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Excitation of an atomic system subjected to a slowly varying external electromagnetic field is
studied using a two-level model. Time evolution of the system is found using an approach which is
nonperturbative in the field strength. There is no constraint to small values of the applied field, that
is, the field (in appropriate energy units) need not be small compared to the difference in energies of
the two levels. Rather, we use the fact that the situation of interest to us is where the frequency of
the exciting field is small compared to the frequency associated with the level difference. Transition
probabilities and resonance conditions are found which circumscribe both the large- and small-field
limits. In the weak-field limit the previous results of high-order perturbation theory are readily
recovered. For a monochromatic field the characteristic features of resonance excitation at high
harmonic number of the applied field are (a) extremely narrow resonance widths and (b) shifts in
resonance positions which are strong functions of field intensity. Because of this sensitivity, we are
able to demonstrate that when slow temporal evolution of the field amplitude is taken into account
(e.g., due to finite pulse duration) the appropriate mean excitation rate is that due to the uncorrelat-
ed contribution of many resonances. The results of this analysis are used to estimate excitation
rates in a specific atomic system, Cd'>*, which are then compared to multiphoton-ionization rates.
Our calculations suggest that the ionization rate exceeds the excitation rate by several orders of
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magnitude.

I. INTRODUCTION

There has been a great deal of interest, both experimen-
tal! and theoretical,? in atomic processes due to very
strong electromagnetic fields. In fact, current laser tech-
nology enables production of oscillating electric fields
comparable to internal atomic electric fields. Transitions
involving the emission or absorption of many field quan-
ta, multiphoton processes, can occur under these cir-
cumstances. Most experimental studies in this area have
investigated multiphoton ionization. There is the sugges-
tion, however, based on Rhodes’s observations in kryp-
ton,* that excitation by multiphoton processes has been
observed experimentally. In light of these results, it has
been proposed that selective excitation by comparative-
ly-low-frequency electromagnetic fields may be feasible.*

In this report we address this problem of multiphoton
excitation of an atomic system, as might result from its
interaction with such an intense laser field. We use a sim-
ple model of this interaction between two levels in such a
system
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ld[ _H( )a’
or equivalently,
4 |9 E, Fsin(wt) | |a,
Yar la, | T |Fsin(wt) E, a, (1

Here a, and a, are the state amplitudes, with associated
frequencies in the absence of the external fields E, and
E,, respectively, whose time development we wish to
find. The coupling parameter F is proportional to the
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amplitude of an electromagnetic field of frequency o,
and, in general, is itself a slowly varying function of time
(with F /F <<w), because of effects such as finite pulse
duration. We take E, >E,, ©>0, and F>0. The elec-
tromagnetic field is treated semiclassically and in the di-
pole approximation. The correspondence between this
model and the quantized treatment of the electromagnet-
ic field is given in the fundamental paper by Shirley.’
(The model also describes various other physical prob-
lems, for example, the state of a spin-1 particle immersed
in an oscillating magnetic field oriented perpendicular to
a static magnetic field.)

Solutions of Eq. (1) have been obtained from perturba-
tion theory with F small (e.g., see Shirley®). However, we
observe that the characteristic feature of high-order mul-
tiphoton processes is that w <<A=(E, —E,)/2. Here we
develop a theory which is asymptotic in w/A, spans the
domain F ~A, and is constrained only by the condition
F <<A/w. The identification with the quantized treat-
ment of the electromagnetic field is that 2A/w is
identified with the number of photons involved in the
transition.

In Sec. Il the theory is developed for the case
F =const. In order to find the time evolution of Eq. (1),
we introduce the WKB representation in the complex
time plane. Solving the problem then amounts to finding
the small changes in this representation over each period
of the applied field. The most essential feature of our ap-
proach is that the small size of these changes, on the real
time axis, necessitates moving our path into the complex
plane. For various complex values of time, there occur
jumps in the WKB representation which are comparable
in size to the solution itself. By moving our path into
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such regions, we find these jumps and thus determine a
transfer matrix which advances the system over one
period of the applied field. The Nth power of this matrix
then determines the state of the system after N periods.
This method is to be contrasted with Shirley’s approach
using Floquet theory, where it is necessary to find the ei-
genvalues of very large matrices.

We find general expressions for the time-dependent ex-
citation probability P, Eq. (39), and exhibit its depen-
dence on field frequency and intensity. In the limit
F/A <«<1, we recover the resonance shifts and the
(F*)2/® power law for the generalized Rabi frequency® as
found by the perturbative treatment of Shirley’s Floquet
Hamiltonian. Simplified asymptotic expressions are also
given for each of these quantities in the limit F /A >> 1.

In Sec. III the effects of the temporal intensity en-
velope (F/F <<w) of the applied field are considered.
Because of the strong dependence of the resonance posi-
tions on intensity and because of their narrowness, any
given resonance will be excited only during a small inter-
val of the laser pulse. Any slight randomness introduced
into the system will ensure that the contribution to the
excited-state amplitude from successive resonances will
be uncorrelated. Given these conditions, an average rate
of excitation is then found.

We apply our results in Sec. IV to model a Cd'** ion
which has been proposed as a candidate for multiphoton
excitation. Using the results of Sec. III, the rate of exci-
tation between the 4s24p® and 4s4pS5p levels is con-
sidered and is compared with estimates of rates for multi-
photon ionization from the upper level.” It is found that
the rate of ionization clearly dominates the rate of excita-
tion that was predicted by considering the two-state in-
teraction alone. We realize that application of the two-
level model to atomic systems is certainly suspect if inter-
mediate resonant states can participate in the transition
from initial to final state. However, the results of Sec. III
suggest that maintenance of individual high-order inter-
mediate resonances will be extremely difficult experimen-
tally.

II. TIME EVOLUTION IN THE PRESENCE
OF A LOW-FREQUENCY, PERIODIC
ELECTRIC FIELD

Rather than deal directly with the system of two cou-
pled first-order equations for a, we generate an equivalent
second-order system of equations which is coupled only
through the specification of initial data. To this end, we
define two new dependent variables, y and z, through the
relation

y
a=exp(—iAdt)R

z | (2)

with the unitary matrix R defined by

I —1

R=751 1

1
V2
and with 4=(E,+E,)/2. Differentiation of Eq. (1)
yields the second-order system

, 3)
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2
%—;2}1 +Q,y =0 (4a)
and
2
%Zz_ +0Q,z=0, (4b)

for y and z, respectively. Here we have transformed to
the dimensionless time variable 7=wt and introduced the
quantities

2 2
Q,= % 1+ N sin27+i2—fcosr (5a)
and
A ? ’ F
Q.= . 1+ X sinzr—-ifi-{cosr , (5b)

which are complex periodic functions of 7. The periodic
nature of the problem allows us to construct a solution
for arbitrary time from the general solution obtained over
one period. [On the surface it would appear that the
solution of the equations for y and z would require initial
data for four independent complex amplitudes, whereas
solution of Eq. (1) requires initial data for only two com-
plex amplitudes. The extra information is provided by
differentiating Eq. (2) and substituting into Eq. (1). That
is, if a is known initially, then so is da/dt.] The develop-
ment of the solutions for y and z proceeds in a parallel
fashion. Therefore, we present the details of the method
for y alone. For notational simplicity, we shall tem-
porarily write Q for Q,.

So far, Egs. (4) are exact. However, by observing that
the situation of interest to us (multiphoton processes) is
that when

A>>l , (6)
w

we can make use of the adiabatic (WKB) approximation
since Q is large and slowly varying for 7 real. Most im-
portantly, this does not, however, preclude the situation
where F/A > 1.

The accuracy of the WKB approximation is reflected
in the fact that if one were to attempt to integrate direct-
ly Eq. (4) along the real 7 axis, one would find that the
changes in the amplitudes of the two eikonal solutions
are extremely small and difficult to compute. However,
near the complex points 7; where Q vanishes, the changes
in these amplitudes are relatively finite. The essential
feature of our method is to determine the behavior of the
solution near these points and to carry the solution
asymptotically back to the real time axis. Our method is
equivalent to that of Zwaan®® (see, e.g., Pokrovskii and
Khalatnikov!®). It has just recently come to our atten-
tion that similar but less complete techniques have been
used on this problem in the past (see, for example, Delone
and Krainov'!).

There are infinitely many zeros of Q. For each integer
k, there is a pair of zeros 7§, 7%, such that

r=kmts, , 7
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where Therefore, the nonasymptotic regions,
k
sg=Ims +(—1)Res , (8) f:Ql/ZdT<1»
with s the solution of s
) 21172 surrounding each zero do not overlap. Furthermore, the
cos s = A PECENN PO Fl| | o ) phase integral between the zeros 7 and 7; for a given
T F |24 A 2A ’ value of k (which are roughly vertically displaced with

for which Ims >0and |Res | <7 /2.
The anti-Stokes lines, defined by

Im |f:Ql/2d7' =0,
7

emanating from the points Q (7;)=0, with 7; any zero of
Q, have special significance in that, asymptotically, the
relative size of the two independent solutions to Eq. (4) is
maintained along such lines. Because of the reflection
symmetry of Q about the lines Rer=(n + 1) for integer
n, one sees that a series of anti-Stokes lines connects the
set of zeros 7 and another series connects the set 77.
The location of the anti-Stokes lines and the Stokes lines,
for which

Re [fTTQI/ZdT
7

are plotted as solid and dashed lines, respectively, in Fig.
1, where k is chosen to be even.

If, as we assume, Fw /A% << 1, then the phase integral
between the zeros j=#j' is large, i.e.,

[0 dr>>1.
‘r

:O’

respect to each other in the complex 7 plane) is much less
than that between zeros of differing k. This suggests that
it is possible to develop the asymptotic representation of
the solution in an interval of the real 7 axis including
r=km by taking explicit account of at most 7,7, . Thus
motivated, we apply Langer’s method'? to Eq. (4) in order
to determine systematically the asymptotic behavior of y
in a region surrounding a particular zero ;.

Specifically, we transform both independent and depen-
dent variables according to

2
Z—g, Q=¢ (10)
and
dr o
= gg— y, (1
and obtain the resulting equation,
%+§u=%{7,§}u . (12)

Here {7,&} is the Schwarzian derivative defined by

+
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FIG. 1. Stokes and anti-Stokes line structure for Q, in the complex 7 plane for an interval surrounding 7=k 7, where X is taken to

be even. The structure repeats as 7 changes by 27.
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7_11/ 37_“2
tnél=—"—-"-%5"

(13)

with primes denoting differentiation with respect to &.
The solution of Eq. (10) requires the specification of a
constant of integration in order to determine completely
the functional form £(7). The choice £(7;)=0 makes 7’
finite at the point 7=7; which guarantees the bounded-

j
ness of {7,&}. With this choice, we have

eI = [0 dr=0(g) . (14)
J

A comparison of the right-hand side of Eq. (12) with
the second term on the left shows the former to be small-
er, nominally by (w/A)%. If the right-hand side were
zero, then the general solution for u would be a linear
combination of the two Airy functions Z,(§) and Z,(§).
Without approximation, Eq. (12) can be recast as an in-
tegral equation,

u= AZI(§)+BZZ(§)—%fjdnG(é,n){‘r,n}u('q) ,
0

(15)

by formal use of the method of variation of parameters.
Here the kernel,

Z(E)Zy())—ZH(E)Z, (1)
W b

G(&n)=

with the Wronskian,
W=Z,(5)Z5(E)—Z,(E)Z (&),

a constant. An asymptotic series for u in inverse powers
of £ is developed by treating the integral term in Eq. (15)
as small, relative to the first two terms. We now con-
struct such a solution whose domain of validity extends
away from 7; to include an interval of the real 7 axis.
Referring to Fig. 1, we consider the region surrounding

the particular zero 7; =7{. Let Z,(§) be that solution of
Z/'+£Z,=0, (12

which is subdominant in region 1*. Choose B =0.
Then, inspection of the integral term shows that it will be
asymptotically small throughout that region for which
the integral from &, to £ can be performed along a path
for which

Im[®(n)—P(£)]>0

everywhere. Choosing §,=£&¢, a point which lies on the
Stokes line in region 1%, guarantees that this inequality is
satisfied in a domain which encompasses the real 7 axis
throughout an interval of size |Re(r—kw)|~m. A
second independent solution is constructed completely
analogously by making the replacements (see Fig. 1),

=75,

region 1t —region 17,
.+_

& —&o -

The representation of the functions Z, outside of re-
gions 1* is accomplished by applying the well-known
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connection formulas!® developed for second-order equa-
tions with a single first-order turning point. To this end,
we define

(a,7)=Q ~"*(1)exp (16a)

+ifTQ1/2dT
a

and

(r,a)=0 " "*(1)exp l——ifTQ’/ZdT] R (16b)
and introduce the notation Z; for Z,(£(7,75)). Then, in
regions 1* we have

ZF ~(rf, ()2 (17a)

Zi ~(r, i )2 (17b)

respectively. These forms continue unchanged upon
crossing the anti-Stokes lines LT, respectively, but each
solution becomes dominant in its region 2. As the solu-
tions are continued across the Stokes lines emanating
from 7} and 7}, each acquires a subdominant part,

Z ~[(rf,m) +i(r, )12 (18a)

Zy ~[(r, ) =i (g, ) ()2 (18b)

in region 3*. Upon returning to the line Im7=0, Egs.
(17) and (18) provide sufficient information to evolve the
asymptotic representation for y over a full period
Ar=21.

We represent y asymptotically in the WKB form

y~c(rh, ) e (1), |T7—kw| <7 (19)

With this representation, the Stokes phenomenon appears
as a discontinuous jump in the ¢, as 7=k is crossed.
+
Z‘; ), the relation between c; defined
k

through Eq. (19) for 7—k7 >0 and cf defined for
7—km<0is

Denoting c; =(

cg =Scg, (20)
where
1 —i[7,7F]
Tl 1 | 2y
with

[a,b]=exp [ibe‘/sz

The functions 75,75 satisfy [75,7F 1=(—1)*e, where

e=[rg5,7¢1] (22)

can be written in terms of elliptic functions. Its magni-
tude has the asymptotic forms
280 /@

, F/A <1

, F/A>>1 (23)

with e the base of the natural logarithm, and is small
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whenever our theory applies. A direct numerical evalua-
tion of ¢ versus F /A for A/w=>50 is shown together with
these asymptotic forms in Fig. 2. As long as w/F <<,
the phase of ¢ is nearly constant,

m
~—. 24
d(e) > (24)

With the introduction of €, we have

1 —i(—1ke
S=li— 1)k ]

When 7 lies in the interval km <7< (k + 1), y can as
well be written in terms of ¢, ;. Using the definition,
Eq. (19), we obtain the relation,

(25)

exp(ify) 0

ci=i(=1k ci (26)

0 exp( —i6g)

with
1/2
dr,

A prm
GOE[O,W]z—ano 1+

£
A

sinz—r+i9&§cosr
27

evidently real. In the small- and large-field limits, 6, has
the asymptotic forms
2

A 1 | F
O~ 14— | —
b TTw RN , F/A«<1
~2F /0w, F/A>>1. (28)

If we repeat this procedure for the interval w<7
— k7 <2, we now obtain a transfer matrix relating ¢, ,
tocg,
ci=M.cp . (29)
With accuracy to order €, we obtain
exp(i26,) 2¢ sinByexp(if;)

(30)

M= |y sinfpexp( —i6,)  exp(—i26,)

Y T T T

T TTTTTT] T

T TTTTT

in (e)

@
A
|
>
T

Loyl L1
| 10

Lol 1
-

10

-7 1

Fsa

FIG. 2. (w/A)In|e| vs F/A for A/w=50. The solid curve
shows the numerical estimate. The dashed curves show the
asymptotic estimates from Eq. (23). The numerical results are
insensitive to A /w as long as A/w > 2.

4689

The procedure can be repeated in a completely analo-
gous fashion for z wherein Q,, is everywhere replaced by
Q, and the corresponding coefficients d; are defined
through the asymptotic relation

z~diH (b, T +di (1), | T—km| <. (31)

The values 7; are now those for which Q,(7;)=0. The
corresponding matrix M, is the same as M_ except for
the replacement of € with —e.

Having obtained evolution of y and z over one period
of the applied field, we are now equipped to determine
the evolution of a. In the limit of interest here, A/w >>1,
we are led naturally to represent the state vector a in
terms of its projections onto the instantaneous (normal-
ized) eigenvectors et of the Hamiltonian H(7), defined
through

He'=—owl'e (32)

with

2 1/2

2 , (33)

A=+ 1+ sin“rT

the corresponding instantaneous eigenvalues. Writing

ifk:rdr}ﬁ

a(t)=a; etexp

ey el
+ag e exp [lfkﬂ T
|7—km| <7 (34)

we are to determine the transfer matrix for @; in terms of
M.orM,.

In order to find the relations between cf, dy, and ai,
we begin by making the expansion

[drQ'*~ A lfdr(l+f2)”2
w

= f A2+f 172 7

where f =F/Asint, in Egs. (19) and (31). The resulting
expressions are substituted into Eq. (2) which when it is
then compared to Eq. (34), determines ¢ and d) in terms

of aif. For ci, we have
+ 172
ay
a=| o |=]22| e (35)
K= lag €A ko

so that the transfer matrix which evolves a;, over an in-
tegral number N of periods is, finally,

ak +2N:MNak N (36)

where we have dropped the subscript ¢ on M, from here
on. Since H is Hermitian, the norm |a | ?is preserved by
Eq. (1). It will also be preserved by the result, Eq. (36), if
M is unitary. In order to enforce unitarity, we simply
divide M by the quantity (| M, |?>+ | M, |2 The
WKB derivation leading to Eq. (30) is, in any event, not
correct to O (g?) which is the size of the difference be-
tween |M]| and unity. By dlagonallzmg M we can find
MY quite easily. Given that a; =1 and a; =0, the result
then becomes
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—ily,+2m A/w)N]
—(mz/ml)e 2 1
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tan—

AN =—— sin
+ [Slnzyl+(m2/ml)2]l/2

where m;= |M,; | and y,=¢(M,;). From Eq. (30) we
know that ¢(M,)=~26; therefore, the condition for a
resonance is defined by sin(26))=0 or 26,—I/7=0 for
some integer [. If Eq. (1) is used to model an atomic
quantum-mechanical system, then / is identified with the
number of quanta separating the resonant energy levels.

From Eq. (37), we see that, on a resonance, the transi-
tion rate is proportional to tan~!'(m,/m,)~m,/m,.
From Eq. (30), we have

m,&l Iy
(38)
my~2|esinfy| .

On a resonance Oy,=(m/2)l. Therefore, for / even, the
resonance value of m, will be zero to lowest order. This
means that the transition rate will also be zero. We note
that only odd resonances will be observed. In previous
work on this problem, this condition seems to have been
proven by appealing to quantum-mechanical perturbation
theory (e.g., see Delone and Krainov!! and Shirley?).

With the identification P= | a;,y | > and the replace-
ment N —wt /2w, we obtain, from Eq. (37),

_ (2]e])?
~ sin%(260,)+(2 | g | )?

X sin? —%T‘—[smz(zeomz e 22| . (39)

For ot ~&~!, P assumes a resonance structure. Near a
resonance, we have sin(26,)~2[6,—(7/2)!]. Defining
u=Q2w/m)|¢e|, and w,,=(2w /)0, the result is

u?

[@rs—(2p + Do ]*+u?

~

X sin® (1 {[@ee—(2p + Do P +u?}' %), (40)
where I =2p +1, and p is an integer. The resonance con-
dition is

Ores— (2P + 1w =0 . (41)

In the small-field limit (¥ /A small), we have, from Egs.
(23) and (28),

20 /e
y 20 | eF
T | 4A ’
42)
1| F
wres~2A 1+Z —A—

We show in the Appendix that these results are
equivalent to those obtained perturbatively by Shirley.
For the case of large fields (F /A large), we have

[sin?y,+(my/m,)?]? ]

N ] , (37
cosY

a
©

|

20 T
U ~——exp —
T 2

|

Equations (40)—(43) constitute the major result of our
theory when F=0.

For all the ranges of F /A that are considered here, u is
much less than w. From Eq. (40), we see that this means
that the resonance widths for P are very small. (This
property is not surprising if we consider the close analogy
of the equation of motion, Eq. (4), to the Mathieu equa-
tion, d’y/dr*+[a —2qcos(27)]ly =0. A well-known
property of this equation!* is the presence of unstable
solutions near integer values of a!”2. The successively
higher-order cusping of the stability boundaries with in-
creasing a!/? is analogous to the narrowness of the reso-
nances contained in Eq. (40).) Furthermore, to the extent
that our model is applicable, we see, from both Egs. (42)
and (43), that variations of @, that are large compared
with u will occur in practice because of intensity varia-
tions associated with the finite duration of the applied
field. These considerations place very stringent criteria
on the required constancy of the intensity, if any particu-
lar resonance is to be maintained for as long as one Rabi
period ~u ~'. In Sec. III we consider some implications
of this limitation.

43
4F (43)

WDpes~ o

ITII. EFFECTS OF FINITE PULSE LENGTH

In this section the effects of the finite length of the laser
pulse are considered. Because w,., varies with intensity,
the condition, Eq. (41), for resonance of a given order p is
satisfied precisely at only a single time #,. The system
remains effectively on resonance up to times ¢*, such that

tp+t"
[’ dtlo—2p+1el<1.

P
During such intervals, coherent additions to the ampli-
tude of an initially empty state a ~ will occur twice each
period of the applied field and will accumulate to a size

— * . ! —

a” ~(wt*)eexp la)flpdt A

>

where wt* >> 1, if the amplitude varies sufficiently slowly.
Outside of such resonant intervals, the contributions to
a~ will be ~g, i.e., negligible. Any uncertainty in the
temporal behavior of the applied field will introduce cor-
responding uncertainties in ¢, and A~. If the integral
© f fpdt A~ accumulates an uncertainty of O (1), then the

contribution to @ - from resonances of adjacent orders
will be incoherent. This is the short-autocorrelation-time
approximation, considered below. If the autocorrelation
time of the phase integral approaches the interval be-



37 NONPERTURBATIVE ANALYSIS OF THE TWO-LEVEL ATOM: ...

tween resonances, then these results will be modified.
Defining A | @ ~ | % as the change in |a ~ | ? which occurs
upon passing through one resonance, and ., as the time
interval during which the system is between adjacent res-
onances, then we may further define an average rate of
excitation R as

— 2
rR=Ala”|” (44)

ts(ep

We now develop quantitative expressions for these quan-
tities.

To find A|a~ |% we go back to the transfer matrix,
Eq. (30). The matrix M has the form

my  myp
M= ,, . |-
—my; my

Assuming |a* | =1, then over each period of the ap-

plied field, @ ~ will suffer a small “kick” of s()ize equal to
0

—m?%,. From Eq. (30), m%,=i2 | |sinfpe  °. If we as-
sume variation of the form

90:(2p+1)%+aj, (452)
where j is an integer such that

t=t,+ 2 J (45b)

and a=(27/w)(d6y/dF)(dF /dt) is the change in 6, per
period of the applied field, then

m,(j)=—exp(+i2aj) ,
m,(j)=—i2|e|expliaj) .

The contributions to @ =~ which occur from j=—M to
j=M are now considered. Taking a "(—M)=1 and
a  (—M)=0, we have

j-1

M M
a M= I II mttgm,Gm (g,
j=—Mg=j+1¢'=—M

(46)
which yields, for the magnitude | a ~(M) |, the result
M—1
la=(M)| = 2| | 3 expli2alj—L?]|. 7
j=—M

In the case of interest, that of a slowly varying envelope,
we have a << 1 (corresponding to wt* >>1). It is evident
that only those terms for which j~a !/ contribute in
phase to |a ™ |. As M becomes large, the sum can be re-
placed by an integral, with one consequence, that the
contributions of all resonances other than that centered
at j =0 are eliminated. These operations give the result
1/2

la=(M)]| ~ |2¢| ) (48)

T
2a

or
21

Ala=|%= le|?.
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To find ¢, the interval between adjacent resonances,
we consider the resonance condition, Eq. (45), with j =0.
Changing p by unity yields the condition for an adjacent
resonance. Therefore

do, |
dt

tstep:ﬂ.

272
= ’

aw

where the second form follows upon using Eq. (45). With
this result, we obtain the average rate of excitation,

7Tu2

R=——, (49)
4o
and note that R depends only on the instantaneous field
intensity, and not on its time derivative.

IV. COMPETITION BETWEEN DIRECT
N-PHOTON EXCITATION AND IONIZATION

In a real atomic system, under experimental condi-
tions, the possibility of coupling two levels needs to be
considered in the light of competing processes. Here we
consider one such process, that of multiphoton ioniza-
tion. Keldysh’ has shown that ionization from the upper
level of a transition pair is much more likely than from
the lower energy (more deeply bound) state. We consider
the case of an electromagnetic pulse with temporal inten-
sity variation I(#) incident upon an atomic system with
dipole moment d =qa for the selected bound-bound tran-
sition. Here g is the electron charge and a is the effective
size of the dipole. The coupling frequency F =E,d /4,
where E is the amplitude of the applied electric field. In
experimental units,

2aE Il/za"
F_ 8% 55510 TA (50)
AT w Wioo

where W, is the transition energy expressed in units of
100 eV, I, is the applied electromagnetic (em) field inten-
sity in units of 10'® W/cm?, and a; is the dipole size in
angstroms. The asymptotic parameter,
o _
A
where A, is the wavelength of the applied field in mi-

crometers. Two additional characteristic parameters, the
adiabaticity parameter,

2.48X 10724 W 1o (51)

w(2mx)!/? X6
9E, Myl 182

and n;, =X/fiw=1.24 X 10’2)(100)\“"1, the minimum num-
ber of photons needed for ionization, enter the computa-
tion of the multiphoton-ionization rate. Here m is the
electron mass and X,y is the ionization potential, again in
units of 100 eV. If ¥ << 1, then the tunneling (adiabatic)
limit of Keldysh’s result applies whereas, if y >>1, the
“multiphoton” limit applies.
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For illustration, we consider the particular transition
45%4p°— 454p %5p between the ground state and a core ex-
cited state in Kr-like Cd'2*, suggested by Clark et al.* as
a candidate for selective multiphoton excitation and pos-
sible consequent lasing action. The pumping is to occur
through the application of a short pulse (1 psec) of high-
intensity radiation (~10'® W/cm?) from a KrF laser
(A=0.248 pm). They compute the transition energy
Wi00=1.9, and the ionization potential from the upper
level X;0o=1.6, and estimate a; =1. Keldysh’s result for
the ionization rate in the limit ¥ << 1, applicable here, is

=234 37) 22y ~1 2exp[ — 4ymi(1— Ly?)] .

(53)

© Y

ion

A comparative plot of w;,, and the mean excitation rate
R, Eq. (49), is shown versus intensity in Fig. 3. Clearly,
the ionization rate is always much larger than the excita-
tion rate, a result which casts doubt upon the prospects
for efficient excitation in this case.
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FIG. 3. Solid curve shows the excitation rate R vs intensity.
The dashed curve shows the (Keldysh) ionization rate w;,, vs in-
tensity.
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V. CONCLUSIONS

We have analyzed the evolution of a two-level system
in the presence of an externally imposed finite, but slowly
varying, potential. We have given general expressions for
the transition rates and resonance conditions when the
potential is strictly periodic. Simple limiting forms are
given, which both reproduce the results of perturbation
theory in the weak-external-field limit, Eq. (42), and
which apply in the strong-field case, Eq. (43), where per-
turbation theory is no longer valid. Finite transition
probabilities are found when conditions for high-order
(multiphoton) resonances are satisfied. Such resonances
are extremely narrow, however, and have relatively much
larger nonlinear shifts in position as the external field am-
plitude is varied. These characteristics motivated the fur-
ther calculation of an average transition rate which in-
cludes the decorrelating effects, on these resonances, of
external uncertainties. For strong decorrelation, i.e.,
when adjacent resonances are decorrelated, Eq. (49) is ob-
tained for the mean rate. This rate was evaluated for pa-
rameters relevant to the case of multiphoton excitation in
Cd'**, and was compared to the rate of multiphoton ion-
ization from the excited state, which was found to dom-
inate at all intensities of interest.
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APPENDIX: COMPARISON TO SHIRLEY’S RESULTS

By means of Floquet theory, Shirley’ has perturbative-
ly obtained results for Eq. (1) in the limit F/A << 1. The
same results have also been found by Aravind and Hirs-
felder.'> Near an odd resonance, Shirley obtained Eq.
(40) with u and w,,, replaced by

(F/2)®+1

Ugh = 22p—1(p!)2w2p (54
and
2p+1 | F/2
=E,—E x-S/
M FIES TN
respectively. In the limit F/A << 1, we see that @ ~2A.

Therefore, when near the 2p + 1 resonance, 2A can be re-
placed by (2p + 1)w in our expressions for ¥ and w,.. For
large p, which corresponds to the many-photon limit
(large A /w), wgy, then agrees with our .

To show the correspondence between u and ug,, we
first use Stirling’s formula for large p,
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p|=r‘(p +1)= (217)[/2(p +1)p+(1/2)e—(p+1)

1
p
(F/2)%+1

22p—1(2ﬂ,)(p +l)2p+ie—(2p+l)a)2p

ol

X |14+0

’

in Eq. (54). We now have

Ugp =

1

X [14+0

2F/2)%+!
7T(2p +2)2p+1e —(2p +2)w2p

Also, for large p,

2p +1
2 +2)2P+H =(2p + 1)+ |1
—e(2p+1@+ 140 |1 ||,
P
Therefore
2AF/2)P+! :
fon ™ m(2p + 1) Hle =22+ 1+0 ;

The replacement 2p +1—2A /w is valid near a resonance
for F/A << 1. If this replacement is made in the above
expression, it becomes identical to our form for u, Eq.
(42), to order o /A.
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