
PHYSICAL REVIE%' A VOLUME 37, NUMBER 12 JUNE 15, 1988

Rydberg states of rubidium in crossed electric and magnetic fields
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The results of an experimental study of the Rydberg spectrum of rubidium in crossed electric and

magnetic fields are reported and compared with theoretical predictions. The present investigations
have been conducted in the low-field regime in which the paramagnetic and linear Stark interactions
are perturbations to the Coulomb energy. %'hen quantum-defect corrections are negligible, the
SO(4) symmetry of the Coulomb interaction organizes the hydrogenic energy spectrum according to
the law E„k———8/n'+8k(coL+~s)', where k is an integer such that —(n —1) &k &(n —1),
and roL, mz are, respectively, the Larmor and linear Stark frequencies. The experimental evidence
for such a quantization is presented in rubidium Rydberg series using Doppler-free two-photon
spectroscopy. The role of quantum defects is incorporated into the theory and experimentally
demonstrated.

INTRODUCTION

Advances in tunable laser sources have allowed for a
few years the controlled and highly efficient production
of atoms in high Rydberg states. These Rydberg systems
are a nearly perfect realization of Coulombic systems in
three dimensions. Studies of their properties under static
electric and/or magnetic external fields proved fruitful.
Especially, the combined experimental-theoretical efforts
in the area led to considerable progress in the under-
standing of basic problems such as the Stark effect and di-
amagnetism. ~

Understanding the physics of atoms in combined elec-
tric and magnetic fields is still a challenge, due to the lack
of any constant of motion. Physical implications are im-
portant; for example, in vapor-phase conditions, applying
a 8 field to atoms results in the appearance of the so-
called motional electric field in the atom rest frame.
Good knowledge of the crossed-fields situation is thus
needed, even for dealing with atomic diamagnetism.
Several phenomenological models have also pointed out
the existence of a double-well behavior, modeling an
atomic Penning trap, which suggests the possible ex-
istence of new classes of atomic states or resonances.

The experimental and theoretical results which are re-
ported in this paper can be considered as the first step to-
wards the solution of the crossed-fields problem. We con-
sider a situation in which the electric and magnetic per-
turbations are small corrections to the Coulomb energy.

The quantum theory of this low-field regime was estab-
lished by Pauli in 1926. " In this regime, the SO(4)
symmetry of the Coulomb problem is broken by the
external field perturbation. The analysis of our experi-
mental results makes use of these concepts on Coulomb
symmetry which are recalled in Sec. I. In Sec. II, the role
of non-Coulombic corrections to the potential is con-
sidered. The experimental setup is described in Sec. III
and the experimental technique in Sec. IV. In Sec. V, ex-
perimental results are discussed and interpreted.

Atomic units are used throughout the text. Writing
e =q /4nrso (q the electron's charge) and with R the
Rydberg constant, the unit of energy is 2R =me /iii .
The atomic unit of electric field is thus
E, =m e /~ q ~

iri =5.14X10 V/cm. The atomic unit
of magnetic field is 8, =m e"/

~ q ~

iri =2.35 X 10 G. In
the following, the fields are assumed to be parallel to the z
axis &B field) and parallel to the x axis (E field).

I. HYDROGEN ATOM IN %KAK CROSSED FIELDS

Assuming the proton infinitely massive, the nonrela-
tivistic Hamiltonian to first order in (E,B) fields is

H =Ho+ 8',
Ho=@ /2m e lr, —

W= —(q/2m )B.l —qE r
in the cylindrical gauge. l is the angular momentum
(l =rXp). The paramagnetic and dipolar electric terms
are perturbations to the Coulomb Hamiltonian Ho. The
diamagnetic interaction is neglected.

A. SO(4) treatment of the low4ield regime

The solution of (1) requires us to apply perturbation
theory to the n degenerated n Coulomb shell. The solu-
tion is readily deduced in closed form, introducing the
generators of the SO(4) symmetry group of the nonrela-
tivistic Coulomb interaction. Writing a the Runge-Lenz
vector with

a=( —2mHO) '~ [(pXl —l Xp)/2 me r/r], (2)—

the set (l, a) is well known to build the six components of
an angular momentum X in a four-dimensional
space. ' The components of X commute with the
Coulomb Hamiltonian Ho which establishes the SO(4) in-
variance of the bound spectrum.
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In a given n shell, r identifies with —-', na (the so-c»led
"Pauli replacement" ) and the perturbation W is ex-

pressed as a linear functio~ of the generators

The eigenfunctions at fixed (E,B) are deduced through
a rotation with axis n along BQE from either limits.
Their expressions from the Zeeman limit are (see Appen-
dix A)

where aiL ———q 8/2m is the Larmor frequency and

ais ———,
' (4m co%/'mq)n E is the linear Stark one.

~ 2.2 iaj, n —iaj2 o
~ j)jim, mi)„=e e

~ j,j2m, m, ), ,

('9)

8. Crossebfields spectrum in the le~-Seld limit

The conventional way for dealing with Eq. (3) is to in-
troduce the two operators

3~F2= 2(l Ta)

They fulfill the commutation relations [j;I,jJk]
=i 5; ark j; (with i,j =1,2) of two commuting angular
momenta in three dimensions. Further&nore

J ~
=J2 =J(J +1}alid J =(tl —1)/2 follow directly fronl

l. a=O and I +a +1=—1/(2HO). Hence, the pertur-
bation W'can be written down,

~=~i » +~2 &2

6) ) / 2
=

APL +&g

The quantization scheme is (j,jz j&„jz„),leading to

1E k= — +keg)n

—J +Pl] CJ

(n —1) & k =m, + m2 & (n —1),
wliCrC CO=(COs+COL ) ls thC modulus Of re~ alid Cd2.

The n -degenerate manifold is thus split into (2n —1)
sublevels labeled with the integer k which measures the
sum of the quantized projections of j& and j2 onto, respec-
tively, the r0, and co2 axes (cf. Figs. 1 and 2). The remain-
ing degeneracy of the k sublevel is n —

~

k
~

.
In 1984 we first noticed' that another description is

possible. The operator A,(a„,a~, l, ) (Refs. 13—16) is a
three-dimensional angular momentum, the eigenvalues of
which are A, =A, (A, + I) with 0&A, &(n —1). The pertur-
bation 8'is expressed as

(7)

and is diagonal in the (j,jzA, A,„)quantization scheme.

Obviously, the degeneracy of the A,„=k sublevel on A, is

n —
[ k

~

according to ] k
[ & A, & (n —1 }.

C. Some characters of the eigenfunctions

The angle o,'between A@2 and 8 field plays an important
role. Its expression is:

a tan '(cos/coL ) .

The Zeeman (a=O) and linear Stark regimes (a=m/2)
are limiting cases of the crossed-field quantization. But
from (6) or (7), the energy diagram structure is the same
whatever the 0, value.

FIG. 1. Crossed-6eld quantization in the low-Seld regime for
a pure Coulomb situation. The energy surface depends on the
magnitude of the E and 8 fields. Sections at constant E/8 (or
uz/mL) display the structure of the manifold in energy (a), viz. ,
a set of (2n —1) sublevels equally spaced with co=(~q+coL )'/,
each k sublevel being n —

~

k
~

times degenerate. Sections of
the energy surface at constant energy (b) display the behavior of
the energy levels as a function of E and 8, which are straight
lines in a {E,S~) plot.
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The generator being k =a, such a rotation is not of
the usual geometrical type (the generator of which is a
component of I).'

Finally, the parity H, along the 8 Geld is a symmetry
operation. In the (jijzA, A, ) scheme, the eigenstates

have defined II, =(—)" '. Conveniently symmetrized

expressions in the (j,j2 j, j2 ) scheme are odd or even
cg

1

under the exchange of j& and j2.

II. ALKALI-METAL ATOMS IN CROSSED FIELDS:
THE INCOMPLETE SO(4) MANIFOLD APPROACH

In alkali-metal Rydberg atoms, non-Coulombjc correc-
tions to the potential induce a breaking of the SO(4) sym-
metry. This leads to quantum defects of the zero-fI[eld en-
ergy levels which are usually important for 1&2 states
[e.g. , in Rb, 5(S)=3.13, 5(P)=2.64, 5(D}=1.35, while
5(F)=0.017].

As long as the external-field perturbation is small com-
pared with quantum-defect corrections 5/n 3, the S, P,
and D states present a nonhydrogenic behavior in the
field, exhibiting the orbital Zeeman effect, diamagnetic
and quadratic Stark shifts. But states with 1&3 with
negligibly small quantum defects are nearly degenerate.
They build an incomplete' hydrogenic manifold, with
(n —9) degeneracy.

A. Quantization of the incomplete manifold in crossed ilclds

The use of the resolvent formalism' allows us to
understand most of the structure of the energy diagram
at low 6elds, while relying on symmetry considera-
tions' ' (Appendix 8). The energy levels in crossed
fields are matched through the formula'

8. Zeeman-Stark transition in the ([diagram

The plot in Fig. 3 represents the variations of k*
against a=tan '(ms/coL) for the n =34, even 11„ in-

complete manifold. For the sake of clarity, the states ex-
actly quantized according to the hydrogenic law are not
represented (they would be represented with
(n —

~
k

~

—5) straight lines, k =c", for each integer k
value).

The departure from the hydrogenic behavior
(k'=k+5k noninteger) becomes noticeable when

—=sin[a+sin '(1'/n)] .
P1

This is established semiclassically in Appendix C. I' is
the minimum value of / contained in the manifold (for!' =0 the manifold is complete}.

C. Interaction bebveen nonhydrogenic states
and the incomplete manifoM

A key point in connection with experimental studies
reported in Secs. III-V lies in the analysis of the interac-
tions between the nonhydro~enic states (S, P, and D) and
the incomplete manifold &8't

Obviously, the states of the manifold which are exactly
quantized according to the hydrogenic law [Eq. (7) or (10)
with k ' integer] are not coupled to the nonhydrogenic
(S,P,D} states. The two sets of energy curves cross each
other in the low-field regime.

The states quantized according to Eq. (10) (k" nonin-
teger, cf. Fig. 3} are coupled to the nonhydrogenic
(S,P, D) states and lead to anticrossings of the energy
curves.

1E ~ ———-- + 8'
nk 2& 2 nk

with W ~ ——k'(coL+ros)'; k' plays the role of an

efkctive quantum number.
Most of the states of the incomplete mamfold are still

exactly quantized according to the hydrogenic law [Eq.
(7)]. Hence, k' in Eq. (10) is an integer and constant
whatever the (E,B) fields. These states are not perturbed
by the incomplete character of the manifold. Hence, they
are not coupled through W to the (S,P, D) states.

The states coupled through 8' to the (S,P, D) states'
contain a nonzero component on the I =3 wave func-
tions. Their behavior slightly departs from the hydrogen-
ic law: k' in Eq. (10) is not an integer and depends on
the (E,B) fields.

Coupling is through the Stark interaction to the jiue
"D" channels. Hence, for each k value, there are only
five states (three even 11, and two odd II, states) which
should depart from the hydrogenic law (k' noninteger).
The (n —

~
k

~

—5) remaining ones are unperturbed.
Furthermore, the Zeeman interaction leads to no cou-
pling, which explains why the behavior in the Zeeman
limit is hydrogenic (k integer, see Sec. II 8}.

FIG. 2. Vectorial model of the Coulomb dynamics in a given
n shell, based on the SO(4) symmetry. j&,jz are the two corn-
muting 30 angular mornenta built from the Lenz vector a and
the angular momentum. They are subjected to the constraints

j& ——jz ——(n —I)/2, implying that their tips lie on a sphere. In
crossed-field conditions, j& and j& precess around, respectively,

and ~2, and k=j, + j2 is conserved. The angular
67

l A&2

momentum A,(a, a~, I,) also preeesses around m2 (with k =k).

The angular velocity of precession is ~=tu&+~L )' '.
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50

i), (ceg~)
FIg. 3. Crossed-geld quantization of an incomplete hydrogenic manifold (n =34, even H, } in the case of rubidium. The e8'ective

quantum number k = +' /(~s+~i. )' faq. (&0)] is plott d gai»«=tan (~s~~ ) ('n «grees). States e" ct y q"a"t'zed ac
nk

cording to the hydrogenic taw [Eq. (7)] would lead to Q*=c"' for each integer k value (not plotted). The plot thus characterizes the
departures from the hydrogenic behavior for the states which are experimentally detected through anticrossings. The behavior is hy-

rogenic in the Zeeman limit C'a=O), then a transition region exists where usually three states leave the k submanifold. Variations of
k are about (—1) up to the Stark limit (a=90').

The situation of thc 5 series is of special experimental
interest (cf. Fig. 4). The couphng through the Stark in-
teraction is at third order in the E field and leads to sharp
anticrossings. In the Zeeman limit, the anticrossings
should disappear. '

A schematic view of the experimental setup is shown in

Fig. 5. cw dye-laser excitation of atomic rubidium using
Doppler-free two-photon spectroscopy is performed un-
der vapor-phase conditions. The Rb cell allows ther-
mionic detection of the ions, produced from the Rydbcrg
atoms.

A. Tunable nv dye laser

This is an R6G, Ar+-pumped ring dyc laser' ' which
delivers about 800 m% single-mode power at A, -5900 A.
The frequency is servo-controlled to within 1-MHz accu-
racy. Locking on an external Perot-Fabry cavity allows
140-GHz single-mode pressure scans of the frequency.

Thc frequency 1S McasuIcd to within 1-MHX relative
accuracy by means of a 75-MHz free-spectral-range
Perot-Fabry interferometer.

B. Rubidium eeB and fieM arrangements

The cell with silica Brewstcr-angled windows contains
the electrodes that allow the application of a small elec-
tric field (supplied with a battery) in the range 0—25
V/cm between a plate and a mesh spaced 4.2 mm apart
(see inset of Fig. 5}. Another closed compartment aside
from the interaction region contains a 800-K heated
tungsten wire, 0.15 rnm in diameter, aBowing this device
to work as a thermoionic detector.

The typical vapor pressure is about 10 Torr and kept
low enough in order to limit chemical attack of the Brew-
ster windows. The magnetic field is produced by means
of air coils in Helmholtz positions giving up to 720 G.
The earth field (about 0.2 G) is not compensated. The E
and 8 fields are crossed to within 2 .

C. Dopyler4'ree tao-photon optical arraagemeat

The laser beam is focused into the interaction region by
means of two lenses and retrofocused with a spherical
mirror. A Faraday optical insulator avoids retrofocusing
into the laser cavity. Experimental conditions for achiev-
ing CIcient Doppler-free two-photon excitation have
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(ri+3) S "-

FIG. 4. Schematic representation of the crossed-5eld behav-
ior for nonhydrogenic atoms. While the incomplete manifold is
quantized according to the hydrogenic law [hnear in
co=(coL+agz)' ] the nonhydrogenic nS states have a smooth
dependence of their energy curves, quadratic in E and B. From
the anticrossings of the two systems of energy levels, it is possi-
ble to establish experimentally the quantization obeyed in the
manifold at nearly constant energy (as 5&gkp) in conditions
similar to those in Fig. {1b).

been extensively discussed. It has been shown that
most of the signal comes from atoms located in a volume
defined by the waist of the laser beam and its Rayleigh
length. In order to increase the electric field homogenei-
ty to better than 1% we used a Rayleigh length of 2mm
and a waist of 20 pm. Power shift and broadening are
negligible.

D. Two-photon line shapes and intensities in rubidium

Natural rubidium which is used in the experiments
contains 72% Rb (nuclear spin I = —', ) and 28% Rb

recorder

(I=—',). The hyperfine structures of the ground state

5S,&2 are„respectively, 6.835 and 3.036 6Hz, while com-
pletely negligible in high Rydberg states.

In contrast, the fine structure of the nP and na levels is
not negligible for n =40, while that of the F, G, H, . . .
levels is smaller than 1 MHz. ' ' Quantum defects
are large for the nS, nI', and na series. But they are
negligible for the nI', nG, nH, . . . states with l & 3, which
build an incomplete manifold (see Sec. II). So far as one
considers only the nS and incomplete manifold states,
both the fine and hyper6ne structures are negligible.
Thus one deals with a purely orbital problem in the excit-
ed states.

Doppler-free two photon transitions in zero field take
place between the 55 and nD or nS states. Use of general
formulas for the two-photon probability leads to, for
the Rb (5S~&z,F=3)~nS, &z transition,

'2

A =(1.2X 10 ") — n ' (sec '),
S

where (P/S) is the power per unit surface (W/cm ). The
number of atoms excited per unit time is thus
N„-sX (0S/p)SA. , where Xo is the atomic density, S/p
the Rayleigh length, and S the surface of the laser beam
at waist. One deduces Nits=10' atoms/sec, which as-
suming complete ionization and an amplification factor
of 10 in the thermoionic detector leads to an electronic
current of 10 A. This agrees with the experimental re-
sults.

E. Frequency modulated thermoionic detection

The Doppler-free two-photon absorption signal is
Lorentzian-shaped (the Doppler-limited Gaussian part is
unnoticeable). Using frequency modulation of the laser
(around 230 Hz), the line shape is the derivative of the
Lorentzian profile' as shown in Fig. 6. The depth of

to recorder
confocal

Perot- Fabr y
inter aerometer

75 Mhg

lock-in servo externai
control cavity

amplifier, .i.—...,.
0

' ' pre%5Ure ' tu~sten
wIre

mesh

i) signal
opticai j) /2

insulator plate lens

c w ring
dye laser

Rubidium ce~l

FIG. 5. Sketch of the experimental setup for Doppler-free two-photon excitation of rubidium Rydberg states in crossed fields. De-
tails of the electrode arrangement in the Brewster-angled thermoionic detector are shown in the inset.
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87
Rb F=2

85
Rb F=3

Rb F=2

FIG. 6. Typical Doppler-free two-photon signal as obtained ~ith frequency modulation of the laser. The signal is the derivative of
the usual Lorentzian absorption signal. The plot has been taken with zero electric field and a magnetic field 8=294 0 on the
551/z~37S two-photon transition. It exhibits the ground-state hyperfine Zeeman effect of rubidium and some of the isotopic
hyperfine structure.

modulation (approximately equal to 5 MHz) is adapted to
the (collisional) width of the curves which are red shifted
by 5 MHz at inaximum. Stray electric field measured
in situ are smaller than 20 mV/cm.

The use of frequency modulation of the laser combined
with thermoionic detection leads to considerable
enhancement of the signal-to-noise ratio. Using ampli-
tude modulation, the time response of the detector is
rather slow (approximately equal to 50 msec) due to
strong perturbations of the space charge by the laser. On
the contrary, with FM techniques, the diode keeps the
same permanent working point and the response extends
to higher frequencies (up to 1 kHz). This also applies
successfully to the detection of Doppler-limited profiles. '

F. Fields' calibration in the interaction region

Direct calibration of the fields in the interaction region
has been deduced from measurements of the field depen-
dence of the nS, nP, and nD "nonhydrogenic" series.

The magnetic field is measured to within I G accuracy
in the interaction region, using hyperfine structure of the
ground state and Zeeman splitting of the lines (see Fig. 6).
Measurements of the diamagnetic blue shift of the nS
state have been done on the

~

F= 3, mF =+3 )
~

nS, ms ——+—,
' ) two-photon transition, which is free

from paramagnetic shifts and decoupling e8'ects. For the
375 state„ the experimentally measured diamagnetic shift
is (3.27+0.02)X10 MHz/6, in excellent agreement
with nonhydrogenic perturbation theory (3.28 x 10
MHz/G ).

The electric field calibration to within 0.5% is deduced
from the study of the Stark effect on the nS, nP, and nB
series for n ranging from 30 to 47 and several M values.
Theoretical reproductions of the Stark maps (through di-
agonalization on seven adjacent manifolds) to 5 MHz ac-
curacy correspolids to input quantum defects with about
four significant digits (values are extrapolated from previ-
ous measurements' ' ). Such a sensitivity arises from a

partial compensation in the quadratic Stark shifts. For
example, the nS Stark shifts come from the interaction
with the (n +2)P and (n + 1)P levels, which are nearly

symmetrically located on either side of the nS.
Determination of structural parameters of rubidium

(fine-structure and static polarizabilities, see Table I) are
in good agreement with previous measurements. Static
polarizabilities scale approximately as n F. to within
2%. Independent confirmation of the electric field cali-
bration has been drawn from studies of the linear Stark
bellavior (see Sec. V A).

IV. KXPKRIMENTAI. TECHNIQUES:
FM ANTICROSSING SPECTROSCOPY

TABI-E I. Measured quadratic Stark shifts [MHz/(V/cni)'j.

35Ds/p

4oas/2

36P3 /2

41P3/2

37S)/2

42S] /2

8.5+0. 1

22.3+0.2
12.2+0.2
33.6+0.3
3.1+0.1

7.5+0.2

Fine Structure

35D AFs ——279+5 MHz 368 AFs ——2348+10 MHz
40D AFs ——184+5 MHz 411' hps ——1525+10 MHz

Direct optical excitation of the states of the incomplete
manifolds, being hardly possible at low fields, the key
idea in the present experimental investigations on rubidi-

um, is the one displayed in Fig. 4. The nonhydrogenic nS
series present a weak-field dependence and are efFiciently

excited with two photons. Tracking of their anticrossings
with the energy levels of the incomplete (n —3) manifold,
as a function of E and 8 fields, allows us to test the
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crossed-field qllRIitizatlon Rt IlcaI'ly constRIlt cllci'gy [ill
coildltloIls slInilar to tllosc ill Fig. 1(b)].

30 and 45, with the present range of fields (E & 20 V/cm,
8 &700G).

A. Anticrossings spectroscopy on the nS series

The field dependence of the nS energy curve (see Sec.
IIIF) is small such that 5«b, o (see Fig. 4). Coupling
with the manifold establishes at third order in E. The I'
state is approximately redistributed with n-'" weight
onto the manifold states. Hence the anticrossing width
scales as (n E) (1/n ) n '~ . This leads to the weak
value V=aE n ~ [with a =1.1&10 ' MHz/(V/cm),
in good agreement with numerical calculations, Sec. Vj
such that V«(cos+c0& )'~ . The interaction takes place
in the weak-coupling regime and leads to well-separated
anticrossings. This is actually valid for n values between

B. Experimental procedures and line shapes

The method was checked by testing the linear Stark be-
havior obeyed in the manifold. A typical signal corre-
sponding to the n =375 anticrossing with . thek'= —27.6 state of the n =34 incomplete manifold is
shown in Fig. 7.

The method has been extended to the crossed-Geld situ-
ation. The only diit'erence arises from the existence of
several lines associated with the hyperGne Zeeman effect
of the ground state. However, the dominant two-photon
transition

~

I'=3, mF =+3)~
~

nS, MS ——+—,
' ) is not

afrected by the magnetic field. Especially, there is a can-
cellation of the electronic spin contribution.

This transition has been used for the measurements of
the anticrossings positions. As shown in Fig. 3 of Ref.
19, it is hardly possible to resolve the two states under in-
teraction. The passing through anticrossing is detected
from the strong decrease of the signal.

C. Diabatic FM Doppler-free anticrossing spectroscopy

The previous method is well adapted to the detection
of large anticrossings but becomes ineScient at vanishing
widths. In this case we made use of another scheme al-
lowing direct recording of the anticrossing positions at
fixed electric field, on the (0—700 G). 8 field range. It
takes advantage of the smooth variations of the nS dia-
batic energy curve with 8. The laser frequency (which is
modulated) is servo-locked on the

~

F=3, m„= +3 )~
~
nS, ms ——+ —,

' ) atomic transition whatever the 8 field.
This is conveniently achieved by adding a small (5 G) ac
component (frequency 20 Hz) to the magnetic field. Fur-
ther heterodyne analysis of the error signal allows (0-700
G) 8 field scans while the laser frequency is locked on the
atomic transition. ' ' ' ' The passing through anticross-
ings results in a perturbation of the energy curve of the
nS state. This manifests as an error signal on the 8 field
loop. The anticrossing signal is roughly the derivative of
the PM Doppler-free one, or the second-order derivative
of a Lorentzian curve, as shown in Fig. 8. Recording of
the error signal directly gives the positions of the an-
ticrossings as a function of the 8 field. Such a record for
the n =34 manifold and the 375 state and E =10.88
V/cm is shown in Fig. 8.

150MHz

FIG. 7. Tracking the anticrossing position between the
n =34 incomplete manifold and 37S state in the electric 6eld
problem (8=0). The anticrossing with the (n =34,
k = —27.6) linear Stark sublevel takes place for an electric
field value E=12.49 V/crn. The widths of the anticrossings are
of the order of 80 MHz. Due to the weakness of the coupling
with the S state, the transfer of oscillator strengths takes place
on a very small range of electric 6eld. From top to bottom,
electric Geld values (V/cm) are 12.8'7, 12.54, 12.52, 12.50, 12.4'7,
12.45, 12.40.

V. CROSSED-FIEI.D QUANTIZATION
OF THK INCOMPLETE MANIFOLD:

KXPKRIMKNTAI. RESULTS

The study has been based on the 37S„n =34 and 42S,
n =39 anticrossings. From previous comments this sup-
plies us with a picture of the crossed-field quantization on
the orbital structure, at nearly constant electron energy.

A. Linear Stark behavior from anticrossing spectroscopy

The study of the linear Stark e6'ect allows independent
confirmation of the electric field calibration (Sec. IIIF)
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TABLE II. Anticrossing positions and widths in the linear
Stark regime and theoretical predictions (respective units are
V/cm and MHz).

Eexpt

n =34 manifold„37S state
E,&, , %'idth (Expt. ) VA'dth (Theor. )

I

400

10.67+0.05
11.51+0.05
12.49+0.05
13.66+0.05
15.0220.05
16.70%0,05

10.67
11.53
12.51
13.64
15.00
16.66

80+10
110+10
140+20
210+20

50.7
66.7
86.1

114.3
154.2
212.4

FIG. 8. Diabatic FM Doppler-free two photon signal from
anticrossings between the 37S state and n =34 manifold, in
crossed electric and magnetic Aelds. The two-photon laser line
is locked on the (5S&/2, 8=3, mF ——%3)~(37S,mz ——2z) iwo-

photon transition. The F. 6eld value is E=10.88 V/cm. The
0-700 G scan on the magnetic 6eld allows direct recording of
all ihe anticrossings with the 37S state. The signal (see text) is
of absorption type and the assigned k* values from left to right
are k*=—30.41, —29.44, —28.47, —27.49,—26.52, —25.49,
—24.48, —23.49 „—22. 51,—21.53, —20.49, —19.50,—18.56.
The parasitic signal seen around 575 G is due to accidental
coincidence between two lines of "Rb and 'Rb. The low-6eld
variation of the background signal comes froHl the diamagnetic
shift of the 37S state, the derivative of which scales as 8.

5.31+0.02
5.66+0,02
6.06+0.02
6.48+0.05
7.02+0.05
7.65+0.05
8.39+0.05
9.27+0.05

10.43+0.05
11.95%0. 1

14.15+0.2

n =39 manifold, 42S state

5.32
5.68
6.08
6.53
7.05
7.67
8.40
9.30

10.43
11.95
14.11

30.6
38.7
48
60.6
77.7

101.1
134
181
254
374
592

and experimental determination of the coupling V be-
tween the nS series and the states of the incomplete mani-
fold through the widths of anticrossings. The anticross-
ings are detected in the vicinity (+100 MHz) of the nS
energy curve (cf. Fig. 7). The positions and widths of the
anticrossings are given in Table II. They agree to within
2% with the theoretical values.

8. Crossed-N[eM quantization of the incomplete
manifold: gross features

Compared to Ref. 19, results have been extended in a
significant way through the use of the scheme described
in Sec. IV C. Typical accuracies in the determination of
the positions of anticrossings are 0.05 V/cm and I G.

Plotting in coordinates (E,B2), the positions of the an-
ticrossings with the nS diabatic energy curve result in a
picture of the quantization obeyed in the incomplete
manifold, at nearly constant energy. This is done in Figs.
9 and 10 where the points are the crude experimental re-
sults without any corrections. ' ' This affords striking
experimental evidence that the manifold states are ap-
proximately quantized according to Eq. (7), viz. ,
bo/k =(cos+coL), thus establishing the reahty of the
crossed field "Pauli" quantization (b,o is the zero-field en-

ergy spacing, cf. Fig. 4). Furthermore, by comparing the
slopes of the lines on the plots in Figs. 9 and 10, the n

dependence of the linear Stark frequency m& is quite
clearly exhibited. '

Each straight line on the plots is associated a given k
sublevel, where k measures approximately the quantized
value of the projection of the angular momentum A, [Eq.
(7)j onto the mz

——col +ass axis {cf. Fig. 2). The eigen-
functions associated with the data in Figs. 9 and 10 do

not share any common geometrical character. Neverthe-
less, the (E2,B ) organization nearly perfectly expresses
the SO(4) symmetry of the Coulomb interaction. '~

C. Detailed analysis of the crossed-Seld results

In Ref. 19, the data were dealt with according to the
formula b =ko(col +co& ), where ko was assumed to be
constant whatever E and 8, and measured at the disap-
pearance of the anticrossings, close to the critical electric
field value. m& was considered as a parameter giving the
slopes in the (E,B ) plot but actually was very close to
the linear Stark frequency co+. However, cps/cps was
slightly dependent on ko. Although the determination of
ko has been done in a region where the quantization is
tending to the hydrogenic one, the method is not com-
pletely consistent, as the theoretical behavior of the ener-
gy levels {cf. Fig. 3) is not described with straight lines.
This, in particular, becomes obvious with the extended
set of experimental data we deal with here, where small
nonlinearities in the (E,B ) plots are clues that more de-
tailed analysis is required, incorporating the role of quan-
turn defects. Actually, in Sec. II 0, we have shown that
the states leading to anticrossings with the nS states
should slightly depart from the hydrogenic crossed-field
behavior. Their spectra obey Eq. (10) with k'=k+5k.
5k depends on the field strengths or on a =tan '(sos/ul )

[Eq. (8)] and measures the deviations from the hydrogen-
ic law. k is the integer value of k* at vanishing E field
(hence, in the hydrogenic limit, see Secs. II C and II D).

Before extracting from the experimental data the value
of k' as a function of ~&/mL one should correct it for
the small variations of the energies of the nS state and for
the second-order variations in E and 8 of the energies of
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FIG. 9. (E,B') plot of the anticrossings bet@veen the 37S state and the n =34 incomplete manifold. This displays the crossed-field

quantization at nearly constant energy [compare with Fig. 1(b)]. Each line is associated with a given k* value which approximately
measures the quantized projection of the SO(4) generator A, onto the co2 axis.

the incomplete manifold. The most important correction
arises from the quadratic shifts of the nS diabatic energy
curves experimentally determined in Secs. III F and V A.
General arguments' ' ' ' applied to second-order
corrections to the manifold energies for n =34 lead to a
Stark red shift of —0.38 MHz/(V/cm) and a diamagnet-
ic blue shift of 3X10 MHz/G2 (comparable to the one
of the S state). These corrections here are about +100
MHz at maximum.

[(lcm)]"

12

Finally, for the anticrossing data for the 37S state and
the n =34 manifold, formula (10) should be amended as

~

k
~
(cos+cor ) =So+6 +kg

with ho ——22 100 5, =2.76F. , hz -0, co& ——65.26E,
~L ——1.39968, where the units are megahertz, Gauss, and
V/cm. This allows us to deduce k' as a function of
+=tan '(cps/coL). The experimental values for n =34
are plotted in Fig. 11.

The uncertainty in the determination of k ' is of the or-
der of Ak' =0.10. Limitations come from the uncertain-
ty in the electric field calibration (0.5%) and from devia-
tions from the quadratic behavior of the Stark shift of the
nS state at high fields. Although it is small
[5(F)=0.017], the quantum defect of the F state also con-
tributes to this uncertainty.

I2

g2 22 32 42 $2

) [(&Oo G}']

FIG. lo. (E,B ) plot of the anticrossings of the 425 state
and the manifold n =39. Comparison with Fig. 9 gives evi-
dence of the Stark frequency scaling as nE (Ref. 19).

D. Evolution of the crossed-6eld quantization

from the Zeeman to the Stark limit

As seen in Fig. 11, the value of
~

5k
~

are slowly evolv-
ing from 0 to about unity as a function of ~&/cuL. This
confirms that the experimental data in Figs. 9 and 10
refer to the regimes described in Sec. II where the
crossed-field quantization is not perfectly hydrogenic.

The crossed-field quantization tends to the exact hy-
drogenic quantization when 5k=0. This is associated
with the transition region in Fig. (3) [Eqs. (11)]. Actually,
this is the region where anticrossings disappear, which
explains why experimental values of

~

5k
~

smaller than
0.1 have not been measured (cf. Fig. 11). On the plot in



F. PENENT, D. DEI.ANDE, AND J. C. CyAY

30 ~

25 .

4
1 0 ~

0 ~

0 t ~

~ ~

0 ~ I ~ ~ ~ ~ ~ I ~ a ~ ~

~ g ~~ ~Oe + ~
~ ~ ~ A

~ 0 4 ~
~~ ~os

~ tg~ i ~ ~ y y

~ y
~ ~ 1je ~ ~

4o~ a
~ ~ +

III ~ Q g ~

~ ~

mostly take place in the transition region in a small range
of e values.

The plots of either Fig. 9 of Fig. 11 thus concern the
most nonhydrogenic among the states of the incomplete
manifold. Their behavior illustrate how the n —

l
k

l
de-

generacy of the k sublevel in crossed fields is partly re-
moved due to non-Coulombic corrections to the poten-
tial. In comparison with Fig. 3, only one among the
three sublevels leaving the k subshell is experimentally
detected. This comes from the weakness of the coupling
of the nS state with the others and can be accounted for
using the resolvent formalism (Appendix 8).

K. The Stark limit of the crossed-Seld spectrum

20- ~ ~ ~ ~ ~ + + ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ '1 1 ~ ~ ~

~ 1 ~ ~ ~ ~ ~ ~ ~ ~ 1 ~

20 30 40 50 00 VI

6(deg)
FIG. 11. Experimental plot of the effective quantum number

k against a=tan '(mz/~L) {scale in degrees; 37S state, n =34
manifold), The corrected experimental data can directly com-
pare with theory in Fig. 3 (see Fig. 12 for a more detailed com-
parison). The agreement is excellent. As expected the an-
ticrossings disappear when 5k ~0 (transition region where the
quantization tends to the exact hydrogenic quantization).

Fig. 9 it ls associated witlj a critical electric field value (cf.
Appendix C) under which no measurements of this kind

are possible.
As shown in Fig. 12 for k = —19 and k = —20, the ex-

perirnental results are in excellent agreement with

theoretical predictions. The maximum variations of 5k
are about —1 from the Zeeman to the Stark limit. They

Figure 13 allows a comparison of theoretical and ex-
perimental results in this region where the data are far
less regular and where the dominant physical e6'ects
come from non-Coulombic corrections to the potential
and linear Stark efFect (as oi& &&cos). This corresponds to
8 field values smaller than 50 0 (a in the range 0.9n. /2 to
n/2). In zero magnetic field only the states with M =0
are detectedt, hrough anticrossings with the nS (M =0)
state (see Sec. V A). Applying a 8 field on the system al-
lows to break the selection rule on the M value in this in-

complete Stark manifold. Detection of states with k odd
as well as even becomes possible. Hence, as shown in

Fig. 13, the number of anticrossings experimentally
detected becomes twice the one in the electric field alone.

There are strong interactions [cf. Fig. (13)] between
sublevels when the magnetic interaction is branched, be-
fore the crossed-field quantization is established' ' ' for
uI —co&. This is consistent with previous measure-

28 ~

25 ~

I

26 30 40 50 N 70

Q(deg)
FIG. 12. Detailed comparison between theory and experi-

ment for the n =34, k = —20, and k = —19 states of the incom-
plete manifold. Only one state ainong the three leaving the
{n —

~

k
~

)-degenerated k submanifold is experimentally detect-
ed. It exhibits a departure from the hydrogenic crossed-6eld be-
havior with

~

5k
~

= 1 at maximum.

23 ~

80
Q(deg)

FIG. 13. Stark hmit of the crossed-field spectrum of the
n =34 incomplete manifold. The behavior of the energy levels

is far less regular than in the intermediate range. Strong in-

teractions in this regime manifest the passing from an incom-

plete manifold Stark quantization to the crossed-6eld quantiza-

tion. The number of anticrossings with the 37S state, that is the
number of experimental points on the plot, then becomes twice
the number of anticrossings in the Stark limit (+=90').



R'fDBERGr STATES OF RUBIDIUM IN CROSSED ELECTRIC. . .

ments by Korevaar and Littman in conditions where

coL/sos g0. 1. This also implies that linear extrapolation
of the data in Fig. (9) at 8 =0 cannot giue the positions of
the anticrossings in the Stark (when dealing with nonhy-
drogenic atoms}.

This agrees with our direct measurements in Table II
and with those obtained on the first anticrossing by
O' Sullivan and Stoicheft'. But their further extrapola-
tion at 8 =0 of our previous crossed-field results cannot
be consistent.

VI. CONCLUSION ON THE CROSSED-FIELDS
QUANTIZATION

%e have thus experimentally established for the first
time that the crossed-field spectrum of Rydberg atoms is
organized according to the law
E „,=(—1/2n )+k'(aiL+a)s)'~ in the low-field limit.

The value of k' approximately measures the quantized
projections of the angular momentum A. onto the
to2 =tot +Ns axis, Iliakilig clear oilce Blore its physi-
cal importance.

This is one of the most direct demonstrations of the
SO(4) symmetry of the Coulomb interaction, although
small e6'ects of nonhydrogenic corrections to the poten-
tial lead to noninteger values of k *.
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APPENDIX A: PROPERTIES OF THK
CROSSED-FIELD KIGKNFUNCTIONS

They belong to the two types of subgroup chains: type

SO(4) =SO(3)e SO(3)a SO(2)e SO(2) .

type II,

SO(4) 0SO(3) DSO(2) .

For the Coulomb problem, only self-conjugate repre-
sentations' of SO(4) are realized [with j,=j2 (n——
—1)/2], which is associated with the second Casimir
operator I s being 0.

Type-I eigenfunctions are (j,j2 j, j2 ) of a general-
to I ra~

ized parabolic type. If ui ——co2 parallel to z axis, the
(j, j2 j, j2 ) coincide with the usual parabolic eigenfunc-

tions to within a phase factor. I, and a, being defined
from Eq. (4) one has

a~ =k =n2 —ni =A(2 —J)
z z

wh«e (n i„n2) a« the usual parabolic quantum numbers.
Spatial representations in parabolic coordinates are
known' and of a type separable in R . Use of Eq. (9) and
conventional 30 angular momentum algebra allows us to

deduce the expression of the generalized parabolic eigen-
functions.

The most-famous type-II eigenfunctions are (j, j2 i i, ),
which coincide to within a phase factor with the usual
spherical basis. The parabolic and spherical types thus
di8'er through a coupling of the angular morn enta
I =j,+j2. This leads to (with n =2j+ 1)

.2 2 n —1 n —1
lJ'iJ2iM&= g 2 2

rn2 11M
I 2

)(
~ J iJ 2m i ln 2 )

where the coeScients are the usual Clebsch-Gordan
coeScients.

Another class of type-II eigenfunctions (j, j2 A, A,, ) is

associated with the nonstandard coupling A, =(j2 —j, ,
X X

j2 —j, ,j2 +ji ), where A, is a 3D angular momen-

tum. ' ' l and A, are interconnected through a SO(4) ro-
tation' with generator j, =(I,—a, )/2:

lVJI —le I
A, =e 'le

Hence,

i' I

I j~jz~J z & =e *
I
J'J2li, »

which actually provides us with the expression (as well as
spatial representation) in the parabolic or spherical basis.
Consequently, the (ji,j2, A, , A, ) eigenfunctions [see text

2

and Eq. (9)] are expressed as

lVJ )

~j 2ij22mJ&~ =2e'"re ''
~

j2ij22lM)

from the spherical basis with quantization along B.
In the Zeeman limit (to, 2

——toL ), the eigenfunctions are
hus (J 1 J2 J 1,J2, ) or (J i J2X k ). But (J i J2L'I, ) is also a

well-known solution. In the Stark limit, one finds with

t0, 2= Pros either (ji j2 j, j2 ) or (j,jp, A,„). The latter

provides us with a rotational-type description of the
linear Stark eftect.

B. APPENDIX 8: QUANTIZATION OF AN

INCOMPLETE MANIFOLD

The use of the resolvent formalism is an alternative to
numerical calculations for dealing with the quantization
of an incomplete manifold and more generally with
symmetry-breaking perturbations. ' ' ' At low
fields, quantum-defect corrections make the n states of
the n manifold be split into tao classes. Those with 1 & 3
are still energetically degenerated and build an incom-
plete cH manifold. It is incomplete in that the 1 & 2 states
which build the rNH subspace are lacking compared to
the hydrogenic situation.

Writing P (Q) the projector on the eH (eNH} subspace
with P +Q =1, the problem thus amounts to finding the
eigenvalues t F =k*coI and eigenfunctions I ~

itt) ] of the
restriction of the Hamiltonian I'O'P to the cH subspace.
Froin (Ref. 21) one deduces
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Elementary manipulations lead to the solution

(82)

still quantized according to the hydrogenic law in agree-
ment with Refs. 18 and 20. The approach is also perfect-
ly suitable for the evaluation of the anticrossing sizes be-
tween the nS and perturbed I

k*co I states.

Q(W —E)-'QW
~

y&=0. (83)

Hence, W
~

p& is an eigenvector of Q( W —E) 'Q associ-

ated with a zero eigenvalue, which implies

while from Fig. 3 and numerical calculations the Auctua-
tion 5k is —1 at maximum.

Further reduction of Eq. (3) can be performed by ex-
ploiting the symmetries of 8'. Considering the product
of time reversal and parity operations, the incomplete
manifold is shown to be symmetrical around k =0.

The parity H, along the 8 6eld is a symmetry opera-
tion. Hence (3) and (4) should be considered in even

eNH(+ ) [dtmsNH(+ ) =6) ol' odd eNH( —)

[dimes ( —}=3] subspaces.
Finally, the cH and c.H subspaces are coupled through

the electric field term only (the manifold is "complete"
with all the I, ) 3 states with respect to the Zeeman
term). Hence, the coupling is from D to F states.

Schmidt orthogonalization allows to deduce that there
are only three even and two odd perturbed states in each
k submanifold which depart from the crossed-field hydro-
genic behavior. The (n —

~

k
~

—5} remaining states are

det[Q( W —E) 'Q]=0 .

As the dimension of Q[W —E] 'Q is dime&H —9 (rubi-
dium case) and independent of n, computations have been
reduced to a minimum. From Eq. (4} the perturbed spec-
trum is bounded with (k *

& 0)

APPENDIX C: TRANSITION REGION
IN THK CROSSED-FIKI.D DIAGRAM

The transition region (cf. Fig. 3) in the crossed-field en-

ergy diagram can be described simply with semiclassical
arguments. For the k submanifold (with n —

~

k
~

degen-
eracy) to be insensitive to the incomplete character of the
manifold it should be orthogonal to the low-1 (S, P, and

D) states. This implies that the two following conditions
cannot be realized together:

=k,
1 2

IIIII=lljt+jzll &1'=3

Elementary arguments (see Fig. (2) ) allow the evaluation
of the minimum value of I =j,+jz when j, and j2 are
constrained with Eq. (1) and j, =j 2 =n /4. It is real-
ized forj, =j2 ——k /2 leading to:

rd
l Cd2

n sin [sin '(k/n) —aj if k/n &sinu
l

. 0 otherwise .

Consequently, the crossed-field behavior is no longer of
the exact hydrogenic type when k/n & sin[a
+sin '(1*/n )] [cf. Fig. 3 and Eq. (11)].

Making the approximation I"/n « 1, this reads
co, =—,'nE g 50/n. The anticrossing disappears below the
critical electric field value E,„=26o/3n, in agreement
with experiments.
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