti) = f a(e)e-'"I e)de

so that

&s,
I

1}/) = f & (e)e '"c, (e)de .

From (44), we find that

c„(S=E(}=lim WkP(e)R (e)5(E—Ek) .
El

Combming (47) and (48), we notice that as S~E(, P(e}
tends to zero whereas R(e) diverges. The only term
which contributes, therefore, is

l
c(, (e=E()= Wk5(E( E/, ) —

2
lim

g

c, (e) =P(e }W( P +R (e)5(e E, )—1

E

Using the expression for 8 (e }, (47) in (55),

c, (e) =P(e) W/P
1

I C. —El

W;l+P(s)
z

5(e —E/)
8';,

(55)

V2
X —P(e) g

C. —El
(49}

2
V;l

E E, —g—I

2
8';g,

where W;l means 8',k for that value of k such that
E(, E( Ag——ain o. nly one term in the sum in (49) will con-
tribute,

8';l, V2
ck(e=E()= — 5(E( Ek) lim P(e)—

E~E(

Substituting (56) into (54) we find

&, I g)=W;, P f '"d

1 ix/ 1—. P(E)
A (E()e '

V;( lim

(56)

Substituting for P(e)/(e —E, ) in (50) using (43), we find,
finally,

8',],
c/, (S=E()=—,V/g((S=E()5(E( E„). — .

il

The dressed state
I
S=E() is, therefore, from (38),

I
F=E/) =g/(E/) I

I )+fdk c/, (S=E/)
I

k )

Again using the expression for P (s)/(s —E/) from (40) in

(57) and taking the modulus squared, we have the popula-
tion in the true continuum state

I s( ),

V;l
I

& si I & & I

'= ~ (Ei }Qi(E/}
Wil

e dF
V;]

=Q/«/} Ii& — Is(& (52) (58)

~here
I s( ) means that continuum state

I
k ) with energy

equal to the chosen QC energy E(. We therefore have a
set of sparse dressed states, as many as there are QC
states, each of which contains contributions only from a
particular QC state and the true continuum state that is
two-photoll resollallt with tllaf, QC state. This is a similar
situation to that encountered in other systems with two-
photon resonance, for example, three-level systems and
other multilevel systems, where population trapping re-
sults. In the present system, if the population is initially
in

I
i ), then the sparse dressed states are unpopulated in-

itially, zeros appear in the spectrum at places correspond-
ing to the energies of these

I
i)-independent states. If,

however, we populate one of these states initially then the
corresponding zero is removed. Hence we anticipate that

If
I
f((=0))=

I
i) then A(E()=0 and we know that

I &s( I @& I'-0» /

A (E(,)~0 and the first term on the right-hand side of
(58) is nonzero. At long times the expression tends to a
constant and the zero in the spectrum is removed.

V. CONCI. USIQNS

We have shown how sparse dressed states containing
contributions from a limited number of continuum levels
are responsible for the appearance of zeros in our model
QC problem. The existence of the zeros is determined by
the initial populations in these sparse dressed states. We
stress that the treatment is vahd for a general QC so that
the positions of the zeros follow the distribution of QC
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levels. In the Rydberg example, this results in a succes-
sively narrower gap between adjacent zeros as the Ryd-
berg levels crowd together at the top of the series. The
Inatrix elements in the case of the Rydberg-like series me

considered do not, therefore, affect the positions of the
zeros. These calculations indicate how clear the features
of certain resonantly coupled multilevel problems may
become %hen a dressed treatment is adopted.
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