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Excitation of an atomic system subjected to a slowly varying external electromagnetic field is

studied using a two-level model. Time evolution of the system is found using an approach which is

nonperturbative in the field strength. There is no constraint to small values of the applied field, that
is, the field (in appropriate energy units) need not be small compared to the difference in energies of
the two levels. Rather, we use the fact that the situation of interest to us is where the frequency of
the exciting field is small compared to the frequency associated with the level di8'erence. Transition
probabilities and resonance conditions are found which circumscribe both the large- and small-6eld
limits. In the weak-field limit the previous results of high-order perturbation theory are readily
recovered. For a monochromatic field the characteristic features of resonance excitation at high
harmonic number of the applied field are (a) extremely narrow resonance widths and (b) shifts in

resonance positions which are strong functions of field intensity. Because of this sensitivity, we are
able to demonstrate that when slow temporal evolution of the field amplitude is taken into account
(e.g., due to Anite pulse duration) the appropriate mean excitation rate is that due to the uncorrelat-
ed contribution of many resonances. The results of this analysis are used to estimate excitation
rates in a specific atomic system„Cd" +, which are then compared to multiphoton-ionization rates.
Our calculations suggest that the ionization rate exceeds the excitation rate by several orders of
magnitude.

I. INTRODUCTION

a, F. ,

0 2 F sin( cot )

F sin(cot) a,

Here a, and a2 are the state amplitudes, with associated
frequencies in the absence of the external fields E, and
E2, respectively„whose time development we wish to
find. The coupling parameter F is proportional to the

There has been a great deal of interest, both experimen-
tal' and theoretical, in atomic processes due to very
strong electromagnetic fields. In fact, current laser tech-
nology enables production of oscillating electric fields
comparable to internal atomic electric fields. Transitions
involving the emission or absorption of many field quan-
ta, multiphoton processes„can occur under these cir-
cumstances. Most experimental studies in this area have
investigated multiphoton ionization. There is the sugges-
tion, however, based on Rhodes's observations in kryp-
ton, that excitation by multiphoton processes has been
observed experimentally. In light of these results, it has
been proposed that selective excitation by comparative-
ly-low-frequency electromagnetic fields may be feasible.

In this report we address this problem of multiphoton
excitation of an atomic system, as might result from its
interaction with such an intense laser field. We use a sim-
ple model of this interaction between two levels in such a
system

i =H(t)a,, da
dt

or equivalently,

amplitude of an electromagnetic field of frequency co,

and, in general, is itself a slovenly varying function of time
(with F/F ~~co), because of effects such as finite pulse
duration. We take E2 ~E„~~O, and I' gO. The elec-
tromagnetic field is treated semiclassically and in the di-
pole approximation. The correspondence between this
model and the quantized treatment of the electromagnet-
ic field is given in the fundamental paper by Shirley.
(The model also describes various other physical prob-
lems, for example, the state of a spin- —,

' particle immersed
in an oscillating magnetic field oriented perpendicular to
a static magnetic field. }

Solutions of Eq. (I) have been obtained from perturba-
tion theory with F small (e.g. , see Shirley ). However, we
observe that the characteristic feature of high-order mul-
tiphoton processes is that co ~~ 6, —:(E2 E, )/2. Here —we
develop a theory which is asymptotic in co/6, spans the
domain I'-6, and is constrained only by the condition
F &&5 /co. The identification with the quantized treat-
ment of the electromagnetic field is that 26/co is
identified with the number of photons involved in the
transition.

In Sec. II the theory is developed for the case
F =const. In order to find the time evolution of Eq. (I),
we introduce the WKB representation in the complex
time plane. Solving the problem then amounts to finding
the small changes in this representation over each period
of the applied 6eld. The most essential feature of our ap-
proach is that the small size of these changes, on the real
time axis, necessitates moving our path into the complex
p/ane. For various complex values of time, there occur
jumps in the %KB representation which are comparable
in size to the solution itself. By moving our path into
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such regions, we find these jumps and thus determine a
transfer matrix which advances the system over one
period of the applied field. The Xth power of this matrix
then determines the state of the system after X periods.
This method is to be contrasted with Shirley's approach
using Floquet theory, where it is necessary to find the ei-
genvalues of very large matrices.

We 6nd general expressions for the time-dependent ex-
citation probability P, Eq. (39), and exhibit its depen-
dence on field frequency and intensity. In the limit
F/b, « 1, we recover the resonance shifts and the
(F )

~ power law for the generalized Rabi frequency6 as
found by the perturbative treatment of Shirley's Floquet
Hamiltonian. Simplified asymptotic expressions are also
given for each of these quantities in the limit F/b, ~y 1.

In Sec. III the effects of the temporal intensity en-
velope (F/F «co) of the applied field are considered.
Because of the strong dependence of the resonance posi-
tions on intensity and because of their narrowness, any
given resonance will be excited only during a small inter-
val of the laser pulse. Any slight randomness introduced
into the system will ensure that the contribution to the
excited-state amplitude from successive resonances will
be uncorrelated. Given these conditions, an average rate
of excitation is then found.

We apply our results in Sec. IV to model a Cd' + ion
which has been proposed as a candidate for multiphoton
excitation. Using the results of Sec. III, the rate of exci-
tation between the 4s 4p and 4s4p 5p levels is con-
sidered and is compared with estimates of rates for multi-
photon ionization from the upper level. It is found that
the rate of ionization clearly dominates the rate of excita-
tion that was predicted by considering the two-state in-
teraction alone. %e rea1ize that application of the two-
level model to atomic systems is certainly suspect if inter-
mediate resonant states can participate in the transition
from imtial to final state. However, the results of Sec. III
suggest that maintenance of individual high-order inter-
mediate resonances will be extremely diScult experimen-
tally.

II. TIME KVQI.UTION IN THE PRESENCE
OF A I.OW-FRKQUKNCY, PERIODIC

KI.KCTRIC FIEI.D

Rather than deal directly with the system of two cou-
pled first-order equations for s, we generate an equivalent
second-order system of equations which is coupled only
through the specification of initial data. To this end, we
define two new dependent variables, y and z, through the
relation

a=exp( —i At)E.

with the unitary matrix R defined by

and with 2:—(Ez+E, )/2. Differentiation of Eq. (1)
yields the second-order system

d y
~ +Qyy =

d z
+Q,z =0,

F . 2 . Ci)I'1+ Sin '7—l
2

COSv'
Q2

(5b)

which are complex periodic functions of v.. The periodic
nature of the problem allows us to construct a solution
for arbitrary time from the general solution obtained over
one period. [On the surface it would appear that the
solution of the equations for y and z would require initial
data for four independent complex amplitudes, whereas
solution of Eq. (1) requires initial data for only two com-
plex amplitudes. The extra information is provided by
differentiating Eq. (2) and substituting into Eq. (1). That
is, if a is known initially, then so is da/dt. ] The develop-
ment of the solutions for y and z proceeds in a parallel
fashion. Therefore, we present the details of the method
for y alone. For notational simplicity, we shall tem-
porarily write Q for Q .

So far, Eqs. (4) are exact. However, by observing that
the situation of interest to us (multiphoton processes) is
that when

we can make use of the adiabatic (&KB) approximation
since Q is large and slowly varying for r real. Most im-
portantly, this does not, however, preclude the situation
where F/b & l.

The accuracy of the %KB approximation is reflected
in the fact that if one were to attempt to integrate direct-
ly Eq. (4) along the real r axis, one would find that the
changes in the amplitudes of the two eikonal solutions
are extremely small and diScult to compute. However,
near the complex points r where Q vani. shes, the changes
in these amplitudes are relatively finite. The essential
feature of our method is to determine the behavior of the
solution near these points and to carry the solution
asymptotically back to the real time axis. Our method is
equivalent to that of Zwaan ' (see, e.g., Pokrovskii and
Khalatnikov' ). lt has just recently come to our atten-
tion that similar but less complete techniques have been
used on this problem in the past (see, for example, Delone
and Krainov" ).

There are infinitely many zeros of Q. For each integer
k, there is a pair of zeros v+k, ~l, , such that

~A. ——km+sk „
+

for y and z, respectively. Here we have transformed to
the dimensionless time variable ~:—cot and introduced the
quantities

2

2 . NI'1+ sin T+1 cost'
+2
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with primes denoting differentiation with respect to g.
The solution of Eq. (10) requires the specification of a

constant of integration in order to determine completely
the functional form g(r). The choice ((rj )=0 makes r'
finite at the point ~=w which guarantees the bounded-
ness of I r, gI. With this choice, we have

-', [g(r, ~, )]'"=f 'Q'"dr—=e(g) . (14)

A comparison of the right-hand side of Eq. (12) with
the second term on the left shows the former to be small-
er, nominally by (co/b, ) . If the right-hand side were
zero, then the general solution for u would be a linear
combination of the two Airy functions Z~(g) and Zz(g).
Without approximation, Eq. (12) can be recast as an in-

tegral equation,

u = AZ)(g)+BZ2(g) ,' f dg——G(g,il)[r, il ju (ri),
0

connection formulas' developed for second-order equa-
tions with a single first-order turning point. To this end,
we define

(a, r)=—Q
' (r)exp +i f Q" dr

0
(16a)

respectively. These forms continue unchanged upon
crossing the anti-Stokes lines I-*, , respectively, but each
solution becomes dominant in its region 2. As the solu-
tions are continued across the Stokes lines emanating
from v+I, and ~A. , each acquires a subdominant part,

(r, a)—:Q
—'"(r)exp —i f 'Q'"dr (16b)

0

and introduce the notation Zl—+, for Z, (g(r, rI, )). Then, in

regions 1
—we have

(17a)

by formal use of the method of variation of parameters.
Here the kernel,

Zl, -[(r+q, r)+i (r, ~+q )](r')'

Zl, -[(r,ri, ) i (r—„,r)](r')'
(18a)

(18b)

Zi(k»z(n) —Zz(k»i(n)
G(g, i))=—

with the Wronskian,

~=—Zi(g)Z2(g) —Zz(g)Z i(g),
a constant. An asymptotic series for u in inverse powers
of g is developed by treating the integral term in Eq. (15)
as small, relative to the first two terms. %e now con-
struct such a solution whose domain of validity extends
away from ~ to include an interval of the real v axis.
Referring to Fig. I, we consider the region surrounding
the particular zero rj =r+z. Let Z, (g) be that solution of

in region 3—. Upon returning to the line Imp=0, Eqs.
(17) and (18) provide sufficient information to evolve the
asymptotic representation for y over a full period
hz=2m.

%e represent y asymptotically in the %'KB form

V -c~'(r&, r)+c& (r, r& ), (19)

%ith this representation, the Stokes phenomenon appears
as a discontinuous jump in the c& as r=kir is crossed.

Denoting c& ——(
'

), the relation between cP defined
ck

through Eq. (19) for r —k n. & 0 and cl» defined for
T—k~+Ois

Z"+(Z, =0, (12') CI, =SCI,,

which is subdominant in region I+. Choose 8 =0.
Then, inspection of the integral term shows that it will be
asymptotically small throughout that region for which
the integral from go to g can be performed along a path
for which

5=
&[ri rl, ]

with

(21)

1m[4(q) —4 (g)] ~ 0

everywhere. Choosing go=(~, a point which lies on the
Stokes line in region 1+, guarantees that this inequality is
satisfied in a domain which encompasses the real ~ axis
throughout an interval of size

~

Re(I —kyar)
~

=ir A.
second independent solution is constructed completely
analogously by making the replacements (see Fig. 1),

+
+k +k

region 1+~region 1

1/2[a,b]=—exp i f Q'"dr
0

The functions rl, , rz satisfy [rl, , rl, ]=(—1)~c, where

s:—[ro, ro+ ]

can be written in terms of elliptic functions. Its magni-
tude has the asymptotic forms

2A /cu

i
c.

i

— ——,F/b, ((1e F
4 b

-exp ————,F/~ ~~1
2 QP F (23)

The representation of the functions Z& outside of re-
gions 1

— is accomplished by applying the well-known with e the base of the natural logarithm, and is small
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whenever our theory applies. A direct numerical evalua-
tion of c, versus F/6 for 5/o»= 50 is shown together with
these asymptotic forms in Fig. 2. As long as a/F»«1,
the phase of c is nearly constant,

%'ith the introduction of c, we have

1
5=

i ( —1)"e
i (——1)"8

c„'+, i ( ———1)" (26)
exp( i 8o—)

When r lies in the interval kryo r &(k+1)rr, y can as
well be written in terms of ck+, . Using the definition,
Eq. (19), we obtain the relation,

exp(i8o) 0

The procedure can be repeated in a completely analo-

gous fashion for z wherein Q» is everywhere replaced by

Q, and the corresponding coefficients d~- are defined

through the asymptotic relation

z-dk+(rq, r)+di, (r, r„), ~~ r k—vr I (r1. .

Tile values rj afe now those for which Qz(rg ) =0. The
corresponding matrix Md is the same as M, except for
the replacement of c with —z.

Having obtained evolution of y and z over one period
of the applied field, we are now equipped to determine
the evolution of a. In the limit of interest here, 5/co g~1,
we are led naturally to represent the state vector a in
terms of its projections onto the instantaneous (normal-
ized) eigenvectors e- of the Hamiltonian H(r), defined

through

with

2 . NF
80—to, 1r]=— 1+ — slil r+2 cos

CO 0

(27)

2

F1+ — sin 7

I /2

(33)

evidently real. In the small- and large-6eld limits, 80 has
the asymptotic forms

2
1 F

00-m —1+——,F/6 «» 1
4

the corresponding instantaneous eigenvalues. Writing

a(r)=a~+e+exp i f dry++a), , e exp i f dry,
km km.

kryo
~

(n— (34)

-2F/o», F/b, y&1 . (28)

If we repeat this procedure for the interval
—km «2m, we now obtain a transfer matrix relating ck~+2

tO Ck,

Ck +2 ~cck

With accuracy to order c, we obtain

exp(i28o) 2e sin8oexp(i8o)
M, =

2E sin8oexp( —l8o) exp( —12811)
(30)

we are to determine the transfer matrix for ak in terms of
M, orld.

In order to find the relations between ck, dk-, and al-,".
„

we begin by making the expansion

fdr Q'"= —fdr(1+f')'"

+ dv
(g2+f 2)1/2

I I f I I lff) 1 I I I I lfft I f I I I III

where f =F/b sinr, in Eqs. (19) and (31). The resulting
expressions are substituted into Eq. (2) which, when it is
then compared to Eq. (34), determines c&- and d& in terms
of ak . For ck, we have

g+ ' 1/2
263

1 1 1 I I I l

IO fo
I I I I I IIII I I I I Ill,

FIG. 2. (co/b )ln
~

E
~

vs F/6, for b /co=50 The solid curve.
shoves the numerical estimate. The dashed curves shove the
asymptotic estimates from Eq. (23). The numerical results are
insensitive to 5/cu as long as 6/a & 2.

so that the transfer matrix which evolves ak over an in-

tegral number N of periods is, finally,

a~&
ak +2% —ak

where we have dropped the subscript c on M, from here
on. Since 0 is Hermitian, the norm

~

a
~

is preserved by
Eq. (1). It will also be preserved by the result, Eq. (36), if
M is unitary. In order to enforce unitarity, we simply
divide M by the quantity (

~ M„~ '-+
~
M12

~

)' '.
WKB derivation leading to Eq. (30) is, in any event, not
correct to O(E ) which is the size of the diff'erence be-

and unity. By diagonalizing M we can find
M quite easily. Given that ak~ ——1 and ak ——0, the result
then becomes
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—i f @2+ 2w( A /m)$] 2 1/2—(~q/~&)e, [sin y, +(m2/m, ) ]
sin tan

[sin y, +(m2/m, ) ]'~~ cosp )

where m, = ~M„~ and y, =((}(M„.}. From Eq. (30} we
know that $(Mii)=280, therefore, the condition for a
resonance is defined by sin(280)=0 or 280 le=—O for
some integer l. If Eq. (1) is used to model an atomic
quantum-mechanical system, then I is identified with the
number of quanta separating the resonant energy levels.

From Eq. (37), we see that, on a resonance, the transi-
tion rate is proportional to tan '(milm, )-m2/m, .
From Eq. (30), we have

Pl] ~1

m, =2
i
esin80

On a resonance 80——(m/2)l. Therefore, for / even, the
resonance value of m2 mill be zero to lowest order. This
means that the transition rate wiH also be zero. %e note
that only odd resonances will be observed. In previous
work on this problem, this condition seems to have been
proven by appealing to quantum-mechanical perturbation
theory (e.g., see Delone and Krainov" and Shirley ).

With the identification I'=
~ a&+2~ ~

and the replace-
ment Nt/2', we obtain, from Eq. (37),

sin (280)+(2
/

e
f

)

&&sin [sin (280)+(2
~

e
~

) ]'2' (39)
L

For cot-F ', P assumes a resonance structure. Near a
resonance, we have sin(280) =2[8O—{n/2)l]. Defining
u =(2'/n )

~

e ~, and r0«, ——(2'/m )8O, the result is

[co«,—(2p + 1 ko] +u

X sin'( —,
'

I [a)„,—(2@ +1)co]i+u'I '~'t ),

~here I =2@+1, and p is an integer. The resonance con-
dition is

co„„—(2p +1)co=0 . (41)

1 F26 1+—res 4

(42)

%e show in the Appendix that these results are
equivalent to those obtained perturbatively by Shirley.
For the case of large fields (F/b large), we have

In the small-field limit (F/5 small}, we have, from Eqs.
(23) and (28),

T

2 cd 8I'

2w
u — exp

2 co F

res

(43)

Equations (40)-{43) constitute the major result of our
theory when F=0.

For all the ranges of I" /6 that are considered here, u is
much less than co. From Eq. (40), we see that this means
that the resonance widths for P are very small. {This
property is not surprising if we consider the close analogy
of the equation of motion, Eq. (4}, to the Mathieu equa-
tion, d y/dr +[a —2q cos(2r)]y =0. A well-known

property of this equation'" is the presence of unstable
solutions near integer values of a' . The successively
higher-order cusping of the stability boundaries with in-
creasing a'~ is analogous to the narrowness of the reso-
nances contained in Eq. (40).} Furthermore, to the extent
that our model is applicable, we see, from both Eqs. (42)
and (43), that variations of co«, that are large compared
with u wi11 occur in practice because of intensity varia-
tions associated with the finite duration of the applied
field. These considerations place very stringent criteria
on the required constancy of the intensity, if any particu-
lar resonance is to be maintained for as long as one Rabi
period =u '. In Sec. III we consider some implications
of this limitation.

III. EFFECTS QF FIMTK PUI.SK I.KNGTH

In this section the e8'ects of the finite length of the laser
pulse are considered. Because m„, varies with intensity,
the condition, Eq. (41), for resonance of a given order p is
satisfied precisely at only a single time t . The system
remains e8'ectively on resonance up to times t *, such that

+l'
t ~„,—2@+1 co ~1.

During such intervals, coherent additions to the ampli-
tude of an initially empty state a mill occur twice each
period of the applied 6eld and will accumulate to a size

a =(cot')eexp ice dr A,

P

where cot* y~1, if the amplitude varies sufficiently slowly.
Outside of such resonant intervals, the contributions to
a mill be =c, i.e., negligible. Any uncertainty in the
temporal behavior of the applied field will introduce cor-
responding uncertainties in t and A, . If the integral
co I,' dr A, accumulates an uncertainty of 0(1), then the

P

contribution to a from resonances of adjacent orders
will be incoherent. This is the short-autocorrelation-time
approximation, considered below. If the autocorrelation
time of the phase integral approaches the interval be-
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tween resonances, then these results will be modified.
Defining b,

l
a

l
as the change in

l
a

l

which occurs
upon passing through one resonance, and r„, as the time
interval during which the system is between adjacent res-
onances, then we may further define an average rate of
excitation R as

step

(44)

80=(2p +1)—+aj,
2

where j is an integer such that
r

2't=t + j, (45b)

and a:—(277/cd)(d80/dF)(dF/dr) is the cliaiige ln 80 per
period of the applied field, then

m»( j)= —exp(+i2aj),

iiiip(j)= i2
l

e—
l
exp(iaj) .

The contributions to a which occur from j = —M to
j =M are now considered. Taking a+( —M)=1 and
a ( —M) =0, we have

M M j —1

(M)= X II II

%e now develop quantitative expressions for these quan-
tities.

To find 5
l
a l, we go back to the transfer matrix,

Eq. (30). The matrix M has the form

m» m, 2

~ 12 ~ 11

Assuming
l
a +

l
= 1, then over each period of the ap-

plied field, a will suffer a small "kick" of size equal to
—~ i*2 F«m Eq (30» ~ i2 =i2

l

e
l
»n80e " If

sume variation of the form

To firid t t p
the interval between adjacent resonances,

we consider the resonance condition, Eq. (45), with j =0.
Changing p by unity yields the condition for an adjacent
resonance. Therefore

' —1

d 490

step

where the second form follows upon using Eq. (45). With
this result, we obtain the average rate of excitation,

(49)

and note that 8 depends only on the instantaneous field
intensity, and not on its time derivative.

IV. COMPKTITION BETWEEN DIRECT
N-PHOTON EXCITATION AND IONIZATION

In a real atomic system, under experimental condi-
tions, the possibility of coupling two levels needs to be
considered in the light of competing processes. Here we
consider one such process, that of multiphoton ioniza-
tion. Keldysh has shown that ionization from the upper
level of a transition pair is much more likely than from
the lower energy (more deeply bound) state. We consider
the case of an electromagnetic pulse with temporal inten-
sity variation I(t) incident upon an atomic system with
dipole moment d =qa for the selected bound-bound tran-
sition. Here q is the electron charge and a is the eft'ective
size of the dipole. The coupling frequency F =Fod/A,
where E0 is the amplitude of the applied electric field. In
experimental units,

2qaE, I 1e ~~1/2

=0.55
100

j=—Mq =j+1 q"= —M

w»ch yields, for the magmtude
l
a (M) l, th«esult

M —1

exp[i2a( j——,
' )2]

(46)

(47)

where 8',00 is the transition energy expressed in units of
100 eV, I,6 is the applied electromagnetic (em) field inten-
sity in units of 10' %/cm, and a„ is the dipole size in

angstrorns. The asymptotic parameter,

—=2.48 g 10 k„'8'100, (51)
In the case of interest, that of a slowly varying envelope,
we have a « 1 (corresponding to cot* ~~1). It is evident
that only those terms for which j-a '/ contribute in
phase to

l

a
l
. As M becomes large, the sum can be re-

placed by an integral, with one consequence, that the
contributions of all resonances other than that centered
at j =0 are eliminated. These operations give the result

1/2

2A

ol

— 2 2

where 1„ is the wavelength of the applied field in mi-
crometers. Two additional characteristic parameters, the
adiabaticity parameter,

] /2
100=0.23 I 1/2

and n; =7/fico=1. 24&10 7, k„, the minimum num-
ber of photons needed for ionization, enter the computa-
tion of the multiphoton-ionization rate. Here m is the
electron mass and 7,00 is the ionization potential, again in
units of 100 eV. If y «1, then the tunneling (adiabatic)
limit of Keldysh's result applies whereas, if y ~~1, the
"multiphoton" limit applies.
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SHIRLKY'S RESULTS' COMPARISON TO SHIRAPPENDIX:

tivhas pertufba e-lo uet theory, ShirleyBy means of F q
ly o aibt ned results fo q

een foun y Hirssame resu
felder. Near an odd resonance, ir e

co replaced by(40) with u and co„, rep a

(+/2)" +'
sh 22@ —1( ( )2 2p

4J

cf
Io

IO

(54)

I I I II

I OI 9

ation rate R vs intensity.e sho%'s the excltatioIl ra eFIG. 3. Solid curve s
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teI181tp.

2@+1 F/2
p(p +1) co

& I, we see that ~„,==25.. In the limit I' /5~&
26 can be re-

respectively. n
Therefore, when neaft e p

ressions for u an d 6) . of1)co in our expres
- hoton limit

p y p+
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first use Stirling's formu a o



NONPERTURBATIVE ANAL YSIS OF THE TWO-LEVEI. ATOM: 4693

+ 1) (2 )tIz( + 1)p+(tI2)e —(p+t)

X 1+0—1
P

in Eq. (54). We novv have
T

(2p +2)zP+'=(2p+1)'P+' 1+ 1

2p +1
I,

=e(2p +1)zP+' 1+0
P

(F/2)' +'

&(2~)(p + 1)zp+ &e —(zp+1) zp

1
X 1+0—

P

Therefore

2(F/2)'P+'

tt(2p +1)'P+'e "P+"to'P 1+0 1

P

2(F /2)'P+'

m(2p +2) p+'e '2p+z'to2p

Also, for large p,

1+0 1

P

The replacement 2p + 1~26 /to is valid near a resonance
for I'/6 ««1. If this replacement is made in the above
expression, it becomes identical to our form for u, Eq.
(42), to order to/h.
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