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%e provide a comprehensive analysis of the standard model of the bidirectional ring laser in

which only one mode can be supported in each direction and in the limit that the polarization can
be eliminated adiabatically. The interaction between the two counterpropagating modes can be
derived and it is most naturally viewed as s coupling between them vis scattering from a spatial

grating formed in the population inversion. If the grating is s sufficiently small modulation of the

spatial average of the population inversion, it can be approximated by a sinusoidal function. A
systematic derivation of the model with only a sinusoidal grating for the homogeneously

broadened case is presented that reveals and corrects errors in several previously published analy-

ses. The stability of the steady-state solution is analyzed. The bidirectional steady-state solution is

unstable and the unidirectional steady-state solutions may be stable or unstable depending on the

parameters. The well-established result of bistsbility between the two modes when the cavity is

tuned to resonance is recovered, s result that persists, in part, even when the losses between the
two modes are di8'erent. Kith detuning, the unidirectional steady-state solutions can be destabi-

lized, cresting regions in the parameter space where only time-dependent solutions are found. For
parameters characteristic of solid-state or molecular gas lasers, the instability can occur for very

small detunings and even very close to the lssing threshold. Asymptotic 1imits of the instability

boundaries for these parameters are presented. Additional results are derived formally for inho-

mogeneous broadening with a Lorentzisn line shape and for arbitrary inhomogeneous linewidths,

Explicit analytic results are presented in the limits of very small and very large inhomogeneous

linewidths compared with the homogeneous linewidth. Time-dependent solutions in the homo-

geneously broadened case for relaxation rates appropriate to CO& lasers show that there are broad

regions in the parameter space of gain snd detuning for which the behavior is dynamically chaotic
in the form of nearly "square-wave" alternation between the counterpropagsting modes of the
laser with irregular switching times. In other regions of that parameter space we 6nd more irregu-
lar pulsations and pulse slternations. Regions of periodic pulsations also have been found.

I. INTRODUCTION

Bidirectional operation of ring lasers has been studied
since the design of ring lasers themselves' because the al-
most inescapable reversibility of optical paths permits
such lasers to operate with counterpropagating fields.
Such lasers can be reduced to simple traveling-wave de-
vices only after insertion of a suf5ciently nonreciprocal
element in the cavity such as, for example, a Faraday ro-
tator together with polarization-dependent losses. Bi-
directional ring lasers are also of considerable technical
interest because of their use as gyroscopes wherein the
frequencies of the counterpropagating ~odes are split by
any rotation of the plane of the laser about an axis nor-
mal to the plane. Thus these lasers have been well stud-
ied for many years and the bibliography can be found by
consulting review articles. " The bidirectional solid-state
laser has been a special interest of Khanin and co-
workers who have published several papers and reviews
on the subject. '

%e have returned to this problem for several reasons.
First, recent experiments on bidirectional laser action in

CO2 ring lasers provide the filrst significant experi-
mental evidence of the dynamical behavior of ring lasers
which are appreciably detuned from resonance under
conditions where the models can be simplified by adia-
batic elimination of the polarization. Almost all previ-
ous experiments for lasers in which the polarization re-
laxation rate yj greatly exceeded the cavity decay rate a
were for solid-state lasers of such large linewidth that
appreciable detuning was never practical because the fre-
quency spacing between adjacent cavity modes was
much less than y~, leading to mode hopping instead of
detuning. Second, the experimental results indicate that
the C02 ring laser can easily show complex dynamical
evolution of the type known as deterministic chaos, be-
havior that also merits study, particularly because the
time scales of the real-time pulsations are amenable to
careful measurement. Third, the experimental results in-
dicate a variety of characteristic pulsation frequencies
which seem to be of di8'erent orders of magnitude, a fac-
tor not previously found in theoretical studies. Finally,
there is disagreement in the literature about the equa-
tions that should be used to model this system, a debate

Qc1988 The American Physical Society



37 BIDIRECTIONAL RING LASER: STABILITY ANALYSIS. . . 471

for which we feel we can now propose a resolution.
In Sec. II we provide some general historical back-

ground and a summary of previous work. In Sec. III we
oFer a careful derivation of the equations for the horno-
geneously broadened bidirectional ring laser in which we
resolve previous disagreements. In Sec. IV we present
the steady-state solutions of the model and a stability
analysis of these steady states for arbitrary losses in the
two directions and for arbitrary detuning. Numerical
solutions showing the time-dependent behavior in the re-
gion where the steady states are unstable are presented
in Sec. V while the effects of inhomogeneous broadening
are considered in Sec. VI. We conclude with some ob-
servations on work that remains to be done.

II. HISTORICAL BACKGROUND

Among the earliest theoretical studies of the horno-

geneously broadened bidirectional ring laser are those of
Lisitsyn and Troshin; Moss, Killick, and de la Perelle
Tang, Statz, De Mars, and %ilson;" Aronowitz Basov,
Morozov, and Oraevskii Bespalov and Gaponov
Livshitz and Tsikunov Ostrovskii Zhelnov, Ka-
zantsev, and Smirnov Morozov Petrun'kin er al. ;

's

and Zeiger and Fradkin. ' Meanwhile, experiments were
begun with solid-state lasers by Hercher, Young, and
Smoyer; Geusic, Marcos, and van Uiltert; ' and Kli-
montovich, Landa, and Lariontsev.

Inhomogeneously broadened bidirectional ring lasers
were first modeled by %alsh and Kerneny; Roess;
Beer; Lamb; Aronowitz Aronowitz and Collins;
Zaitsev; Zeiger and Fradkin and Zhelnov, Ka-
zantsev, and Srnirnov. Corresponding experiments
were done by Heer; Moss, Killick, and de la Perrelle
Aronowitz; Bagaev, Kuznetsov, Torltskii, and
Troshin; ' Aronowitz and Collins; Belenov, Markin,
Morozov, Oraevskii, and Lebedev; Hutchings,
%inocur, Durrett, Jacobs, and Zingery; Zaitsev; and
Lisitsyn and Troshin. With numerous studies in the in-
tervening years, it is readily apparent that the problem
we are addressing has more than 20 years of history and
tradition.

The steady-state solutions of the homogeneously
broadened laser model are relatively simple to envision
physically. Besides the trivial solution in which both
modes have zero intensity, there are two unidirectional
solutions (which are equivalent to the usual single-mode
laser solutions for one mode and zero intensity in the
other mode) and a bidirectional solution. The stability
of these solutions depends on the values of the pararne-
ters such as the gain, detuning, and relaxation rates of
the variables and on other physical complications which
might be added to the model such as backscattering
from the mirrors forming the laser cavity, backscattering
from an external mirror, modulation of a parameter, etc.
Hence, consideration of the general problem of the bi-
directional laser requires the selection of parameter
values and physical complications, careful derivation of
a model which is then simplified as much as can be
justified physically, and then pursuit of stability analyses
and numerical solutions.

Studies can generally be classified by the type of laser
used in the experiments and by the appropriate model
that corresponds to that type of laser. The important
distinctions have to do with the relative magnitudes of
the relaxation rates of the fields, the polarization in the
medium, and the population inversion of the medium.
Irrespective of the relaxation rates, an important feature
of the bidirectional laser models is that the presence of
counterpropagating fields creates a spatial modulation of
the population inversion. This modulation creates an
additional coupling between the counterpropagating
fields in addition to the coupling that results from simple
competition for the homogeneously distributed gain of
the rnediurn. The coupling of the two fields through in-

teraction with a spatially modulated gain can be viewed
as a kind of Bragg scattering of one field into the other,
and the im ortance of this kind of coupling was noted
very early' ' ' ' and reemphasized in later studies by
Hambenne and Sargent ' and Kuhlke and co-
workers. "-"

When the relaxation rates of the material variables are
much larger than the relaxation rates for the fields, one
can adiabatically eliminate the equations for the material
variables leaving only coupled equations for the arnpli-
tudes or intensities of the two interacting modes. Such
an approach is appropriate to dye lasers. Because of its
sirn. plicity it was pursued as a generic model in many
early studies and further approximated in the limit of
lasers operating near threshold. " ' ' ' More recently it
has been used for comparisons with dye laser experi-
ments by Mandel and co-workers, 5 by Kuhlke and
co-workers, ' ' and others. It can be readily
shown ' ' that in this limit the unidirectional steady
states are stable when they exist (above their respective
lasing thresholds) and that the bidirectional solution is
always unstable. Models without the adiabatic elimina-
tion of the material variables, and without approxima-
tions which limit them to weak fields, have been ana-
lyzed in a few cases and the same stability characteristics
of the steady-state solutions were found. ' Irregular
switching between the two unidirectional solutions for
dye lasers has been observed experimentally, but it has
been demonstrated that this efFect is induced by stochas-
tic noise in the system. Dynamical switching in the
operation of dye lasers (or in the corresponding models
with the adiabatic elimination of all material variables)
has been observed when it is induced by backscattering
or reAection from an external mirror when there is a
mismatch in phase between the unidirectional field and

reinjected field 39&4 1 7 5 1 7 52$ 55

For solid-state lasers [Nd:YAG (yttrium aluminum
garnet) and ruby] and certain molecular gas lasers (N20
and CO&) the relaxation rate for the population inversion
is much less than the relaxation rate for the fields, while
the relaxation rate for the polarization is much higher
than the relaxation rate for the fields. For solid-state
lasers the typical rates for the population inversion, field,
and polarization are 10 to 10, 10, and 10' s ', respec-
tively, while for low-pressure C02 lasers typical rates are
of order 10, 10, and 10 s ', respectively. For models
used to describe these lasers, it is common to adiabati-
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cally eliminate only the polirization. The resulting mod-
el for the bidirectional ring laser has equations for the
two field amplitudes and the spatially varying population
inversion. For resonantly tuned lasers this model has
been considered by Klochan, Kornienko, Kravtsov,
Lariontsev, and Shelaev and by Mandel and Abra-
ham. In the latter paper it was shown that there are
seven eigenvalues for the stability of the unidirectional
solutions, three governing the coupling of perturbations
of the lasing mode and the medium and four governing
the coupling of the perturbations of the extinguished
mode and the medium. The lasing mode has the stabili-
ty characteristics of a single-mode laser operating with
the same relaxation rates. Perturbations of the steady-
state solutions lead to weakly damped oscillations at a
frequency which is of the order of the geometric mean of
the field and population decay rates. Perturbations of
the extinguished mode also lead to weakly damped oscil-
lations but in this case the frequency of the oscillations
difFers from those of the lasing mode by a factor of the
square root of 2, an effect noted earlier in a truncated
model by Khanin and co-workers ' ' and confirmed
by experimental results. "2 ss ~ Further work for
more general parameter values in a model that maintains
the full spatial structure of the population inversion has
yet to be done.

Instead, a common approximation is made, in which
one expands the population inversion in a spatial Fourier
series with a fundamental wavelength equal to one-half
of the wavelength of lasing fields. This series is then
truncated after the first harmonic term, so that the pop-
ulation inversion is then modeled by amplitudes for the
uniform component of the inversion and the first spatial-
ly varying term. This approximation has a long history
and results in equations for seven real variables when the
laser cavity is dctuned from the resonance of the med1-
um (the two field amplitudes are then complex, the uni-
form inversion amplitude is real, and the amplitude of
the spatial grating becomes complex). Early versions of
this model are reported by Basov, Morozov, and
Oraevskii Bespalov and Gaponov Belenov; '

Livshitz and Tsikunov Morozov Petrun'kin et al. ;
Zciger and Fradkin and Moss, Killick, and de la
Perelle. ' In resonance, as for the more general model
and the dye laser model already discussed, the two
steady states are stable, resulting in bistable operation
and noise-induced switching. %ith detuning, the steady
states can be destabilized leading to regular, irregular, or
chaotic switching between directions of lasing with ring-
ing at the relaxation oscillation frequencies. ' ' '

Though the seven-equation model is rather well estab-
lished, changes in notation over the years and from one
group to another make quick comparisons rather
diScult or tedious. Because of our previous interest in
this problem and previous contributions, we have noted
that several authors of derivations have erred in apply-
ing the combined approximations of the adiabatic elim-
ination of the polarization and the harmonic truncation
of the spatial dependence of the population inver-
sion. ' Because of the familiarity of two of us
(N.B.A. and G.L.L.) with the derivations in the earlier

three of these papers, we can point out, as a caution, the
procedure that led to the error in the equations.
Specifically, the error resulted from expanding the full
set of equations for the polarization, field, and inversion
in harmonic series and keeping only the first harmonic
term for each variable before proceeding with the adia-
batic elimination of the polarization. The resulting
equations difFer from those obtained by fully adiabatical-
ly eliminating the polarization before doing the harmon-
ic expansion and truncation for the population inversion
variable. %'e have since determined that the correct
equations can be obtained when the harmonic expansion
and truncation is done before the adiabatic elimination
only if the polarization is kept to its first two harmonic
terms before the adiabatic elimination is carried out.
Because of this error in the equations, the numerical re-
sults for the time-dependent solutions presented in the
papers cited above are erroneous as well. However, we
note that the solutions presented there are extremely
similar to solutions generated for the same parameter
values with the correct equations; so at least for these
parameter values, the error in the equations did not in-
troduce qualitatively spurious behavior.

Results of stability analyses of the seven-equation
model have been reported by a number of authors (Refs.
4, 5, 12, 13, 15, 17, 54, 57, 59, 61, 64, and 68-75). How-
ever, many of these results were obtained for special
cases or for special limits. In Sec. IV we will present the
full stability analysis (including nonreciprocity in the
losses for the two modes} together with asymptotic limits
which reveal both the general structure of the stability
boundaries and specific results which may be useful for
comparisons with experimental or numerical results.

Experiments on solid-state lasers that are adequately
described by the seven-equation model have been re-
ported by Antisiferov, Krivoshchekov, Pivtsov, and Fo-
lin; Clobes and Brienza; Golyaev, Evtyukhov,
Kaptsov, and Smyshlyaev; Geusic, Marcos, and van
Uiltert; ' Hercher, Young, and Smoyer; Khandokhin
and Khanin; Khanin; Klimontovich, Landa, and
Lariontsev; Klochan, Kornienko, Kravtsov,
Lariontscv, and Shelacv; Klochan, Kornienko,
Kravtsov, Lariontsev, and Shelaev; Kornienko,
Kravtsov, Naumkin, and Prokhorov; Kornienko,
Kravtsov, and Shelaev; Krivashchekov and Stupak; '

Mak and Ustyugov; Marowsky and Kaufman;
Schroder, Stein, Frolich, Fugger, and %elling; ~ and
Tang, Statz, DeMars, and Wilson. " Regular switching
was noted in some cases ' and irregular switching has
also been seen ' ' ' ' ' (in Refs. 4, 5, 77, and 78, the
irregular pulsing was attributed to chaotic or autosto-
chastic behavior}. A common observation was that de-
tuning of the laser caused a change in the pulsing fre-
quency. ' * ' ' ' As noted carHer, the difFerence in
the relaxation oscillation frequencies of the strong lasing
mode and the nearly extinguished mode were visible in
the power spectrum of the laser signal because both are
induced by noise perturbation of the system and,
through nonlinear coupling of thc variables, both then
become visible as modulations of the strong lasing mode.

The recently reported results from experiments on a
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bidirectional C02 laser included bistable behavior
when the laser was resonantly tuned, awhile with detun-

ing there was evidence for both regular and chaotic
square-eave-type switching, in-phase and out-of-phase
giant pulsing (auto-Q switching) of the two modes, and
giant pulses followed by relaxation oscillations, as
different parameters were changed. In order to make
comparisons with many of these results, we will use re-
laxation rates and parameter values appropriate to CO2
in our numerical simulations.

Experimental results have also been reported for bi-
directional ring lasers for which adiabatic elimination is
not appropriate. Among these experiments, time-
dependent behavior has been observed by Abraham
et aI. for He-Xe, an inhomogeneously broadened tran-
sition, and by Klische and Weiss for far-infrared (FIR)
lasers. In both cases regular and irregular (seemingly
chaotic) pulsations were observed.

As a further note, we should comment on the contro-
versy about the possibility that bidirectional ring lasers
might have different losses in the two directions. In
principle, it is easy to achieve nonreciprocal losses if the
laser resonator contains a Faraday rotator and polariza-
tion selective losses. However, in the absence of a
specific nonreciprocal element, it is still possible for such
effects to occur. Discussions have been vigorous about
nonreciprocal losses or nonreciprocal coupling between
the waves. 2 ' ' ' %e note that while the model ap-
proximates the system as two counterpropagating plane
waves, in reality, the waves have approximately Gauss-
ian transverse profiles which vary with passage through
the medium or apertures and with re8ection from spher-
ically curved mirrors. The nonlinear self-focusing
effects, together with the selective effects of apertures
and curved mirrors that are not placed symmetrically in
the cavity, are suScient to cause some nonreciprocity in
the losses for 5elds traveling in different directions.

%'ith this as a possibility, we have expanded our stud-
ies to the nonreciprocal case and have found a more
complex phase diagram. In the nonreciprocal case, one
must draw separate instability boundaries for the two
unidirectional solutions. Thus there are regions where
only one of the two unidirectional solutions exists.
There are also regions near the excitation threshold
where only one unidirectional mode is stable, even when
both solutions exist. However, aside from a few small
regions of anomalous behavior, we find that the qualita-
tive patterns of the instabilities in the parameter space
and the phenomena of the time-dependent solutions are
relatively insensitive to changing from the case of re-
ciprocal losses to the case of a small degree of nonre-
ciprocity.

(3.1a)

i(B, +yi)a(x, t) ro„a—(x, t)= D(x, t—) gg (x)p (t),

(3.1b)

=io y t+2 g [g (x)a'(x, t)p/(t) —c.c.],
J

(3.1c)

where p (t) is .the slowly-varying-field envelope, a(x, t) is
the induced polarization, N is the total number of atoms
and 1. is the length of the medium, D (x, t) =(N+

N)/(N—++N ), and cry~~ is the pumpirig rate for D.
The mode index j=1,2 signifies the forward and the
backward wave, respectively. The quantities N+(x, t),
N (x, t), tt„~i, yl, and yi correspond to the number of
atoms per unit volume in the upper and lower states, the
decay rates of the electric field amplitudes for the two
waves, and the longitudinal and transverse relaxation
rates, respectively. The coupling constant is

g (x)= i(2@co—q)'r (p/A')exp[( —1) ~ikx], (3.2)

where kc=ml, p is the dipole matrix element, and x is
measured along the cavity perimeter. Equations (3.1)
fully incorporate the efFects of spatial hole burning aris-
ing from the superposition of the counterpropagating
waves.

Using the following decomposition for fields and po-
larization:

(J(t)=e p, (t)

P/(x, t) =gJ'(x)a(x, t)e

we can rewrite Eqs. (3.1) as

the nearest cavity resonance frequency is co&. As in Ref.
S3, we assume that the longitudinal mode spacing is
large compared with the gain bandwidth of the medium
and we assume that the laser operates on a single mode.

The laser characteristics are obtained by solving the
Maxwell-Bloch equations which are extended to incorpo-
rate the counterpropagating nature of the cavity 6eld.
Making the usual plane-wave, slowly-varying-amplitude„
and uniform-6eld approximations and following the ap-
proach and notation of Mandel and Agarwal, 5i the semi-
classical equations are

i(B, +~, )p (t) tocp—,(t}=— dx gj'(x)a(x„t),N

III. GENERAL Fo}RMULATIGN
(3.3a)i(B, +aj. )g (t}=—I dx P (x, t), .N

%'e consider a ring cavity containing a gain medium
which is modeled as a homogeneously broadened and in-
verted two-level system with the atomic transition fre-
quency co„. The laser is assumed to oscillate at the sin-

gle frequency coL with a slowly varying amplitude, while

i(t},+yi)PJ(x, t)+(cue n) „)P (x, t—}

= —/g /
D(x, t)(g +pi, e' " '""}, (3.3b)

i(i3, +yi}D(x,t)=i cry i+2 + (P,'g~ P~ gJ'. ) . (3.3c)—
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In dimensionless variables given by
' —1/2

where we have defined A:—A /(1+ b ) and
d

~~

—=d
~~

/(1+ 5 ). To derive the harmonic expansion, we
define

E(n, r) =— 2)(x, v )e' """dx,
0

(3.7)

n:Do—

and for a new scaled time, r=a, t, w. e can rewrite Eqs.
(3.3) as

where n is an integer. The field equations then become

(8,+ 1)E) ——AE, X)(O,r)(1+i')+ AE22'( l, r)( 1 ~id, ),
(3.8a)

i(B,+K&)E~(r)=—J dx PJ(x, r),A

0

i(B,+di)P, (x, r)+8P~(x, r)

d2)(x—,~)(E, +E e' " '""),

i(B,+di)2)(x, r)=id(~+ g (Pj'Ei P/Ei')—,
J

where

6f J
yogi Ki K)

(3.4a)

(3.4b)

(3.4c)

(8,+K )E =HE E(0,r)(1+ih)+HE, X)(l,r)(1+id),
(3.8b)

and for the first few components D ( n, r ) of the inver-
sion, we get

(a +dpi)Z(o, r) =dpi —diiz'(0 ')(E)E) +EiEi )

d,i[E,Ei Z(l, r)+E) E,Z'(1, ~)

(3.9a)

(8,+di)Z(l, r)= —d„k(l, r)(E)E) +E,Ei )

J„[E,E—,' Z(2, r)+E;E,Z(o, r)],

(3.5)

The equations for the field and the population inversion
are given by

(il, +Ki )Ei =—(1+i')Ei I. 2)(x, r)dx

As we will consider cases where d) »dl, KJ, we have
two ways in which to proceed to simplify the equations.
Either we perform a harmonic expansion for the popula-
tion inversion and the polarization, eliminate adiabati-
cally the polarization, and truncate the infinite hierarchy
of equations, or we can first eliminate the polarization,
then perform a harmonic expansion for the population
inversion, and then truncate the hierarchy of equations.
These two methods give the same final result, but, as the
second one is shorter, we will follow it. Setting B,PJ =0
and solving Eq. (3.4b) for P, , we find

cg(E +E ( —i)'2ikx)

P = (i —5),1+~'

(3.9b)

(8,+di)%)(2 r)= ~ik(2 r)(E)E) +EiE

d„[E,E,"Z(3, r)+E) E,Z(1,~)]

(3.9c)

We introduce the approximation, X)(n, r)=0 (n &2).
This approximation automatically cuts the coupled
hierarchy of the equations and truncates the equations to
include only terms in X)( l, r) and %)(0,r). Examining the
equations we see that the coupling to higher-order terms
is via a factor E&Ez. The truncation can be easily
justified if

t E,E2
~

&&1. However, while this may be a
suScient condition, it is not necessary condition. We ex-
amined some of our numerical solutions of the truncated
hierarchy of equations when it was at least occasionally
true during the time evolution that

~
E,E2

~

—1 and
found that

t D(l, r)
~

&&D(O, r), suggesting that the har-
monic series rapidly converges and that it can probably
be truncated without signi6cant impact.

The equations for the inversion are then given by

(a,+di)X(O, r)=d~, —dim(o, r)(E,E) +E,E,' )

di[E)Ez %)( 1,~)+E iE22*( l, r)]

(3.10a)

+—(1+i')E, , I 2)(x, r)e' "" dx,

(3.6a)

(0,+d, )Z(1, )=—d, Z(1, )(E,E*, +E E' )

—dtiE*, E22(0, r) . (3.10b)

(i3,+d )2)(, )=d dS(, )(E,E;+E E—*
)

It
d (E E» 2ikx+E»E e

—2ikx)
1 2

The sets of Eqs. (3.8) and (3.10) are the final truncated
equations used to study the stability of stationary states.

In summary, the equations which we shall study are

X2)(x,r), (3.6b) (B,+1)E,=(1+i')A( EE o+E%2)) ), (3.11a)
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(d,+K )E2 =(1+ib, ) A (E2$O+E, %)(), (3.11b) 8. Linear stability of the strong-mode solution

(B,+d(()ZO ——d(( —d((%)0(
~
Ei

~
+

~
E2

~
)

d—
,
(E,E*'2,+ . . ), (3.1 lc)

(~ +d(()+i= d((+i( I Ei I
+

I
E2 I

}—d((E(E2~0

(3.11d)

with the simplified notation K =K2 and X)„=X)(n, ~).

To study the stability of the solution (4.2) we seek
solutions of Eqs. (3.11) of the form

I (/2e I57 +~g ~ !57~i T+ O (~2 )

E2 ——eg2e' 'e"'+O(e ),
0
—A -'+eg,e'+O(e'),

Z, =eri, e '+O(e ),

IV. STEADY STATES AND STABILITY

—0

(ii} The first unidirectional solution,

I, = ~(E, ~'=A —(1+5 ), E2 ——0,
which exists for

3 &1+5

(4.1}

(4.2)

The set of Eqs. (3.11) has four solutions which can be
classified as follows.

(i) The trivial solution,

where g, , $2, BIO, and g, are 0 (1) quantities, and e is the
small parameter. To 6rst order in e this leads to a
seventh-order characteristic equation for A, which factors
into a cubic and quartic. The cubic governs the stability
of the strong mode, I„coupled to 20 and the quartic
governs the stability of the mode which is suppressed,
Iz, coupled to 2, .

The cubic is exactly the equation governing the stabili-
ty of a single-mode laser with adiabatic elimination of
the polarization. For the cubic there is a zero eigenval-
ue corresponding to the marginal stability of the phase
of the oscillating mode and the other two eigenvalues are
given by the quadratic equation,

(iii) The second unidirectional solution,

I2=
~
E2

~

=——(1+6, ), E( ——0,A

which exists for A )K(1+6, ).
(iv) The bidirectional solution,

I( —— i [ A —2(K +1)(1+6 )
1

2(K +1)

(4.3)

(4.6)

A, +A(d A+K —1)+d„(KA —1)+ibd (A —1)=0.

d(( A +2d((( A —1)=0

When A p 1, the solutions of (4.6) always have negative
real parts and thus there is no instability which origi-
nates by perturbations in the manifold of the variables
coupled to the oscillating mode.

The quartic which governs the stability of the
suppressed mode factors into two complex conjugate
quadratic equations„one of which can be written as

+ [ A '+4(1+&')'(1+K')]'"I, (4.4)

I,=KI, +(K —1)(1+6,') .

A. Linear stability of the trivial solution

It is simple to verify that the trivial solution (4.1) is
stable if and only if

A ~1. (4.5)

We choose ~2 to be the greater of the two decay rates,
so that K&1. Therefore we shall refer to (4.2} as the
"strong-mode solution" and to (4.3) as the '"weak-mode
solution, " because the solution (4.2) has a lower thresh-
old value of A and a stronger output intensity, relative
to solution (4.3), for a fixed value of A. When K ~ 1, the
unidirectional solution with I(+0 [Eq. (4.2)] becomes
the weak-mode solution, whereas the solution with Ii+0
[Eq. (4.3)] becomes the strong-mode solution. Our re-
striction to the case E & 1 is not a limitation because the
stability properties for the strong-mode solution for
K ~ 1 are similar (in fact, identical, after a suitable re-
scaling of the variables) to the stability properties of the
weak-mode solution for E ~ 1.

(4.7)

When A y 1, both of the solutions of Eq. (4.7) have neg-
ative real parts under the condition

( AK —1)(d((A +K —1)
Q2 (

When the equality holds, a Hopf bifurcation takes place
with a characteristic frequency 0 (pure imaginary eigen-
value} given by

(4.8)

Q=[d (A, K —1)]' (4 9)

The critical values of detuning and pump, 5, and A,
(the values on the Hopf bifurcation boundary), can be
derived from Eq. (4.8) and are given by

b,,d(((A, —1) =(KA, —1)(d((A, —1+K) . (4.10)

A plot of 3, versus 5, is displayed in Fig. 1. It shows
that a minimum amount of detuning is necessary to des-
tabilize the strong mode of oscillation. When this
minimum detuning 6;„is surpassed, there exists a finite
domain of the pump parameter for which the strong
mode is unstable. Note, however, that even for

the strong mode is stable near the lasing
threshold and at suSciently high values of the pump.
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10.0
The condition for a Hopf bifurcation, Eqs. (4.10), then
becomes

STABLE

b, (A, —l)=d A, ,

which has explicit solutions:

(+) + [gz+(g4 4/zd }1/z]
c —

y
—

ll

Il

(4.13a)

(4.13b)

0.00 0.50 1.00 1.50x10

BELQW THRESHOLD
~~oaeea eaaeeeaege~eeews~o~ s aa s ~ ~ ~ ~ ~ e ~m~w ~weeew~ ee~ 0 ~ 0

This leads to a stability boundary (common to both
modes) which is similar to Fig. 1, with a minimum de-
tunlng ~ 4dll' correspond ng to a pump parameter
A, =2(1+4d~~). Hence there is bistability (both direc-
tions of propagation can sustain a stable c.w. solution)
when 1+5 & A & 2, ( —) and A & A, (+ ) and
no stable steady solution in either direction when
A, ( —) & & & &,(+).

FIG. 1. Stability of the strong-mode steady-state solutions
in the (A, h ) parameter plane for I( =1.005 and dll

——0.01.
The critical curve of the change of stability given by A,
denotes the locus in parameter space of the Hopf bifurcation.

C. Linear stability of the weak-mode solution

Following the procedure used in the analysis of the
strong-mode solution, we find that the characteristic
equation for the stability analysis of the weak-mode solu-
tion also factors into a cubic governing the oscillating
mode (in this case the weak mode Iz) coupled to Ro, and
two quadratic equations (one the complex conjugate of
the other) governing the suppressed mode (in this case
the strong mode I, ) coupled to 2, . As before, we obtain
a quadratic equation for the stability of the oscillating
mode I2,

+Adi Az+2diK(Az —1)=0
K(1+6,z)

(4.11)

and another quadratic (and its complex conjugate) which
govern the stability of the suppressed mode I&,

~'+~(d~, "z+1—K )+d„(~,—K)+iK~d~(~, —1)=O.

(4.12)

When 3 z & 1 (a necessary condition for the existence of
the weak-mode solution), Eq. (4.11) has solutions whose
real parts are always negative so that they cannot induce
instability. However, as for the strong-mode solution,
the suppressed mode is not always stably suppressed.
Details of the stability conditions resulting from Eq.
(4.12) are discussed in the following sections.

D. Sperial cases —exact results

%hen K= 1 there is no longer a distinction between
the strong-mode solution and the weak-mode solution.

2. No

detaining

In the absence of detuning (b, =0) we can easily solve
analytically for the stability conditions for both strong-
and weak-mode solutions. Since we keep K & 1, but oth-
erwise arbitrary, it is easy to verify that the strong-mode
solution is always stable. For the weak mode, the solu-
tion of Eq. (4.12) is

(+)=-,'lK —1 —d„~z

+[(K—1 —diAz) —4d~~(Az —K)]'~
l .

(4.14)

Stability requires Re[A(+)] & 0, i.e., the two conditions

(4.15a)

and

K(K —1)/d (4.15b)

There are two cases.

Case A: E(1—di) & 1 [ or di & (K —1)/K]; then oilly
the first condition is relevant because the second is au-
tomatically satis6ed.

Case 8: K(1—di)&1 [or di &(K —1)/K]; then only
the second condition is relevant because the first condi-
tion is automatically satis6ed.

Thus we see that with enough pumping, the weak-mode
solution may be stabilized and both unidirectional solu-
tions are stable.

Hence in the case b =0, Eqs. (4.15) represent the con-
ditions for stable operation of the weak mode and the
larger of the two values of A~ and A~ is the threshold
for stable operation. This may be signi6cantly higher
than the condition A & K (the "above threshold condi-
tion" for the existence of the weak-mode solution) which
might have been expected to lead to stable steady-state
operation from the stability condition of the trivial solu-
tion (4.5). Competition between the two modes destabi-
lizes the weaker-mode solution unless there is suf6ciently
strong pumping.
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3. $Yeak-mode solution stabiIify with detuning

The weak-mode solution is stable if the following three
conditions are simultaneously satisfied:

(i) A~) 1,
(ii) 3 ~ ) (K —I )/d

( A~ K—)( A id~i
—K+1)

(iii)
dK(A —1)

(4.16a)

(4.16b)

(4.16c)

Equality in the expression for b, in Eq. (4.16c) signals a
Hopf bifurcation with a frequency 0 given by

Q=[d„(A„K)]'—',
where the boundary for the Hopf bifurcation and A~,
are defined from Eq. (4.16c) by the equation

h, d~)K (Aq, —1) =(A2, —K)(Aq, d~~ K+1)—. (4.17)

and d~» a critical pump parameter A2& g 1 such that the
weak-mode solution is stable for Az & AzH and unstable
for 1& A2 & AzH. In Figs. 3(a) and 3(b) we show how
the various parameters of the laser modify the position
of the boundary of stability.

(ii) In the domain labeled III, for fixed b, there may be
either one or three boundaries of Hopf bifurcations, but
only a single boundary of stability, because when there
are three boundaries, the lower two Hopf bifurcations
occur while the other eigenvalue has a positive real part.
The solution is unstable at low pump parameters and
eventually becomes stable as A2 increases (Fig. 4).

(iii) In the domain labeled III', for fixed b, there is the
possibility of one or three values for Hopf bifurcations,
all of which represent changes of stability. This difkrs
from domain III in that in this case the Hopf boundary

The conditions on A in Eqs. (4.16a) and (4.16b), which
restrict the boundary given by Eq. (4.17) in some cases,
indicate when the Hopf bifurcation corresponds to an
overall change in the stability of the solutions. The
boundary of the instability coincides with Eq. (4.10)
when K = 1 as it should since in that case the parameters
for the two modes are the same. %hen K y 1 the possi-
bilities for Eq. (4.17) are somewhat richer than for Eq.
(4.10). [It should be noted, however, that the bifurcation
diagram which we obtain from Eq. (4.17) and K & 1 is
the same as the bifurcation diagram which would be ob-
tained from Eq. (4.10) with K &1. However, the termi-
nology "strong-mode solution" and "weak-mode solu-
tion" relies on K ~ 1 and so we consider only this case
without loss of generality. ] Three domains appear in the
( d

~~

K ) plane as shown in Fig. 2.
(i) In the domain labeled I there exists for all b„K,

0.00 2.00

BELOW THRESHOLD

6.00xl 0

3.00

2.00

1.00

i

l

I

I

I

I

' III'
t

I

I

I

5.00

4.00

3.00

1.00

0.00

0.00 0.25

BELOW THRESHOLD
i

0.50 0.75 1.00xl 0

1.00

FIG. 2. Regions in the parameter plane of (d~~, K) for
di8'erent types of stability diagrams and Hopf bifurcation boun-
daries for the weak-mode steady-state solution. dI~ ——y~I/~& and
E =~2/x

&
are both adimensional quantities.

FIG. 3. Stability of the weak-mode steady-state solutions in
the ( A, 6 ) plane under conditions appropriate to region I: (a)
two values of K for d~I ——0.05 and (b) two values of d~~ for
K =1.05. The steady-state solutions are stable above the boun-
da1 les.
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4.00
solution is stable under condition (4.16c) only for A

values above the second intersection. This corresponds
to case 8 discussed under Sec. IV C 2.

When (E —1)/E &d~~, the solution falls in domain I
or domain III' and the Hopf bifurcation boundary
defined by Eq. (4.17) intersects the 6=0 axis at only one
point in the (A, b, ) plane: A =K . The weak-mode
solution is stable under condition (4.16c) for A values
above this intersection. This corresponds to case A dis-
cussed in Sec. IVC2.

BELOWTHRESHolo

~ «» ~ ew w ~ ~ ew ~ ~ a ~ ~ ~ ~a~ee~aaea~m~eaae 0 K. Asymptotic results —nearly reciprocal losses and small d
ll

0.00 t . 00 2, 00x't 0

is always a stability boundary and in that, at resonance
(b, =0), there is only one Hopf bifurcation instead of the
three found in region III (see Fig. 5).

When (E —1)/E & dl, the solution falls in domain III
and the Hopf bifurcations boundary de6ned by Eq. (4.17)
intersects the b, =0 axis at two points in the (A, d)
plane: A =K and A =K(K —1)/ui~~. The weak-node

FIG. 4. Solid line and short-dashed lines mark the boun-
daries of Hopf bifurcations from the weak-mode solutions in
the (A, h ) plane for parameters appropriate to region III in

Fig. 2: E=1.014 and dIl ——0.01. The large-dashed line slightly
above A =).0 marks the weak-mode threshold. The weak-
mode steady-state solution is stable only above the solid-line
boundary.

In this section we consider two limiting cases suggest-
ed by the experimental values of K and di. When the
losses are significantly nonreciprocal (E ~y1), the
strong-mode solution is, of course, favored. The largest
domain of both unidirectional solutions being stable
occurs when K is very near unity. To explore this region
we define a smallness parameter e via

E=1+a, 0(e g~1 . (4.18)

dl ——ed+0(E ) . (4.19)

In this case the strong-mode solution has its stability
boundary, Eq. (4.10), which can be solved to give two

Two cases can be considered, depending on the values of
@it. For low-pressure CO2 lasers, d~~ is very small and we
shall therefore introduce the expansion,

—-- N. M, instability Boundcry
= N M Threshold

5 M Threshold

1.4-
STABLE UNSTABLE

1.2—

~W IW & W W W & 'W W W W & W W W 400
BELON THRESHOLD

0.000 0.001 0.002 0.003
t

0.004 0.005
l l

0.006 0.007 0.008 0.009

@IG. 5. Stability of the weak-mode solution in the (A, h ) plane for parameters appropriate to region gl': g = &.0085 and
d~~

——0.01. Also shown for reference are the threshalds for the strong-mode solution and the weak-mode solution.
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physical roots stability requires that

A, (+)= Ib, 2e—+h[h 4e—(d+ 1)]J+O(e)
268 6 &6,„=4@(1+1). (4.21)

(4.20)

and the unphysical root A, =l —e+O(e ). Hence, in-
Furthermore, when b, =O(1), the two solutions (4.20)
have the following behavior:

A, (-)=(1+6,') 1+m, 1+ 1+(1+d)~ 4b. 1
2db, (8+1)

b, ' b, '+1
A, (+ ) = „+O(1),

+O(~') (4.22}

(4.23}

which are the two branches of Fig. 1. The expression for A, ( —) in Eq. (4.22), which is carried to higher order in e,
cannot be derived directly from Eq. (4.20). Requiring terms O(e ), it can be found using Eq. (4.10).

The study of the stability boundary of the weak mode is more complex, as can be expected from the consideration
of the diagram displayed in Fig. 2. We first assume that (4.18) and (4.19) hold, which define the domain of variation
for K and d i. When b, =O(1), the weak-mode stability condition (4.17}has always at least one solution which is

1A„(1)= +O(1), (4.24}

which coincides with a stability boundary of the strong mode (4.23).
Let

(4.25)

When d( —) &d &d(+ ), Eq. (4.24) is the only boundary. Otherwise, a pair of additional solutions of (4.17) becomes

relevant and is given by
r

Az, (+)=(1+6 ) 1+@ 1+ lk 1—(d —1)' 4b, 'd

2db, (d —1)
+O(e ) (4.26)

5 =e5+O(e ), 5&0 . (4.27)

Then the stability boundary condition (4.17) always has
at least the solution

A2, (1)=l+e(2+5)+O(e ) .

Furthermore, if the condition

(4.28)

The occurrence of three boundaries corresponds to
domain III when u' & d( —) and to domain III' when
d )1(+), wliereas the doiliain where only A2, (1) is a
physical solution corresponds to domain I of Fig. 2.

From the solution (4.24) we see that the series in

powers of e will no longer converge when 6 is compara-
ble to e. We can analyze this case separately as follows.
Let the detuning be defined by

I

distinction between domains III and III' still rests on the
inequalities (4.16) which imply, with the definitions (4.18)
and (4.19), that when there are three critical values of
the pump parameter, the domain III corresponds to
d g 1, whereas the domain III' corresponds to d ~ 1.

For lasers with suSciently small nonreciprocity in the
losses, we have K = I+a and d~~ is not necessarily small
on the e scale. Let us consider lasers for which

d
i
——O(e') (4.31)

tJsing this definition as well as (4.18) it is easy to verify
that the strong mode is stable for pump parameters A

outside the range ( A, A + ) where

[g2+(g4 4g g2)1/2]+ o(s) . (4 3»
lI

5+4(1—1))0

is verified, then two other boundaries appear,

(4.29) This domain of instability requires, again, a finite
amount of detuning

(4.33)
A, (+)= [5+2+[(5+2) —4(1+5d)]'~ ]+O(e) .2c

(4.30)

A similar analysis of the weak mode indicates that there
are three boundaries:

We note, however, that in the limit as 6=0, there is
only the single boundary as discussed earlier after Eqs.
(4.15). Whatever the order of magnitude of 6 is, the

Az, (1)=(l+b, )(1+2m)+O(e ),

A (+)= [b, +(b, —4d b )' ]+O(e) .1+5'
(4.34)

(4.35)



480 H. ZEGHLACHE et al. 37

%e see from this asymptotic analysis that the
inhuence of the three parameters, b, , d~~, and K can be
described as follows.

(i) In all cases the weak-mode stability domain is em-
bedded in the strong-mode stability domain. Hence the
weak-mode stability domain also represents a domain of
bistability (both unidirectional modes are stable). These
features are displayed in Figs. 6-8.

(ii) The bistable domain near threshold decreases when
either 5 or EC increases, whereas the bistable domain in-
creases with increasing d ~~.

(iii) Though the existence of large amplitude, time-
dependent solutions cannot be predicted by linear stab'ili-

ty analyses, it is our experience with numerical simula-
tions that pulsations are observed only when both
steady-state solutions are unstable; hence, only in the re-
gion where the strong mode is unstable.

V. NUMERICAL SOLUTIONS
OF TIME-DEPENDENT BEHAVIOR

G MODE

5 ~ 00

~ ~~mmmau&~~aaam~m~a
BELOW THRESHOLD

~ewsee~ eeeee e~ eeeee eeeee e~ e~e eeeee eeeeeeeeee ~ee eeeee eeet eweeeee ee eee m~ ~eee wee 0 t 0 0

0.00 0.50 1,00 1 50„10-1

FIG. 7. Same as in Fig. 6 but for E= 1.02 and d~~
——0.01.

The equations of motion for the homogeneously
broadened ring laser model [Eqs. (3.11)] were integrated
for parameters typical for the CO2 laser used in earlier
experiments. We take y~~=2. 5X10, a~-x'2 ——1.4
X10', and K=1.0007. As the values of ~, and ~z are
very close, the thresholds and instability boundaries of
the two unidirectional solutions are nearly the same.
For precision, we show the instability boundary for the
strong-mode solution (the more stable of the two modes),
in the A, b, parameter plane in Fig. 9. In this plane we
have labeled the points for which we have run extremely
long time solutions to the dNerential equations. Integra-

tion was done using a midpoint rule with variable time
step. ' The difFerent relaxation rates of the variables
gave several very di8'erent time scales to the resulting
solutions, and these required us to use an integration
step size maximum of 100 normalized time units. Par-
ticularly for small detunings, the solutions frequently did
not converge to asymptotic behavior until after 10 time
units (equivalent to almost 0.01 sec of actual laser opera-
tion).

Selected examples of the time-dependent behavior are
shown in Fig. 10 at various detuning values for A =4.0.
We observe that for detunings just slightly larger than
the lower critical value, b,, =0.034, the laser shows a
nearly square-wave switching type of behavior, alternat-
ing between unidirectional lasing action in one direction
and unidirectional lasing action in the other direction.

20.0

A

60.0

10.0

BfSTABLE 40.0

~~eoeayayaeee~~e~ ~ ~e~ ~~~ygag~~ea. ~e.yegg. e~.yy~~ey~ 0 ~ 0

20.0

G. QG 1.50x10

BELQW THRESHOLD
QAMO ~M ~W 0.00

FIG. 6. Combined domains of stability of both the weak
mode (%'M) and strong mode (SM) for %= 1.01 and d~~

——0.01.
Long-dashed line indicates the strong-mode threshold and the
weak-mode threshold (1% higher}. The domain above the
solid line boundary of the weak-mode boundary corresponds to
a bistable domain.

Q. QQ 5.00

FIG. 8. Same as in Fig. 6 but for K = 1.05 and d
~~

——2.0.
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The time between switches is as long as hundreds of
thousands of roundtrip times for parameters near the in-

stability boundary. In Fig. 11 we plot the average
switching rate (average frequency of the square waves) as
a function of 5 near h„showing the power-law depen-
dence as the critical value is approached. This indicates
that the time-dependent behavior shares the boundary of
stability of the steady-state solutions found from the sta-
bility analysis. Hence, we do not expect to 6nd coex-
istence of a stable steady state and a time-dependent

state in this region of the phase space.
For small values of b, which appear to give "clean"

square-wave pulsations, we show expanded scale versions
in Figs. 12(a) and 12(b) which indicate that the mode
switching on and the mode switching o8' relax toward
their respective values of the steady-state solution (on-
mode intensity I= 2 —1 —b. ; off'-mode intensity I =0)
by small amplitude, damped oscillations at frequencies
which are approximately those given by the imaginary
parts of the eigenvalues of the stability analysis. The
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0
0.0

I

0.2 0.6 0.8
I

1.0
I

1.2
I

1.8
I

2.0

3.0—
I

I

I

I

I

I
2.5-

I

I

t

I

2.0-
I

l

I

i

I

1.5-
I

i

NM

SM
SM

Instability Soundary
lnstobility Boundary
Threshold

Threshold

1.0
I t f t t

0.000 0.002 0.004 0.006 0.008 0.0'I 0 0.01 2 0.01 4 0.01 6 0,018

FIG. 9. {a) Stability boundary for the strong-mode solution for parameters appropriate to a CO2 laser: ~& ——1.4&10 „

~&
——1.4001X10, y~~

——2.5&10, K=1.0007. Dots indicate parameter values for which numerical integration studies were used to
find time-dependent solutions. (b) Expanded version for small pump and detuning values showing strong- and weak-mode thresh-
olds (nearly identical because E is near 1) and the instability boundaries for both modes.
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two frequencies differ by almost exactly the square root
of 2 as predicted for the difference in eigenfrequencies
for the t~o factors in the stability analysis on reso-
nance. ' For the decaying mode„ the mean intensity

and the amplitude of the oscillations decrease until the
mean intensity arrives suSciently close to zero; then the
mean intensity begins to grove while the amplitude of the
oscillations continues to decrease. This indicates that
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the solution has discovered new directions in the phase
space which are unstable. About where the mean inten-
sity of the near-zero mode begins to increase, the corre-
sponding modulation of the strong mode appears to
su8er one or more abrupt jumps or phase shifts and the

ensuing modulation becomes quasiperiodic, refiecting the
simultaneous modulation by two frequencies differing by
the square root of 2.

The behavior in the vicinity of the (now unstable} fixed
points suggests that the stable and unstable manifolds of
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-3.0

A, =4.0
h, =0.034

ing and different values of the pump parameter. For
A =4.0 and 5=0. 1 the behavior is of the square-wave

t e. The switching rate decreases with de-
creasing pump values and there is again evi ence seen

F' . 13) of a power-law scaling of the switching ratein ig. 0
This a ain in-ast einsa iiyh

'
t bilit boundary is approached. This g

d s that this portion of the stability boun ary ind&cates a
-mode steady-state( A, b, i) parameter space of the strong-mod

solution is also the stability boundary of the time-
dependent solutions.

For 5=1.0, as shown in Fig. 14, we see t at or
7.0 ~ 3 ~ 10.0, the irregular pulsing of lower pump
values gives way to a ort form of regular, double-peaked
pulses For A =7.0, 8.0, and 9.0 it appears that the

difFerent pulse shapes with the differences between the
two different shapes increasing with increasing pump.
For even larger values of A, the periodic behavior is re-
placed again by chaotic pulsing.

-4.5-—
OQ
O

—5.0-

-6.0 —
~ I ~-3.0 1 I f I I ) ~ I F-2.5 -2.0 —) .5 —).0 -0.5 0.0

logio (6—b, )

VI INFLUENCE OF INHOMOGENKOUS BROADENING4

I h' t' n we shall try to assess how inhomogene-n t is sec ion
broadening afFects the boundaries of the sta i ity oous roa ening

Sec. IV. We shallthe single-mode solutions derived in ec.
use a typica mo e in1 d 1' ' '

which the relative weight of in-
dividual two-level atomic groups with their center re-
quencies co is given y ab Lorentzian distribution centered
around a most probable frequency co&, with a c arac-
teristic width u measured in units y~.of . In this case
Eqs. (3.1) are replaced by

FIG. 11. Critical slowing down of square-wave switching ts
sho~n by a log-log plot of the inverse of the mean time be-
tween switches R vs the dNerence between the detuning and its
critical value on the instability boundary. A =4.0.



BIDIRECTIONAL RING LASER: STABILITY ANALYSIS. . .

MQOEl

A = 4.0; h, = 0.05

1

ll ()

A=4.0; a=o.o5

3.002—

3.000—

g 2.998—
fflz
z

2.996—

I I I l I

Q~ gQ~ gQ~ ~g~ ~g g ~g~ g& gO gQ
0 0 0 0 0 0 0 Q 0 0 0 0

'c
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and that as the solution leaves the vicinity of the steady-state solution a quasiperiodic modulation (a combination of both frequen-
cies) appears on the mode near the nonzero steady-state value.
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i(B,+y, )a(co,x, t) —era(co, x, t)

D—(co,x, t ) g g, (x,co)P, (t),

i( 8, +y 1
)D (cu, x, t )

To find the steady-state solutions of Egs. (6.1), we in-
troduce the polar decomposition E =+I, exp(I8, ) and
define the steady-state solution(s) by the conditions,

ag, =0, a,z, =o, a,e, =A, , a,A, =0,

where

y +2 g [g, ( , ) '( , , r)p, (r) —. . j , where A is the laser frequency referenced to m„ in units
of y~. As in the homogeneously broadened case, we
again 6nd four steady-state solutions.

Q QP g
—CO

yjh(co):—f(z)= i i, z=
n(z +u')

Proceeding as in Sec. III for the adiabatic elimination
of the polarization and the harmonic truncation we ob-
tain the generalization of Eqs. (3.11):

(8,+1)E,=A f dz f(z) (E,X) +E I)', ),—QO 1+5'

(i) The trivial solution,

Ej ——E2 ——0 .

(ii) The strong-mode solution given by

u++1+I,
Ql+I, 6 +(u+Ql+I, )

(6.2)

(6.3a)

(6.1a)

(8,+E)E,= A f dz f(z), (Ei0+E)&)),—cc 1+5
(6.1b)

Ai ——A
b, +(u++1+I, )

(6.3b)

together with I2 ——0. Note that I, will be positive only
when A exceeds a threshold value A „b, given by

(a,+di)%) =d~~ d~~(I +I )Z Z~t(E E X) +c c ),
(6.1c)

A ),i,„——(u +1) 1+ 1+u (6.4a)

(8,+d
~~

)2) ———d i(I ) +Ii )Z) d~~~E ) E2Z—O, (6.1d)
At threshold the frequency is

with 5=—z+b, , where b, =(coc —co„)/y, as before, and
where the material variables and 5 are functions of z. A 1thr (6.4b)

4=0.1

A, = 1.050+ 0.002

which indicates the additional mode pulling of the laser
frequency toward the atomic resonance as is usually as-
sociated with inhomogeneously broadened transitions.

(iii) The weak-mode solution given by
- 4.0

- 4.2

u +Q 1+I2E=
Ql+I, b, '+(u++1+I, )'

with the frequency given by

(6.5a)

4.4
A2 ——A

6 +(u++1+I2)
(6.5b)

—4.6

and I
&

——0. The intensity I2 will be non-negative provid-
ed A exceeds a threshold A2,h, given by

- 4.8

A 2th. =&A ith. .

At this threshold the laser frequency is given by

~2th —+~1th

(6.6a)

(6.6b)

—5.6 I

6.5 -6.4 -0.3 -6.2 -0.1 0.6 O.t 0.2 0.3 6.4 6.5

log, o (A-A, )

FIG. 13. Critical slowing down is also demonstrated in a
log-log plot of the inverse of the mean time between switches
vs the excess pump above the critical value on the stability
boundary for a axed value of the detuning equal to O. l.

(iv) The fourth steady-state solution is the bidirection-
al solution for which both Ij and I2 are nonzero. Al-
though the integrals can be performed explicitly, the re-
sulting coupled equations are too complex to be of prac-
tical use and therefore will not be written.

%'e now consider the stability questions. As expected,
the trivial solution is easily shown to be stable provided
A ~ A„h, when K & l.
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A. Linear stabiIity of the strong-mode solution

A linear stability of the strong-mode steady solution is
ruled by a pair of characteristic equations as in the
homogeneously broadened case. The stability of the os-

cillating mode I& is determined by the equation,

r [~'+iu+ ~i'I
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d) A u+y(1+id, )

i) +(u+y)
and its complex conjugate. In bo qboth e uations we have

A, +A(E —1)—d, (1+'A, )=—

0

whereas the stability of the suppressed mode js governed
by the equation,

used the definitio»,

)/2
k+dlI J
k+dll
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A =J(J+u)+4 J+u
(6.10)

d))
——e, 0~a ~~1 . (6.1 1)

When u, 6, and J are O(1) functions, we can show that
the solution of the characteristic equation (6.7) is of the
forID

which follow from the steady-state equations, Eq. (6.3).
No general solution has been obtained from Eqs. (6.7)
and (6.8). However, we analyze two limiting cases.

(i) We first consider the case

A, =E A,o + e'A, i +0( e' )

where

(6.12)

2(J —1)
&'+(u + I )'

1/2 1/2

(u +1)(J+u +1)+u
+2

J+u (6.13)

—J(J+1) [5 +(J+u} ][uk'+(u +1)'(u +2)] &O.
[5 +(u+1) ][uk, +(u+1)(J+u)(J+u+1)]

(6.14)

These results, which indicate that (6.7) leads to no insta-
bility in the limit (6.11), present some interesting
features. First, we mention that the expression given in
(6.14) for A, , holds only if AD+0; otherwise, I, , also van-

ishes at the lasing threshold A = A 1,h, corresponding to
J= 1. Second, we notice that the inhomogeneous
broadening has not modified the fact that for di «1 the
steady solution is only weakly stable; a perturbation
from the steady state will be damped very slowly, the
dominant relaxation time diverging like I/e. Further-
more, in the limit of large inhomogeneous broadening,
we have

Ao =+iv'2( J —1)+ 0(1/u ),

(i) Firstly, we consider

di e, —K=l+ae+O(e ), 5 =0, (6.19)

A, =e'~2Ao+eA, , +O(e'),

where
' 1/2

(J —1)(J+u +1)
u +1

(6.20)

(6.21)

with the specifIcations Og e gg1 and a pO. In this
domain the characteristic roots have the form

+O(1/u),
—J(J—1)

(6.15) J(J+1)(J+u)(u +2)
2(u +1)(J+u +1)

which are independent of the detuning h. This turns
out to be a general property, namely, that in the large-u
limit the characteristic roots A, no longer depend on the
detuning.

(ii) Another case which has been investigated is the
domain defined by

which describe damped oscillations but no instabilities.
(ii) Secondly, we consider

di e, EC——= I+a@+0(e ), h=e' p +O(e) . (6.22)

Correspondingly, the characteristic equation has solu-
tions of the form

u = I /e, 0 & e « 1, (6.16) A(k) =+@'~ ko+e(A, ,+A2)+O(e ), (6.23)

where di, b„and J are O(1) functions. In this domain
the expansion of the characteristic root A, in a power
series of e is given by

A, =A,o+ ek. , +0(e )

and the leading term satisfies the equation,

(6.17)

k —2d = —2d J/y, (6.18)

with y defined in (6.9}. It can be shown that the roots of
(6.18) always have a negative real part. For d~~ &2 the
two roots are complex conjugates whereas for dtI &2
they are real. Thus in this case also there is no source of
instability.

%'e now consider the stability properties of the
suppressed mode of the strong-mode solution, whose sta-
bility is ruled by the Eq. (6.8). Various domains of the
parameter space have been analyzed.

' 1/2
(J —1)(J+u +1)kp=l u+1

2a (u +1)(J+u +1)+J(J+u)(J+1)(u +2)
4(J+u +1)(u +1)

' 1/2
J(J+2u +1)
(J+u)(u +1)

(6.24)

J —1

2 (u +1)(J+u +1)

In addition, A,*(+) are also characteristic roots of the
complete stability problem. This time an instability can
occur because A, , +A, 2 may vanish (for p & 0 and p ~ 0, re-
spectively). The condition A. , +A,z ——0 is an implicit equa-
tion for A„ the critical value of the pump which signals
the onset of a Hopf bifurcation. The implicit equation
has been solved numerically and Fig. 1S shows how the-
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and its complex conjugate. For these equations we use
the definitions,

1/2
k+dll I I =—1+I2 .

+
ll

(6.30)

2.00

As in the preceding sections, no instability of the
nonzero intensity has been found in the domains dll

——e,
u =O(1), and u =1/e, dt~

——O(1). By contrast, the zero
intensity I, can become unstable. %e again analyze
three domains.

'0. 00

(i) The first domain is

d~t
——e ~~ 1, b, =O, K = I+a@+0(e ), a &0 . (6.31)

-20.0 0. 0

FIG. 15. Stability boundaries of the strong-mode solution vs

cavity detuning for a =1.0 and u =2.0. The internal domain is
the region of stability.

0

'
]. /2

(J —1)(J+u +1)
u+1

The solutions of the characteristic equation (6.29) have
the following structure:

~=+~'"i~0+~~, +
and one can easily show that

critical intensity depends on p. Furthermore, we find
that the stability domain increases as either a or u is in-
creased.

1 J(J+u)(J+1)(u +2)
2 2(u +1)(J+u +1)

(6.32)

The expansion for the characteristic root is

A, =kp+ek, , +O(e ),
where k0 is the solution of

A,p +a A,p
—d

ii

——d
ii
J /1'

(6.26)

(6.27)

For a ~0 this equation leads to no instability point.
This result is consistent with the property, already rnen-
tioned, that stability increases with increasing u and dll.

B. Linear stability of the weak-mode solution

(jjj) Thirdly, we consider

u = I/e, 0~@~~1, d~~
——O(1), K —1 =a =O(1) . (6.25)

Quite clearly an instability is possible and occurs for a J,
such that A, , =0. This leads to a cubic with only one real
physical solution (J, &1) for u &O(1). The solution be-

gins at a = 1 and is monotonically increasing function of
a. This means that to have an instability with b =0
there must be some nonreciprocity of the losses
(K& 1+@, where d~~

—e). A somewhat surprising prop-
erty, which is related to the perfect tuning condition, is
that the stability domain shrinks when u increases. This
is because in perfect tuning (b, =O) the effect of increas-
ing u is to decrease the gain at 5=0 since f (z}, the in-

homogeneous line shape, is a normalized function.
(ii) In order to assess the influence of a small detuning

we now consider the domain

The linear stability of the weak mode is ruled by a
pair of characteristic equations. For the nonzero intensi-
ty I2 we 6nd

d~~
——a~&1, b, =e'~ p+O(e},

K= 1+a@+0(e ), a &0 . (6.33)

A, —2d iiK = —2d iiK J(J +u )+b J+u

The roots of the characteristic equation (6.29) now be-
come

A, =+i e' A+a(A. , +A&,)+O(e )

u+p
) [b,'+ (u +y )']

(6 2g) where Ap and A.
&

are given by (6.32), while

p J(J+2u+1)
2 (J +u)(u +1)(J+u +1} (6.34)

whereas the stability of the suppressed mode I i is
governed by

A, +(1—K)A, —d K 1+id, J+u

diK J(J+u)+5-J +u y[g2+(u +y)2]

(6.29)

Again an instability will develop for k, +A, z
——0. Two

cases have to be considered, depending on the value of
a & 0. %hen 0 & a & 1, the stability boundaries are
shown on Fig. 16, which also contains the strong-mode
stability boundary. The weak mode is stable in the
domain containing the p =0 line. For a =1 and a ~ 1,
Figs. 17 and 18, respectively, display the boundaries of
stability for both the weak and strong modes. It is in-
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teresting to note that for a & 1, the weak mode is stable

only above the point where the two boundaries cross.
As appears clearly on Figs. 16, 17, and 18, the stability
domain of the weak mode is always embedded in the sta-
bility domain of the strong mode. Hence, the weak-
mode stability automatically implies bistability between
the two modes. At this point we can discuss the
influence of the inhomogeneous width. For u =0 and
when condition (6.33) [which corresponds to (4.18),
4.19), and (4.27)] is satisfied, there are three domains

giving one (I) or possibly three (III and III') Hopf bifur-
cations for 6xed b as A is varied:
domain III',

I

I

I

6.00

4.00

2.00

domain I,
-20.0

I I

0. 0

:0. 00

and domain III,

E 1& O(d—
ii

)

These domains have been analyzed in Sec. IV and are
displayed in Figs. 3-5. In all cases there is at least one
bifurcation for b, =0. By contrast, when u=0(1) we
6nd that there will never be three Hopf bifurcations;
rather there will be either one (I) or possibly two (II) un-

der the following conditions:
domain II,

and domain I,

K —1&d( .

Domain II denotes a stability diagram qualitatively simi-
lar to that displayed in Fig. 1 but this time for the weak
mode. This means that now there is no bifurcation for

FIG. 17. Stability boundaries of the weak- and strong-mode
solutions vs cavity detuning for a =1.0 and u =2.0, The solu-

tions are stable in the domain containing p =0.0.

sufBciently small 6 even though there was always such
a bifurcation when u =0. Hence we see that an increase
of u simplifies the bifurcation diagram by reducing the
number of possible instabilities. This is related to the
act that for u =0 the intricate part of the diagrams

occurs for small values of the pump parameter. As u in-
creases, the values of A which lead to J & 1 (making the
solution physical) also increase. For instance, the condi-
tion J=1+ac leads to 3 =1+u+4 /(u+1)+O(e .
Hence the intricate domain of multiple bifurcations still
exists but becomes nonphysical because it corresponds to

i ewise an increase in u leads to an increased
domain of stability and therefore of bistability. This is
in contrast to the 6=0 case and results bemuse initially

—20.0 0. 0

I V

I

I

I

I

I

I

I

I

I

0

I

I

I

I
a ~ % ~ % %san%san e ~ % ~ % P 4

I I

20.0

6.00

4 ~ 00

2.00

0. 00

I

I

I

I

I I,

6.00

4.00

2.00

0. 0 25.0 50.0

:0.00

l

FIG. 16. Stability boundaries of the weak- and strong-mode
solutions vs cavity detuning for a =0.5 and u =2.0. The solu-
tions are stable in the domain containing =0.0.p=

FIG. 18. Stability boundaries of the weak- and strong-mode
solutions vs cavity detuning for a =2.0 and u =2.0. The solu-
tions are stable in the domain containing p=0.0. For the
weak-mode solution the domain of stability is the upper region
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the increase o u ea sf 1 d to an increase in the gam at mter-
mediate detunings.

(iii) Finally, when

Q =li 1 d =O(l), b, arbitrary,

K =1+a+0(e),
the roots of the characteristic equation .29

~ ~

',6.29, assume the
form

A, =Ao+eA, , +O(e )

' 1/2
ko+di

A, —d (a+1)=—di(a+I)Jo
—~ o-

o+
~ ~f h' tion do not lead to an instability.The roots of this equa ion
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polarization are required if the harmonic truncation fol-
lowed by adiabatic elimination of the polarization is to
give the same results for the first two terms in the popu-
lation inversion expansion that are obtained by first elim-
inating the polarization entirely and then truncating.

%e should also stress that the instabilities reported
here arise from Hopf bifurcations of the steady states
under the conditions of suflicient detuning [Eqs. (4.33) or
(4.29)]. It should be emphasized that some stability re-
sults obtained for 6=0 are destroyed as soon as
5=0(e). This means that the condition b =0 can lead
to singular results which will be dif6cult to check experi-
mentally. The stability of the seven-dimensional steady
state is determined by two factors of the secular equa-
tion which are related, respectively, to the stability of
the operating mode of the field (coupled to the average
population inversion —three equations) and the stability
of the suppressed mode which has zero intensity (cou-
pled to fluctuations in the zero-amplitude population
grating —four equations, which include as a parameter
the intensity of the operating mode). The strong mode
has the stability of the usual single-mode laser in the rate
equation limit; that is to say, it is always stable, though
with relaxation oscillations for suitable parameters. This
means that infinitesimal perturbations of the Geld of the
strong mode or of the average population inversion will
not induce instabilities. The destabilization occurs due
to a suitable perturbation of the 6eld of the suppressed
mode and the grating of the population inversion in the
presence of a sufficient detuning. As the full seven vari-

ables are coupled by nonlinear terms, the growth of the
grating and the weak-mode field ultimately destabilize
the strong mode as well.
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