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The molecular-orbital (MO) method introduced previously by us [Phys. Rev. Lett. 57, 984 (1986)]
to treat two-electron atoms is developed further. The states of systems consisting of two electrons
and one positively charged particle are analyzed with use of the interelectronic distance as an adia-

batic coordinate in analogy to the interprotonic distance in 82+. The motion of two electrons then

separates into rotational, vibrational, and internal motion, the latter being described by MO, exactly
as in molecules. Indeed, adiabatic MO potential curves for atomic systems are obtained by scaling
the corresponding curves for H&+. Approximate quantum numbers for two-electron states, derived

previously by empirical methods or from an ad hoe rovibrational model, arise naturally since the
two-center Coulomb problem is exactly separable in MO coordinates and the corresponding nodal

surfaces are conserved for all interelectronic separations. In addition, the gerade-ungeeade symme-

try of MO is exactly preserved and appears as a fundamental symmetry of two-electron states.

I. INTRODUCI'ION

The three-body Coulomb system of two electrons and
one positively charged particle (e.g., He,H,Ps ) is the
fundamental testing ground for the description of elec-
tron correlations. This is because, in doubly excited
states of hehum or in all states of H, the electron-
electron interaction is of equal importance to the
electron-ion interaction. This correlation elfect becomes
more and more pronounced as the energy of the three-
body system approaches that for complete fragmenta-
tion. '

The earliest and still numerically most effective method
by which to describe two-electron correlated states is to
represent them as linear superpositions of products of
one-electron atomic states. By inclusion of a suScient
number of terms of a given symmetry, high accuracy in
the positions of resonances can be obtained as exemplified
by the calculations of Lipsky et al on helium autoioniz-
ing states. This method suffers from the obvious draw-
back that, apart from examining the relative contribu-
tions of difFerent one-electron orbital products or plotting
out the wave function itself, there is no systematic way in
which the character of the two-electron motion can be
classi6ed and hence understood in simple terms. Never-
theless, in certain cases, speci6c linear combinations of
one-electron product states do have a large-enough
weight to allow a simple approximate classification. The
best example of this is the "+"and "—"classi6cation
used by Cooper et ul. to describe series of autoionizing
states of the helium atom.

A significant advance in the understanding of correlat-
ed two-electron motion has resulted from the use of hy-
perspherical coordinates, first exploited in this connec-
tion by Macek. For example, Macek gave an alternative
description of the + and —series of states by interpret-

ing them as series of "vibrational" states based upon two
potential wells of quite different character with respect to
adiabatic variation of the hyper spherical radius
%=(ri+ rz)'~, where ri and r2 are the positions of the
electrons with respect to the nucleus. This adiabatic hy-
perspherical approximation has since been extensively
employed' to discuss not only the helium atom but
also the ground and resonant states of H [Ref. 5(b)] and
Ps (Ref. 8), the negative ions of hydrogen and positroni-
um. The success of the method in the qualitative ex-
planation of correlated motion in terms of the variation
of hyperspherical coordinates describing radial and angu-
lar electron correlation is impressive. Again, however,
only states of total symmetry are identified by the separa-
tion of the two-electron problem in hyperspherical coor-
dinates, and no approximate "internal" quantum num-
bers arise naturally in the method.

The identification of a new scheme of quantum num-
bers with which to classify correlated motion of two elec-
trons is the core of the problem and has occupied much
e8'ort over the last ten years. Herrick and co-workers
approached the problem from the opposite end, by first
assuming certain symmetry properties and then consider-
ing to what extent the observed energy 1evels 6tted into
this scheme. Since the one-electron orbitals of hydrogen-
ic atoms form a representation of the group O(4), with
angular momentum I and Runge-Lenz vector a as con-
served quantities, they considered decompositions of the
product group [O(4)]i X [O(4)]i for the two electrons with
generators I =/&+1& and A=a& —a2. In particular, they
identified a quantum number T associated with the pro-
jection of I. along an internal axis A and a further quan-
tum number KH depending upon T and the principal
quantum number of the one-electron shell involved.
(Herrick used the label K for this quantum number. We
will use the notation K& to avoid confusion with the

1988 The American Physical Society



JAMES M. FEAGIN AND JOHN S. BRIGGS 37

molecular angular momentum projection quantum num-

ber K to be introduced later. ) The occurrence of the an-

gular momentulQ projection quantum number T led Her-
rick and Kellman to suggest that a corresponding term
proportional to [l.(I +1)—T 'j, a rotor energy term,
may describe the cnergy-1cvel spectra. Since such 8 two-
electron atom as rotor would not be rigid, they further
sul IQlscd that 8 bcndlng vlbl atlonal dcgI ec of freedom
~ould also be present, giving rise, in essence, to 8 rovi-
brational spectrum analogous to that observed for a tria-
tomic XVX molecule. %'e will return to this model later.

Lin"" adopted a more pragmatic approach and simply
made relief plots of the adiabatic wave functions in hy-
perspherical coordinates. By inspection of the wave-
function character with respect to the hyperspherical an-

gle a = tan '(r, /r2 ), he was able to classify the wave
functions according to three types of behavior, for which
he introduced the quantum number, or strictly speaking
the label, A with values +, —,or 0. In a further paper,
Lin5" was able to classify sequences of helium-doubly-
excited states according to the quantum numbers EH, T,
and A.

The hyperspherical coordinates have also been used
with considerable success to discuss thc three-body
Coulomb breakup leading to the "Wannier mode" at
threshold (see Ref. 1 for a discussion of this work). The
use of molecular coordinates, as in the Hz+ problem, was
also suggested for the discussion of the two-electron,
one-nucleus problem. ' In this application, the molecular
internuclear axis R is replaced by the interelectronic axis
R=ri —I'2, and the H2 clectronlc coordlnatc r ls re-
placed by the position of the nucleus with respect to the
center of mass (c.m. ) of the two electrons. In these ex-
phcitly molecular coordinates, a detailed analysis of the
Wannier problem was given. ' " Prompted by this suc-
cess, the molecular-orbital (MO) model was applied' ' "
to a discussion of the resonant states of helium, H, and
Ps converging to the %=2 one-electron level. It was
shown that adiabatic molecular-orbital potential curves
as functions of R show 8 remarkable similarity to the hy-
pcrspherical ones but have the advantage that mell-
de6ned internal quantum nuIQbcrs are assigned to them.
Moreover, having recognized the analogy between two-
electron atoms and H2+, the rovibrational structure fol-
lows immediately, as in the molecular case. In the atom,
however, it is the projection of the total angular momen-
turn along the intcrelectronic axis that is a quantum num-
ber. The vibrational part is simply the "breathing"
motion of the coordinate R. In the MG model, as shown
in Sec. II, the remaining two degrees of freedom are those
used to separate the MG problem and both have an asso-
ciated quantum nuIQbcr. % c CIQphasizc thc fundaIQcntal
diN'crencc between the MO model and the rovibrational
model introduced by Hcrrick and Kcllman, ' enlarged
upon by Berry and co-workers, ' ' and compared to the
hyperspherical results by %8tanabe and Lin. ' In the
latter Inodel, the molecular analog of 8 two-electron atom
is taken 'to be a llileal ti'iatoinlc iiloleclllal' witli no elec-
tronic degrees of freedom. The breathing and bending vi-
brations and their associated wave functions are intro-
duced in an ad Itoe manner. In our case, the "molecule'*

possesses the rotational, vibrational, and electronic de-
grees of freedom arising naturally from the coordinate
separation, and 811 corresponding wave functions can be
derived in a well-dc6ned way. The rotational part is com-
mon to both; indeed, although discussing Herrick s tria-
tomic model&%8tanabc and I.in used the MO-model ro-
tation with R as quantization axis and showed the rela-
tionship to Herrick's use of A.

In a previous paper [Ref. 14(b), hereafter referred to as
I], we showed that the T quantum number is nothing
more than the o, m, 5, etc. quantum number characteriz-
ing the diatomic, or in this case "dielectronic" MO. Here
we will discuss the symmetries of the MO model further.
In particular, it will be shown that Herrick's quantum
number En is equal to (n2 n—, ) where n, , n2 are the par-
abohc quantum numbers of the separated-atom (SA) state
to which the MO correlates. Furthermore, we will show

that Lin's label 3 is given by ( —1) " and n„ is the MO
quanturQ number corresponding to the coordinate
p=(r, r2)/R.—

A further, more fundamental symmetry with which to
characterize two-electron states will emerge. This is the
gerade ungera-de (g u) sy-mmetry of the adiabatic MO.
This "internal" symmetry is not broken by any of the
ol'-diagonal couplings that are neglected in the molecular
separation and remains a symmetry of the total state of
the two-electron atom. Indeed, if g symmetry is denoted
by + ~ and u symmetry by —1, then this MO quantum
number is given by the product ir( —1), where m is the
parity and S the spin of the two-electron atom state.
Hence the grouping of certain sequences of states, e.g.,
'S', ~P', 'D', etc., which have been observed, is explained
by their being based on a single MG of given g character,
since m( —1) = + 1 for this sequence. Therefore, we sug-
gest that the labeling of two-electron states by spin S and

g (even) or u (odd) character may be more useful than the
usual labeling by spin- and total-parity rr, since the latter
quantum number has no particular significance for elec-
tron correlation.

The further advantage of the MO model, discussed in I
and to be described in more detail here, is the scaling
property of the adiabatic MG potential curves. This
property enables us to derive potential curves for the
three systems He, H, and Ps with a minimum of cal-
culation, simply by scaling the published curves for the
Hz+ molecule. In fact, the MO model of two-electron
atoms and the scaling property were introduced over 20
years ago by Hunter and co-workers. ' ' Unfortunately,
these authors did not describe the general construction of
eigenstates of given total angular momentum and parity
and restricted discussion to the ground and singly excited
states. In these states, the electron correlation is not
dominant, and the MO model gives only a moderate esti-
mate of binding energies. Probably for this reason, the
method was not pursued further. Nevertheless, we find it
instructive to consider the way in which the MO model
correctly predicts the qualitative nature of' the low-lying
spectra of all the three-body Coulomb systems H2+, He,
H, and Ps . In particular, one sees how the relevant
mass and charge ratios inAuence the nature of the spec-
tra.
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In the four systems Hz+, He, H, and Ps, the lowest
state is one of zero total angular momentum based on the
lowest orbital of o type. Since all systems contain two
identical particles, the MO have the g or u symmetry
with respect to the midpoint of the line joining these two
particles. Hence, as is well-known for H2+, the two
lowest-potential curves are those based on the 1so. and

2@0„MO, as shown in Fig. 1 schematically for all four
cases. For Hz+, the Isos MO is a bonding orbital, and
there is a potential well supporting the bound states, the
lowest of which is the zero angular momentum rotation-
less and vibrationless X~ state. The center of mass of the
molecule is practically at the midpoint of the nuclei, and
the reduced mass and momenta of inertia of the nuclear
motion are proportional to the nuclear mass. This gives
vibrational and rotational energy spacings that are very
small compared to the electronic well depth, so that Hz+
possesses a rich rovibrational spectrum based on the 1so
MO. The 2po „ is an antibonding MO and gives a fully
repulsive X„curve as R ~ 00, i.e., as one proton moves
oiK Hence there are no bound states based on the 2@a „
MO.

The system H is similar to H2 in that, again, all
three charges are of the same magnitude and one mass ra-
tio is unity, while the others involve the ratio of proton to
electron mass. As shown in Fig. 1, the two lowest curves
based on the 1scrs and 2pcr„MO are very similar to
those for H2+. Again, the Ising is bonding and the
lowest bound L=0 state will be shown to be of 'S' char-
acter. In H, ho~ever, the center of mass is practically
at the proton, and the vibrational motion is that of a pair
of electrons. Hence vibrational energies are of the order
of electronic energies and this has the effect that only the
rotationless ground vibrational state of H is bound.
There is no further rovibrational bound spectrum. When
one electron is removed from H, it "sees" a neutral

ground-state H atom and this means that the 2@0.„MO
is fully antibonding as in Hz+. The lowest triplet curve
S' is built on this MO, as shown in Fig. 1.

The system Ps is extremely similar to H in the MO
model. The center of mass is shifted to the center of the
"molecule, "' but the vibrational reduced mass and mo-
ment of inertia have the same order of magnitude as in
H . Hence the structure of the lowest '5' and S' curves
based on 1so. and 2po. „are qualitatively similar to H
The system Ps is simply a little larger, due to the small-
er reduced mass of the "electronic" mode.

A dramatic change in the spectrum occurs when one
considers the helium atom. This is due to the change in
charge ratios arising from a nucleus with Z=2. An elec-
tron removed from the system (R ~~ ) "sees" the at-
tractive Coulomb potential of ground-state He+ which
can support an in6nity of bound states. Now both 1so~
and 2pa„are bonding orbitals and support potential
wells. For L=0, the lscrs gives rise to 'S' helium states
and the 2pcr„ to S' states. Hence the (is )'S' ground
state is the lowest vibrational state in the iso& potential
well and the (ls2s) 'S' is the first excited vibrational
state, and is bound, of course. The lowest triplet state
(ls2s) S' is the ground vibrational state of the 2pn„po-
tential well. The fact that this ungerade orbital supports
the triplet state (and is antibonding for Z=1) explains
qualitatively why the lowest triplet state of helium lies so
far above the ground singlet state. The higher states with
L&0 are simply the singly excited states of helium con-
verging to the He+( ls) threshold and are represented in
the MO model by the manifold of rovibrational states
built upon the 1so.

~ and 2pcr „MO.
Some of the lower members of the singly excited series

were discussed by Hunter and Pritchard, and the states
converging to the %=2 threshold were described in I. In
the rest of this paper, the MO model will be discussed in
more detail, with particular reference to the internal
quantum numbers that it provides and to the scaling
property of the MO adiabatic potential curves. In addi-
tion, the atomic transitions giving photon absorption and
autoionization will be discussed in the language of molec-
ular quantum mechanic. Then it appears that absorp-
tion to Rydberg series can be described in terms of vibra-
tional progressions and Franck-london factors. The
process of atomic autoionization is the direct analog of
molecular dissociation. In this way, the description of
atomic structure and transition processes Ands a very
close similarity to the conventional description of rnolec-
ular structure and transition processes. ' Atomic units
will be used.

I

ound state
1

FIG. 1. Schematic representation of the lowest states built
upon the 1so~ and the 2po„MO for the three-body systems
H, +, He, H, and Ps

II. THK THREE-BODY CQULOMB PROBLEM
IN MOLECULAR COORDINATES

A. Coupled equations in an adiabatic basis

The three-body Coulomb problem will first be ex-
pressed in molecular coordinates for the case of arbitrary
charges and masses and then specialized to the case in
which two of the particles are electrons and the third has
a positive charge. The molecular coordinates are such
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1 2 1~R-
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g+ + +

r2

X4(r, R) =E4(r,R), (2.1)

that R is the vector separation of particles l and 2 of like
charge {Z, Z2 & 0) and r is the separation of particle 3 of
opposite charge (Z, Z2Z3 ~0) from the center of mass of
particles 1 and 2. The center-of-mass motion of the
three-particle molecule is readily separated and the inter-
nal motion is speci6ed by a wave function 4(r, R) satisfy-
ing the Schrodinger equation

VL~(r, R)= g QDM»(itj, B,O)R 'f,„(R)P,»(r, R) .

(2.3)

The functions Dz& are rigid-top wave functions describ-
ing the rotation of the three-body system with total angu-
lar momentum L. They are eigenfunctions of L with ei-
genvalue L (L+ 1) and eigenfunctions of L, with eigen-
values M and E in the space-6xed and body-6xed frames,
respectively. The functions P;» are the MO wave func-
tions describing the motion of r for fixed R. They are
eigenfunctions of l„where

m, m2 (m, +m2)m3
P&z= + P12,3=

1= iry—V, .

The total angular momentum is decomposed as

L=Lq+I,

(2.4)

(2.5)

are appropriate reduced masses and r, =(r+p, i2R/m, )

for i=1,2. In these Jacobi coordinates, the three-body
Coulomb problem is identical to the fundamental prob-
lem of quantum chemistry, exempli6ed by the H2+
molecular ton. In that case, Zj ——Z2 ——+ l and Z3 1.
As such, the solution of the problem (2.1) has been dis-
cussed in great detail. The wave functions {2.1) can be
characterized by eigenvalues of the energy E, total angu-
lar momentum I and its projection J, along the space-
fixed z axis. We will consider a situation in which total
orbital momentum and spin can be uncoupled so that L,
I.„S,and S, are also separately good quantum numbers.
As in molecular calculations, it is convenient to consider
the six-dimensional r, R space in terms of three Euler an-

gles Q, B,Q (which rotate from a space-fixed to a body-
fixed frame with the z axis along R)„ the length R itself,
and the coordinates r, B„,P, of r in the body-fixed frame.
Then it is clear that P, =P so that upon specification of
the Euler angles, r is speci6ed by tiuo coordinates in the
body-fixed (R, r) plane. In these six coordinates, the total
wave function for given energy can be further decom-
posed as

4~~ (r, R)= g +L~(r, R)Xs~ (LMSM,
I JMJ),

M, M

(2.2)

where JzM is a two-electron spin wave function. The
S

spatial wave function O'L can be written as an in6nite
sum of product wave functions describing the rotation,
vibration, and MO motions,

where L& ———iR&VR. Since the z component of Lz is
zero by definition of the body-fixed frame [L„R—:0],
then 1, has the same eigenvalues K as L, . Accordingly,
the label i represents the quantum numbers associated
with the other two degrees of freedom of r. The func-
tions R 'f ~»(R) describe the vibration of the coordinate
R between the particles of like charge. It depends on the
MO character speci6ed by the labels i and K and upon
the magnitude of the total angular momentum I..

The total Hamiltonian in {2.1) is written

H = —V» /(2@i2)+!i, (2.6a)

li = —V„/(2pi2 3)+ZiZ2/R +ZiZ, /r, +Z2Z3 lr2

(2.6b)

The kinetic energy operator associated with R can be fur-
ther separated into radial and angular parts,

VR /(2Pl2) ~R /(2912)+LR /(2P'l2R

The angular momentum Lz is written from (2.5) as

L„=L'+12—L 1 —1.L

=L'+1' —2L,' L+! 1+L— —

(2.7)

Since the spin is decoupled, the solution of the eigenvalue
equation (H E)+LM ——0 redu—ces to the solution of the
following set of coupled equations, after integration over
the Euler angles and over r:

I82/M. '—2p, „[U,', (R)—E]jf,'(R)
= —g [(p,» I

82/M2+1'/R2
I QJ»)+(p;» I

(2/R)B/M
I p)»)8/M]f »(R)

J+l

A+&0';» I!—I 0»+i)f »+i(R) A &0» Il+ I 0/'» i)f—j'» i{R— — (2.9)

A, = [(I, +Sr)(L+rC +1)]'".
The diagonal ~~~~gy U;» appearing on the left-hand side (lhs) of (2.9) is defined by the matrix element,

&P» I !i+(2)Mi2) 'I d2/'dR2+[L(L+1) ——21&2+12]/R2I
I y») =UL»(R) . (2.10)
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By the same argument, all nondiagonal terms in (2.9) may
be neglected, and the simple radial equation

I 82/M 2 —2p, i[e(R ) —E]Ifx (R ) =0 (2.11b)

is solved for the vibrational wave function and associated
vibrational energies. There remains the rotational energy
represented by the centrifugal term in (2.10). This energy
contribution is added by calculating its expectation value
in the wave functions obtained from (2.11). Thus the BO
approximation makes a clear separation between MO
(electronic), vibrational, and rotational motion of the
molecular ion.

We now consider to what extent Eqs. (2.9) and (2.10}
can be approximated in our system of interest, namely,
two electrons and one nucleus. In this case, R is the in-
terelectronic axis and r describes the motion of the elec-
tronic center of mass with respect to the nucleus. The
most obvious change with respect to H2+ is in the re-
duced mass p, z, which is now equal to —, (in atomic units),

although p, i & only changes from 1 to 2 in the cases of He
and H and from 1 to —', in the case of Ps . Clearly, the
BO approximation cannot now be made and Eq. (2.10)
must be solved. Solutions of this equation which, in con-
trast to BO solutions, have the exact asymptotic SA be-
havior, have been called adiabatic MO. Having ob-
tained these adiabatic MO solutions, there is no apparent
reason for dropping the ofF-diagonal nonadiabatic terms
in (2.9},as is justified in the molecular case by the inertia
of the internuclear axis. Some justification can be ob-
tained, however, by observing that o8'-diagonal coupling
elements are proportional to the energy difference be-
tween the relevant levels (this can be seen explicitly by
applying the Hellman-Feynman theorem to matrix ele-
ments (P;x ~

0/M
~ Pjx ), for example). Hence, so long

as distinct adiabatic MO s are energetically we11 separat-
ed from other MO's, the adiabatic single-channel approx-
irnation should be good. It will always break down, in
principle, at crossings of adiabatic MOs. In specific
cases, ho~ever, symmetry or dynamical considerations
indicate that the interaction is zero or highly localized.
It is on this basis that we will discuss the properties of
two-electron atomic states in terms of the symmetries and
energies of molecular states based on the single-channel
adiabatic solutions of Eqs. (2.9) and (2.10). Moreover,
that the vahdity of the Born-Oppenheimer approximation

It should be noted that P,tt depends on 1., although it is

not an eigenfunction of I . The nondiagonal terms ap-
pearing on the right-hand side (rhs) of (2.9) are usually
called radial coupling terms (b,K=O) or rotational or
Coriolis couping terms (b,K =+1).

In the molecular case (particles 1 and 2 being nuclei,
particle 3 being an electron) the complexity of (2.9) and
(2.10) is usually drastically reduced by making the Born-
Oppenheimer (BO) approximation. This involves the
recognition that p&2 is of the order of a nuclear mass and

p&z 3 is of the order of electron mass. This justi6es a sys-
tematic neglect of terms involving p, z'. Then Eq. (2.10)
reduces to the BO energy,

(2.11a}

in general has very little to do with the appearance of
small mass ratios has been suggested by Essen. This
work shows that it is the form of the interaction between
the particles, and not mass ratios, that is responsible for
ihe approximate separation of an adiabatic coordinate.
In particular, it is the repulsive form of the nuclear in-
teraction that is ultimately responsible for molecular
structure. The interaction potentials in two-electron
atoms are identical to those in H2+ and Essen's analysis
would imply that it is the rigidity of the interelectronic
axis arising from the interelectronic repulsion that ac-
counts for the approximate separability in the atomic
case. This will be particularly true in the case of doubly
excited atomic states, where a large interelectronic sepa-
ration implies that centrifugal and Coriolis couplings,
proportional to 8, are relatively unimportant.

B. MO symmetries and two-electron atomic wave functions

The overall symmetry of the atomic states is the first
consideration. At the level of energy resolution of in-

terest here, the nuclear spin can be neglected. Thus the
total spin S of the atom is that of the two electrons alone.
Furthermore, the total parity of the atom is a good quan-
tum number. Hence the atomic spatial wave functions
must be eigenfunctions. of the electron exchange operator
P&2 and the parity operator P, As explained in the Intro-
duction, we also wish to emphasize the product of these
two operations, PP&2, which corresponds to the g-u sym-

metry of the MO. In the r, R coordinates, these three
operations are de6ned by

P:R~—R,r~ —r,
P]2.R~ —R, r~r,
PP&2.R~R, r~ —r .

(2.12a)

(2.12b}

(2.12c)

It is clear that the total Hamiltonian (2.6) is invariant un-

der these operations, only two of which are independent
of course. Total spatial wave functions which are also
eigenfunctions of the above operators (2.12} are con-
structed as follows:

(r R) y y fDt +( I )s+1+L+KDL ]

&R 'f tt(R)ptx(r, R ) . (2.13)

These functions are symmetric (S=O) or antisymmetric
(S= 1) according to the eigenvalues ( —1) of P,2. These
functions have gerade (t=0) or ungerade (t= 1) symmetry
according to the eigenvalues ( —1)' of PP&2. Since t is a
good quantum number for the atom as a whole, MO's of
dinerent g, u symmetry do not couple. The parity opera-
tor P has eigenvalues n.=+I, given by m =( —1) +', and
is here viewed as being derived from the other two syrn-
metry operations (2.12b) and (2.12c). This is analogous to
the specification of parity as n=( —1), .where I.=Ql; in
the independent-electron picture.

The quantum number t is the only MO "internal"
quantum number which remains a good quantum number
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of the two-electron atom. However, the MO decomposi-
tion gives further approximate quantum numbers. Of
these, the orbital projection quantum number E assumes
a place of special importance, as it appears not only in
the rotational-wave function but also characterizes the
adiabatic MO. An essential feature of the molecular
model is the goodness of the quantum number I()', i.e., the
absence of extensive rotational coupling. In addition to
K, however, the adiabatic MO model furnishes other
quantum numbers whose signiAcance for the
classiAcation of two-electron states is indicated below.

As has been shown, ' ' ' ' the adiabatic MO in Eq.
(2.10) can be obtained by a variational procedure from
trial functions having the analytic form of eigenfunctions
of the BO Hamiltonian h, given by (2.6b), for fixed values
of R. This procedure is discussed in more detail in Sec.
III. The adiabatic MO then possess the same symmetries
as these BO solutions. In addition to the g, u symmetry
corresponding to their behavior under reversal of the vec-
tor r and to the K quantum number which is the eigen-
value of I, and I.„there are two further MO quantum
numbers. These arise from the separability of the Hamil-
tonian h in the confocal elliptic coordinates

3s
cfog

A 3
3d5„

f1 «Q 2pKM

STARK gA

2P1Ku

3d a'I

( 000)

A, =(r, +r2)/R,

p=(r, r2)/—R .

(2.14)

(2.15)

FIG. 2. Correlation diagram of the MO emanating from the
%=1 and 2 hydrogenic levels for the three-body systems H2+,
He, H, and Ps

This separation of the BQ two-center problem and the
eigensolutions of the separated equations in A, and in p
have been discussed very extensively. ~ The A, or
outer solution has elliptical nodal surfaces with the two
electrons as foci. The solution in p has corresponding
hyperbolic nodal surfaces. An important point is that the
number n~, n& of these nodal surfaces is conserved for all
R and, as indicated in Fig. 2, allows one to connect SA
and UA (R =0) atomic limits (the correlation diagram of
molecular physics). The number of nodes n& in P is simi-
larly independent of 8, so that the MO quantum number
K is just the magnetic quantum number of both SA and
UA limits. In the UA limit, the coordinates become the
spherical polar coordinates, Then n& ——n, =n —I —I, the
number of radial spherical nodes, and n„=I —

~
m ~, the

number of polar nodes in 8. In the SA limit, the coordi-
nates become the Stark-state parabohc ones. The two
parabolic quantum numbers are n i ni and ——nz n„/2 if-—
n„ is even and (n„—1)/2 if n„ is odd. The connection
between SA, Stark, MO, and UA quantum numbers is
given in Fig. 2 for the %=1 and 2 SA states.

The g, u symmetry can also be given a simple interpre-
tation in terms of the UA behavior of Ma)'s. From the
correlation diagram, it is readily seen that ( —1)'=( —1)',
the united atom parity. Hence the speciAcation of a MO
by the UA quantufn numbers n, l,E is su%cient to de6ne
nz, n„, K, and t uniquely, Despite this redundancy, the
index g (t=0) or u (t= 1) is usually added to a MO desig-
nation to indicate this symmetry explicitly.

There remains an additional MO quantum number
which is present only in the case of pure Coulomb forces.

This is related to the Runge-Lenz vector and is discussed
in more detail below. Un1ike the other MO quantum
numbers, it is a function of the intereleetronic distance R
and is not, in general, an integer. Its presence signifies
the separability of the adiabatic MO equation in A, , )Lt

coordinates. %e will denote this quantum number as the
expectation value (Q(R)) of an operator Q(R) (defined
below) for fixed R.

Finally, from the solution of the coupled equations
(2.9) will emerge a sequence of energy eigenvalues. In the
uncoupled, single MO approximation, these will be the
sequence of vibrational levels with quantum number v ap-
pearing as the vibrationa1 eigenvalues in a given MO po-
tential of Axed L. Hence the sequence of quantum num-
bers ni, n„, K, t, ( Q(R ) ), and v specifies a set of approx-
imate symmetries of the interna1 motion for a given state
of LSm symmetry. The symmetries are broken by radial
and rotational coupling. More correctly, all are broken
except the symmetry corresponding to I;, since
( —I)'=m( —1) . The origin of the preservation of the
overall g, u symmetry is to be traced to the fact that the
r,l are Jacobi coordinates and hence the usual two-
electron Harniltonian in r&, r2 coordinates,

H = ——,
' 7„——,

' V„+V,~(r, )+ V23(r2 )+ V, i(R ), (2.16)

is obtained by direct transformation of (2.6) and neglect
in He and H of terms of the order of inverse nuclear
mass [cf. Eq. (3.2)]. Naturally, (2.16) is also invariant un-
der the operation PP&2 which takes r into —r, although
this is not usuaBy emphasized.
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C. MO interpretation of previous classi6cation schemes

The set of approximate internal MO symmetries in our
molecular model plays a role similar to the more usual
approximate symmetries represented by one-electron
quantum numbers (n„l„m, ) and (n2, l2, mi) of the
atomic independent-electron description. As outlined in
the Introduction, apart from the use of configuration in-
teraction based on sn independent-electron model, two
methods have been used to discuss doubly excited states
of two-electron atoms. The first is the adiabatic separa-
tion in hyperspherical coordinates (reviewed in Ref. 1),
which has shown good numerical accuracy but isolates
no internal symmetries. The second method' ' ' con-
centrates on the explicit introduction of approximate
symmetries based upon particular dynamical models.
This method has been successful in identifying certain
symmetries by which groups of two-electron states may
be classified but has no power to make ab initio calcula-
tions. The molecular model provides not only a complete
set of symmetry properties snd a simple explanation of
previously identi6ed symmetries but also a calculational
prescription.

Guided by the group-theoretical analysis of Herrick
and co-workers and by the molecular approach, ' '
%atansbe and Lin' extracted approximate internal sym-
metries for two-electron wave functions. They identified
not only the two quantum numbers rand KH that were

proposed by Herrick and co-workers, but an additional
quantum number A, originally proposed by Lin ' '

empirically from a study of calculated hypersphericsl adi-
abatic wave functions. We can give a direct and much
simpler MO explanation of the existence of the quantum
numbers T, A, snd EH.

The quantum number T is the body-frame molecular
angular momentum projection quantum number. In line
with molecular notation, we call this projection E, snd it
is defined by the molecular rotational-wave function

DMx. In the MO model, however, the projection of total
angular momentum L along the interelectronic axis is
identical to the projection of the electronic center-of-
mass angular momentum l along this axis. That is, K is
also an internal MO quantum number denoting the o, m,

etc., character of' the MO and is equal to the UA and SA
magnetic quantum numbers. Hence, in the MO model,
the quantum number K can be associated directly with
the adiabatic potential curves.

The quantum numbers A and EH can be expressed in
terms of the two MO quantum numbers nz, n„, which

specify the number of elliptic, and hyperbolic nodal sur-
faces, respectively. As mentioned before, these surfaces
are conserved for all R and n&, n„can be connected
directly to the SA and UA quantum numbers.

Lin ' ' identified empirically a property of hyperspheri-
cal wave functions to which he gave the label A with
values +, —,or O. Later, %atanabe and Lin' identi5ed
the first two cases as the sign of A =m.( —1) +, where in
their notation T is the angular momentum projection
quantum number. Hence, in our notation,
A =n( —1) + . However, we have seen that
m( —1) =( —1)' denotes the g or u character of the two-

electron state. Furthermore, ( —1)' is equal to ( —1),
where i is the UA orbital angular momentum, i.e., ( —1)'
is the UA parity. Therefore we can ~rite

( I )I+Ec ( 1 )I —K
( I )"P (2.17)

Accordingly, we have related Lin's A quantum number
to the number of hyperbolic MO surfaces for the cases
A= + or —.Note that for n„odd, there is a node
where p=0, i.e., r, =rz. The case A equal to zero does
not arise in the MO description.

The quantum number K& was first suggested on the
basis of the algebraic structure of the product group
[O(4}]iX[0(4)]z for two electrons in a Coulomb field. It
was further interpreted in terms of the triatomic rovibra-
tional model by Watanabe and Lin, ' and recently dis-
cussed by Mgflmer and Taulbjerg. If N is the SA princi-
pal quantum number, it can be shown that KH assumes
the values

KH ——(N —T —1),(N —T —3), . . . , (N ——T —1) .

(2.18)

Again in our notation T—=K the angular momentum pro-
jection quantum number of the MO. However, this
quantum number is preserved for all R and hence
'r= K=

~

m —
~
„where m is the SA magnetic quantum

number. Hence

However, (N —
~

m
~

—1)=n, +nz, the sum of the two
SA parabolic quantum numbers. Further, the sequence
(2.19) is equivalent to the sequence generated by

KH =(N —
~

~
~

—1)—2n, =n, n, —(2.20)

for the allowed values of n] and n2. This extremely sim-
ple interpretation of I( 0 appears to have gone unnoticed.
The presence of KH also depends upon the presence of a
pure Coulomb interaction in the separated atom, i.e., the
limit R ~ ~ when one electron has been removed from
the two-electron atom. This is seen by noting that for a
parabolic one-electron SA state

~
Nn, num ), we have

= (KH IN)
~
Nn, n2m ), (2.21)

so that K& is simply proportional to the z component of
the SA Runge-Lenz vector a [defined in (2.26)].

Since there exists a one-to-one correspondence between
the SA parabolic quantum numbers and the MO quan-
tum numbers, then I%'0 can be expressed also in terms of
nz, n„, and E as the sequences generated by

KH ——(N K —1)—2ni, — (2.22}

since n] ——n& or, in addition, since n2 ——n„/2 for n„even,
and n2 (n„—1)/2——for n„ddo,

KH ——(N —
i

m
i

—1),(N —
i

m
i

—3), . . . ,

(N —
i

m
i

——1) . (2.19)
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(2.23}

Using the connection n& ——n —/ —1 and n„=I —E to UA
quantum numbers, one can also express E& in terms of
these quantum numbers.

To summarize, we have explained I.in's KH, A, and T
quantum numbers„derived either empirically or from
group theory, in terms of the good MO quantum num-
bers nz, n„, and E. Historically, the quantum number
EH was derived from independent-electron, or
separated-atom, considerations but used to label hyper-
spherical curves for all %. The conservation of nodal
surfaces for all R in the MO model and the consequent
connection of MO and parabolic [O(4)] quantum numbers
leading to (2.20) and (2.23) justify the use of Krr for label-
ing two-electron states. However, the simplicity of the
MO picture and the connection to SA and UA limits sug-
gests the use of ni, n„, and K as a more natural
classi6cation scheme of two-electron states.

There remains a further constant of the motion in the
MO model. This arises from the separability of the BG
Hamiltonian in elliptic coordinates A, ,p and, indeed, is re-
lated to the separation constant itself, for fixed R. This
additional quantity has been discussed by many authors
(see, for example, Coulson and Joseph ). For our case of
two electrons and one nucleus of charge Z, it is con-
veniently expressed as the operator

Q(R)= —,'(l, 12+12 I, )+ZR (ri —rz), (2.24)

where I, = —ir, XV, and 12 —— irzXV—, . This operator

commutes with h, the BO Hamiltonian. The existence of
this dynamical constant of the motion for each fixed 8
leads to the crossing of certain MO's despite their similar
geometrical symmetry, e.g., the 2scrs and 3dos MO.
The separation constant of the BO equation at each value
of R is given by the MO expectation value of the operator
—(Q+R ii/4).

The operator (2.24} may be written in several forms.
For example,

Q=(1, +l2) /4 —(I, li)'/4—
+Z(r, +r2)(1 —case, z), (2.25)

Q=(l, +12) /4 —3(/, —l2) /4+R. (a~ —ai)/2 . (2.27)

The forms (2.24) and (2.27) show clearly that in the UA
limit R —+0, Q —+1, where li ——lz ——1 is the UA orbital
angular momentum operator. In the SA limit R~{x),
one can also show that 0 has asymptotic behavior such
that,

{ n2 —n]——1 —+
N

(2.28)

which emphasizes its dependence on the individual angu-
lar momenta and the angular correlation via the depen-
delice oil 612 cos (rl r2 A connection wi h the one
electron SA Runge-I. enz vector

a, = (l, iX V, —V, X l; ) —Zr; (2.26)

may also be made by transforming (2.24) to the form

where C is the expectation value of the operator
—(Q+8 ii/4), i.e., C is the asymptotic value of the BO
separation constant. From Eq. (2.21), one recognizes that
the rhs of (2.28) is the eigenvalue of a, for the SA. Hence
the asymptotic form of {Q(R) ), the two-center dynamic
constant of the motion, also explains the existence of
Herrick's quantum number Kz.

III. CONSTRUCTION OF ATOMIC STATES
AND ADIABATIC POTENTIALS

A, Atomic states in a MO description

The MO's are characterized by the quantum numbers
E, t, n &, and n„. The validity of these quantum numbers
for all 8 allows the correlation diagram of Fig. 2 to be
drawn (a more extensive correlation diagram is given by
Barat and Lichten '). In Sec. IIIB we will show how
single-channel adiabatic molecular energy curves can be
constructed from calculated MO energies. However, the
atomic states that are supported by each MO can be sim-

ply derived from the MO quantum numbers and a con-
sideration of the form (2.13) of the total spatial wave
function for each component labeled by iE, where i
denotes the set of quantum numbers n&, n„, and t.

Quite generally, the MO's appear in pairs of g, u sym-
metry (t=0 or 1, respectively) separating to specific Stark
states. The lowest pair is the 1scr~, 2pcr„pair separating
to the ls level and. correlating to the UA 1s and 2po lev-
els, respectively. The MO 1so~ has quantum numbers
K=O, t =0, n &

——0, and n„=0 and therefore no nodal sur-
faces. Since K and t are zero, one sees from (2.13) that
only states where (L+$) is even are allowed. The parity
is given by n =( —1) +'=( —1) . Hence the sequence of
states '5', P', 'O', I"etc., is based upon the 1so& MO.
The 2po „MO has E=O, t= 1„n&——0, and n„= 1.
Hence, from (2.13), only states where (L +S) is odd and
n =( —1) +' are allowed, i.e., the sequence S', 'I", D',
'F', etc. The form of (2.13) indicates that for given L and
$, only the MO quantum numbers K and t are relevant in
deciding the allowed atomic states. Hence all MO's of 0
symmetry will give rise to the sequence 'S', P', 'O', I',
etc., and all MO's of o„symmetry to the sequence S',
'P', O', 'F', etc. This analysis (which was given in I) ex-
plains our association of the lowest 'S' and S' levels of
He, H, and Ps with the 1so.

z and 2pa „MO's, respec-
tively, as shown in Fig. 1.

As shown in Fig. 2, the pairs 2s o.~, 3p o „and
3d as, 4fo „correlate to the n =2 SA levels, and these
will give rise to the sequences of states discussed above.
Pairs of states with K&0 give rise to two sequences of
states, according to whether t=0 or 1. They have parity
n =( —1) +' and are subject to the restriction L &

~

K
~

.
Hence all states of m symmetry give rise to sequences
'P', P', 'O', D', etc;, and all states of m.„symmetry to
sequences 'P', 'P', 'O', 'D', etc. The sequences of states
built upon g, v pairs of higher E value are the same, but
with the components with I. ~E missing. We note that
the above sequences are the same as those derived by
Herrick et al. on the basis of group theory.

In Sec. III 8 the calculation of single-channel adiabatic
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curves for atomic states based upon MO separating to the
SA X=2 manifold is described and the results are used to
interpret certain features of the corresponding hyper-
spherical adiabatic potential curves.

2 1 2V„— V~
2P&23 2P»

(3.1)

8. Construction of the s{habatic potentials

The single-channel "molecular" potential energy
curves as a function of interelectronic distance E. are ob-
tained as the functions U~z(R ) from Eq. (2.10). As is well
known, the BO solutions of (2.11a) do not have the
correct form as 8 ~~, the SA limit. This is true even in
the molecular case and arises from the fact that BO solu-
tions tend to separated-atom functions with the wrong re-
duced mass for the electron-nucleus motion. This
de6ciency of the BO solutions has been discussed many
tjm{ s jn the molecular cas{ + ~o ~2 4 4 where jt gjv{ s
a small dependence of energies upon isotopic masses. In
the atomic case (I and Feagin and Briggs' ), it leads to
large errors, since the MO reduced mass P» is equal to —,',
whereas the separated-atom reduced mass is close to uni-

ty. The error made in the BO approximation is to ignore
the diagonal matrix elements of the kinetic energy opera-
tor (2p, 2) 'V2+. This inclusion is necessary since only
the full kinetic energy operator

where h is the BO Hamiltonian, written without the
electron-electron repulsion

Ii = 7„—/(2p) Z—/r, Z—/r2

and Cop 1s the non-BO operator

C, = —8 /M + [L ( L + 1 ) K—+ I, + ly ]/R

(3.4)

(3.5)

It is important, for the following, to note that (3.4) with

P = 1, Z= 1 is just the BO Hamiltonian of H2+, for which
the eigenvalues and eigenfunctions, i.e., the solutions of

hg(r, R )=e(R)f(r,R), (3.6)

S=pZ(R, x=pZ(r

and the BO wave functions as

P(r, R ) = (pZ() P(x, S) .

Then with (3.4) the BO energy e(R ) scales as

e(R)= fdr/(r, R)hg(r, R)

=pZ fdx g(x, S)[g ( —V'„/2)

—g(1/x, +1/x )]g(x,S)

(3.7)

(3.8}

are known. We will evaluate (3.3}by introducing an R-
dependent parameter g into the Hz+ BO solutions of
(3.6), by which lengths are scaled as

transforms correctly to the full kinetic energy in the Jaco-
bi coordinates of the separated-atom configuration, i.e.,

=pZ [g T(S)+(V(S)], (3.9)

1 2 1

2P &32
' 2P &3

(3.2)

~here r& is the separation of electron 1 and the nucleus,
and r2 is the separation of electron 2 from the center of
mass of electron 1 and the nucleus. Equation (2.10) con-
tains the full kinetic energy operator (3.1) and therefore,
in the large-R limit, does contain the correct asymptotic
kinetic energy —(2p») 'V, of the separated atom.

Since our emphasis here is on the symmetries provided
by the MO description of the internal r motion, we will
solve (2.10) approximately, by using a trial function of the
BO analytic form provided by eigensolutions of the BO
Hamiltonian h. Specifically, following Hunter and
Pritchard, we will assume trial functions of the form of
H2+ MO solutions (with Z=1 and p, ,23

—1) and intro-
duce a scaling of the lengths r and R. In this way, we
will show that we can construct adiabatic MG potential
curves for the systems He, H, and Ps, simply by scal-
ing the quantities presented in the literature for the
Hz+ molecular ion. This procedure has the advantage
that we do not have to derive the rather complicated
form of the BO wave function for each system separately.
Furthermore, it shows that the qualitatively similar adia-
batic potential curves for H2+, He, H, and Ps are re-
lated by a relatively simple scaling relation.

For brevity, in the following, we shaB write P for P» 3.
Furthermore, we wiB drop the MQ subscripts iK on the
wave functions P(r, R ). Then (2.10) can be expressed as

T(S)= —e(S)—Se'(S),

V(S)=2m(S)+Sr'(S),
(3.10)

where e'(S) is the derivative of e(S) with respect to S.
Scaling the expectation value of C,~

with respect to
BO wave functions gives

=(pZ() 5(S), (3.11)

5(S)=fP(x,S)C, (S}g(x,S)dx . (3.12)

With the results (3.9)—(3.11), the adiabatic potential for
the BO problem with reduced mass P and potential
strength Z may be obtained from the H2+ expectation
values e(S), 5(S) as

U(R) =pZ g[(2—g)e'(S)+(1 —g)Se'(S)

+pg5(S)/2p, ,2]+ I/R . (3.13)

where T and V are the p =Z =g= 1 expectation values of
the BO kinetic and potential energies of the H2+ problem
with e(R)=T(R)+ V(R). Thus the scaling requires the
separate evaluation of the BO kinetic and potential ener-
gies. Since these quantities are not tabulated separately
for all MO's of interest, they were obtained from tabulat-
ed values of e(S) by use of the virial theorem,

(P
~
h+(2p, ) 'C,

~
P)+1/R =U(R}, (3.3) The parameter g(R) remains to be determined. This
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can be done by a variational procedure at each R as de-

scribed in detail by Rost and Briggs. " However, since
our aim here is a qualitative comparison with hyper-
spherical adiabatic curves, we find it suScient to evaluate

g for R ~~ and use this value to scale H2+ curves for all

R. This ensures the correct SA limit of the MO curves
and is partially justified by the dominance of electronic
repulsion at small R. For the iso. and 2po„MO, a
more accurate evaluation was performed' "' and the
differences from U (R } obtained with g(R ~ ~ ) were not
signilicant enough to alter any of the qualitative results
described in Sec. III C.

We demonstrate explicitly how (2.10), evaluated with
scaled H2+ BO wave functions, provides the correct
R ~ 00 dissociation energies for two-electron atoms. In
the SA liQlit, one Snds that

P(r, R ) —exp( —x ) /N)+exp( x2/p—f)

=exp( p»Z—r, /N)+exp( p, )3Z—r2/&), (3.21)

unity. The major difference, as exemplified by Fig. 1,
comes from helium's having Z=2 and hence a residual
Coulomb potential in the SA limit. In Sec. III C the po-
tential curves U{R) of (3.19) are presented for the %=2
manifold of the systems He (Z=2, p=2, p»=1), H
(Z=1, @=2, p, i=1), and Ps (Z=1, p= —', , pig= —,'),
where the approximations are to within the inverse nu-

clear mass.
FinaBy, we remark that the scaled coordinates x and S

of (3.7} ensure that the MO wave functions for large R
decay as

lim [Sc'(S)]~0

and therefore, with 2p&2
—1, that

U( ao ) = —pz2[2(2$ —g2) —pg~]/(4Jy2), (3.14}

corresponding to the proper linear combination of (hy-

drogenic) atomic orbitals {LCAO) with the exact SA re-

duced mass.

C. Molecular curves

since e(~)= —I/(2N ) and 5(~)=1/(4N ). Then,
minimizing U( ~ ) with respect to g, by requiring that
BU( ao )/B(=0, yields

(=2/(2+ p), (3.15)

indcpcndcn«f N and Z. Substitution of (3.15) in (3.14}
gives

U ( ~ ) = —[2)u/(2+ p, )]Z'/(2N') . (3.16)

In the case of two electrons, where R ~ ~ implies that
one of the electrons, say electron 1, remains bound to the
nucleus (particle 3), the SA reduced mass is p, i. Howev-
er, one has

or

u»=2I /{2+V)

Hence

(3.17)

U(oo)= —p&3Z /(2X ), (3.18)

which is the exact binding energy of a SA state with prin-
cipal quantum number ¹ With (3.13), (3.15), and

(=(( ao ) =pig/p, wc have all approxinlatc cxpl'cssioll foi'

U(R) in terms of the Hz+ quantities c(S) and 5(S).

U(R }= [2@Z/(2+p )]

~ [(1+1/p)e(S)+Sc'(S)/2+5(S)/2pi2]

+ 1/R, (3.19)

S =[2p/(2+@, }]ZR =I »ZR . (3.20)

This result illustrates why the adiabatic potential curves

for all the systems H2+, He, H, and Ps are qualitative-

ly similar. In all cases, the values of p and Z are of order

In this section the scaled potential curves for H, Ps
and He are presented and used to interpret certain unex-

plained features of the corresponding curves calculated in

terms of the hyperspherical radius. A preliminary ac-
count of these results was given in I. The H potential
curves of 'S, S, 'P, and P symmetry converging to the
%=2 level of hydrogen are shown in Fig. 3 in comparison
to the hyperspherical results of Lin. ' ' The similarity of
the curves, in the MO case as a function of interelectron-
ic distance R, in I.in's case as a function of the hyper-
spherical radius %=(rf+r2)'~2, is striking. Among the

most-discussed curves are those of 'P' symmetry, labeled

+, —, and pd by Lin according to the earlier
classification of Cooper er a/. In the MO classification,
one sees that they are based, respectively, upon the 2pn„
MO (with quantum numbers ni ——0, n„=0, E=1), the

4fcr„MO (n& ——0, n„=3, E=O), and the 3pcr„MO
(ni ——1, n„= 1, K=O). The qualitative behavior of the

potential curves can also be explained from the well-

known behavior of their MO. The 3@0„MO is a pro-
moted orbital and therefore its curve rises steeply at
small interelectronic distance (its UA limit is n=3).
Since it is also pushed up in energy at large electron sepa-

ration, as in H2+, the result is a totally repulsive curve

supporting no bound states. The 2@m„MO, similarly,

Arst rises in energy for decreasing R, again as in Hz
For R =0, however, it correlates to n =2 and therefore,
for decreasing intermediate R, it rapidly decreases in en-

ergy. Addition of the interelectronic repulsion and the
centrifugal energy dominant as R ~0 results in a poten-
tial we11, and the long-range behavior gives a small poten-
tial barner such that this curve is responsible for a well-

known H shape resonance. The 4fo„MO is strongly

promoted (UA limit n=4) and therefore its energy rises
rapidly and much sooner for decreasing R than in the
2@m„case. This is the molecular explanation of the
difkrent "sizes" of the states of + and —character.
The 4fcr„ is depressed in energy at large R due to the
Stark effect and the result is a potential well at intermedi-
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FIG. 3. Potential curves of H for states separating to the
%=2 level of hydrogen. The top four figure parts show MG
curves as a function of interelectronic separation R; and the
lower four figure parts, hyperspherical curves as a function of
hyperradius R [from Ref. 5(b)j.

the resonance structure. From the MO results, one sees
that the underlying symmetry causing the narrow avoid-
ed crossing in Lin's calculation is the validity of the E
quantum number (T in Lin's notation). In our case, the
two MO's are of o and m symmetry and cross exactly.
The oC'-diagonal rotational coupling will cause the MO
crossing to be avoided. Completely equivalent remarks
apply to the crossings seen in our I" and S' curves,
compared to the absence of such crossings in Lin's
curves. As Starace and Macek have pointed out, it will
be necessary to diagonalize the rotational coupling in a
MG basis at large R where states of diferent K become
near-degenerate. Nevertheless, it appears that at inter-
mediate R, as clearly demonstrated in the 'I" case, the
MO symmetries provide a more meaningful zeroth-order
adiabatic basis.

The MO potential curves of H2+ have also been scaled
to the case of helium, and a sample is shown in Fig. 4 in
comparison with adiabatic hyperspherical curves of Ma-
cek.4 The similarities (we show only states separating to
the N'=2 level) are again clear, but the inhuence of avoid-
ed crossings is more marked. The 2pn„MO again pro-
vides the deep well of the 'I" state of + character, but
the hyperspherical calculation shows a narrow avoidance
with the —level. This avoidance has again been drawn
through ('P' curves l and 2 in Fig. 4) as in H (Fig. 3).
IGar and Liar's calculation, however, shows a strong
avoided crossing between these two states. Again the
2pn „and 4fo „MO curves cross. The increased binding
resulting from the increased nuclear charge in helium
compared with H causes the promoted 3pcr„MO to ex-
hibit a shallow minimum (it is entirely repulsive in H )
and to cross with the 3po „MO around R =4 a.u. These
two MO's couple via a radial coupling and the corre-
sponding hyperspherical curves show a strong avoidance,

Finally, we have scaled the H2+ MO curves to obtain
adiabatic potential curves for the system Ps . The 'P'

ate R supporting a series of Feshbach resonances. Simi-
lar molecular explanations in terms of electron promo-
tion and long-range Stark behavior can be given of the
other potential curves in Fig. 3.

Lin also remarked on the close similarity of the —and
pd curves of 'I" symmetry and the curves labeled p, =2
and p=3 of S' symmetry, although without explanation.
The explanation is found here, in that they are pairs of
curves built upon the same pair of MO"s, namely, the
4fo „and 3po „. The only difference is the extra unit of
total angular momentum giving rise to an additional
repulsive centrifugal term in the I"case.

The curves of P' symmetry, labeled +, —,and pd by
Lin are scen to be clearly identified with the gerade coun-
terparts of 2pn„, 4fo„, and 3pcr„, namely, the 3dms,
3do&, and 2so MO's. However, the MO curves exhibit
real crossings, which appear as avoided crossings in the
hypcrspherscal case. In fact, in the 'I" case, an avoided
crossmg bctwccn + and —curves 18 traditionally drawn
through in the hyperspherical literature, as is done in
Lin s curve shown in Fig. 3. This diabatic connection is
made since the avoidance of the crossing is small and the
connection is necessary to preserve the interpretation of
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FIG. 4. Potential curves of He for states separating to the
%=2 level of the He+ ion. The top two figure parts show MG
curves as a function of interelectronic separation R; and the
lower two figure parts, hyperspherical curves as a function of
hyperradius A (from Ref. 4).
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lV. OFF-DIAGONAI. CQUPLINGS
AND TRANSITION OPERATORS

The adiabatic MO s provide a zeroth-order description
of the states of two-electron atoms in which the funda-
mental symmetries of internal electronic motion are de-
scribed. This model allows one to estimate bound-state
and resonant-state positions by solving for the
vibrational-state energies in the potential curves of Figs.
3—5. However, to obtain accuracy in the location of en-

ergy levels or to discuss dynamical processes such as au-
toionization or light emission and absorption, it is clear
that oA-diagonal, symmetry-breaking dynamical cou-
plings must be taken into account. This can be achieved
by solving not for single-channel vibrational energies, but

by directly solving the set of coupled equations (2.9). We
will discuss the consequences of this procedure in the
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40 56
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FIG. 5. Potential curves of Ps for states separating to the
%=2 level of positronium. The upper figure part showers MO
curves as a function of interelectronic separation R; and the
lower f10;ure part, hyperspherical curves as a function of hyper-
radius A {from Ref. 8).

curves shown in Fig. 5 in comparison with those of
Botero and Greene as a function of hyperradius

=(pie~ +p-&z, F )

are, as one expects from the scaling property, very similar
to the corresponding curves in H . The lower reduced
mass p&z 3 of the MO r-coordinate motion is principally
responsible for the increased size relative to H . Again
one should note that the crossing between the + and-
curves was simply drawn through by Botero and Greene
on the assumption of diabatic hyperspherical behavior.
Once more we interpret this as a manifestation of adia-
batic Mo behavior.

case of the MO's separating to the %=2 and %=1 SA
1imits. %e will then discuss how photoemission and ab-
sorption are described in the MO model.

In the adiabatic potential energy curves leading to the
%=2 manifold, discrete states are stationary. However,
since they lie in the X= I continuum, they will autoion-
ize. In the single-particle picture of two-electron atoms,
this autoionization is caused by the residual electron-
electron potential interaction that is not diagonalized by
the single-particle basis (e.g., Hartree-Fock). In our MO
model, however, the full electron-electron plus electron-
nucleus interactions are diagonalized by the MO basis.
Hence it is the dynamical couplings, neglected by the as-
sumption of a rigid interelectronic molecular axis, that
give rise to the decay of states lying energetically above
the 6rst ionization threshold. Such bound vibrational
states in a SA %=2 MO undergo a transition to an isoen-
ergetic vibrationally unbound state of an N= 1 MO. This
results in ejection of the electron as the MO separates to
the /=1 one-electron ground state. The width of the au-

toionizing states depends not only upon the magnitude of
the MO coupling but also upon the overlap of the vibra-
tional bound and unbound wave functions. In the single-
particle description, the width is proportional to the (suit-

ably antisymmetrized) two-electron matrix element

(rl)4 (r2) I
&'«i2

I ONl (r1)~N'I' '(r2) )

Since the operator is scalar, the only selection rules are
the conservation of the total state quantum numbers
I.Sm This is, .of course, still required in the MO picture,
but the identification of approximate internal symmetries
leads to corresponding approximate selection rules for
the autoionizing decay.

The principal selection rule is that the g, u MO symme-
try is strictly preserved. The second selection rule arises
from the requirement that radial coupling matrix ele-
ments involving the 8/M operator have bed=0 and ro-
tational coupling elements with the l~ transition opera-
tor have b,E =+1 only. Pictorially, these operators cor-
respond for radial coupling to a squeezing or stretching
of the interelectronic axis which changes the A, ,p nodal
structure of the electronic c.m. motion with respect to
the nucleus, without changing its alignment with respect
to the molecular axis (hence b,K=O). For rotational cou-
pling, the electronic c.m. motion changes its alignment
with respect to the molecular axis due to a rapid rotation
of that axis which the electronic c.m. cannot follow.
These are the two dynamical elects leading to decay of
high-lying states. The selection rules are summarized in
Table I.

The Iso' and 2pcr„MO's separating to X= 1 support
excited states which do not decay (only in the case of
helium does the 2po. „antibonding MO support bound
states). However, their energies will be shifted by the
dynamical interactions. For example, the lsog (which

supports the 'S' ground state) will mix with the 2sog and
3do by radial coupling in the '5', I", 'B', etc., series
and with the 3dmg by rotational coupling in the I", D',
etc., series. By contrast, the 2po„MO (which supports
the lowest triplet S state) mixes radially with the 3pcr„
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TABLE I. The states of 1.=0 and 1 symmetry built on the MO separating to the %= 1 and 2 levels and the off-diagonal couplings
between them. Dashes denote null values.

(010)

lge 3po Rad. Rot.
3po

&P&u

(010)

3ge lpo Rad. Rad. Rot.
lpo

lge 3po
7 Rot.

3po

&P&u

(110)
35 e 1po Rot.

lpo

3d 0'g

(020)

lge 3po Rot.
3po

(030)

3ge lpo Rot.
lpo

3d kg
(011)

lpe 3po
7

2p K„
(001)

lpo 3pe

and 4fo„and rotationally with the 2pn„Convers. ely,
the same selection rules govern the decay of the autoion-
izing states. For example, the P' series built upon 3dog
can only sutoionize to a P' state of 1sag by radial cou-
pling, but the 4fo „'P' states will autoionize (also by ra-
dial coupling) to a err„'P' unbound state. By contrast,
the 2@m„'P' levels (often called the + series in helium)
decays by coupling rototionally with the 2pcr „'I"contin-
uum levels. One should mentioned, of course, that the
2pn „and 4fo„'P' levels will mix among themselves by
rotational coupling.

The widths of the autoionizing states will be propor-
tional to such coupling elements. For radial coupling,
they are diagonal in LSD and r and also in E. They have
the form

dfJx.f dR f; (R)(P; I
BIM

I P (4.2)

For rotational coupling, they are also diagonal in LSm
and t, but have AE =+1 and are of the form

~+ J dRfK«)&OE I41&x~l(R)&f K+1(R) . (4.3)

In both cases, if the MO matrix element varies relatively
slowly with R, then it may be removed from the R in-
tegral at the upper-state equilibrium separation R. Then
a factor remains depending essentially upon the overlap
of the two vibrational wave functions, bound snd contin-
uum, for initial and 6nal states„respectively, in the case
of autoionization.

The states msy also decay by photon emission. Herc

the selection rules are very difkrent, although, as is
shown below, the transition matrix element assumes a
very transparent form in the MO description. The in-
teraction with the radiation 5eld can be described by an
operator Re(Ee '"'e& p), where E is the field strength at
frequency co, e& is the (complex) polarization vector of the
light and p is the atomic dipole operator. The matrix ele-
ment of relevance is

&q. .I &.pIq" .&

for transition from an initial state VL.~. ~ to a final state
VLsr„[from Eq. (2.13)]. In LS coupling, the spin quan-
tum number is conserved. In the laboratory fixed frame,
in atomic units,

e&.p=e& (r, +r2)=2e& r, (4.4)

where r is the position of the two-electron c.m. with
respect to the nucleus. Equations (4.4) demonstrate the
convenient result that the total dipole moment operator
of the two-electron atom is independent of the adiabatic
coordinate R. This separation is to be contrasted with
the hyperspherical treatment where the dipole operator
(r, +r2} mixes "internal" coordinates and the adiabatic
hyperspherical radius Ji'. . The formula (4.4) is also in-
teresting in that, apart from the factor 2, it is identical
with the dipole operator for the absorption of light by an
electron in the H2+ molecular ion. Hence the familiar
language of molecular spectroscopy can be used. With
(2.13) and (4.4}, the dipole matrix element can be written
formally as
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&+L~ Iep'ply'L, l &= Id~fr(~)f, sc(~)&lac l(2elJ r')m l&x & (4.5)

where the dipole operator has been transformed to the
body-fixed frame and the angular integral over R per-
formed. By standard means, one obtains Clebsch-
Gordon coeScients resulting in the well-known molecu-
1ar selection rules q'+M'=M, q+K'=K. The latter
leads to the condition that in the MO dipole integral in
(4.6) only o+ o, aran, etc. transitions are allowed for
q=0 and only craver-, mr~5, etc. for q= l. There is a fur-
ther condition on the MO, arising from the fact that total
parity must change but spin is conserved in the dipole
transition. Then mm'= —1 but, since n( —1) =( —1)'
where I is the UA orbital quantum number, we have
nm'=( —1) + +'+' =( —1)'+'. Hence the two MO's
involved must have di8'erent UA parity, or what is
equivalent, difFerent gerade ungera-de symmetry. An ex-
ample in helium is the dipole allowed 'S' 'P' transi-
tions from the ground state (lowest vibrational state of
Iscrs, L=0 potential) to the ( lsd) lik-e series (vibrational
levels of the 2pu„, L= 1 potential). In this case, if the
matrix element

& 2pcr„~ (e& r)sF
~

Iso

is a slowly-varying function of R then it may be brought
out of the integral and the relative strength of absorption
(ls ) 'S'~(Isn't) 'P' would be described in the MO
model by the square of the Franck-Condon integrals

I„=J d~ f',",'. (~)fI;.' (z) . (4.6)

Thus one sees that the language of molecular spectrosco-
py finds complete application in the MO description of
atomic spectroscopy. Such an analysis helps to explain,
for example, why the Iso ~2pm„absorption to the 'P'
+ series in helium is much stronger than the
Iscr ~4fo„'P' —series. The potential minimum of
the 4f cr „'P' curve (see Fig. 4) lies much farther out than
that of the 2pm„and hence the Franck-Condon factors
with the Isir '5' ground vibrational state ( ls ) are much
reduced.

V. CQNCI. USIONS

We have extended the method of Hunter and co-
workers, ' ' in which the three-body Coulomb problem
is treated in molecular r,l Jacobi coordinates, to the
study of states separating to the %=2 hydrogenic mani-

fold in He, H, and Ps . Adiabatic potential curves for
these systems are obtained by scaling the corresponding
potential curves for the H2 molecular ion. The scaling
procedure gives MO potential curves in close correspon-
dence with adiabatic potential curves resulting from a
separation in hyperspherica1 coordinates. Thereby the
MO scaling property accounts indirectly for the similari-

I

ty between hyperspherical potentials for He, H, and
Ps . The potential curves have unique quantum num-
bers n&, n„, and K, which correlate to the UA spherical
quantum numbers n, l, m and the SA parabolic quantum
numbers n„nz, m. The conservation of the associated
nodal surfaces for all interelectronic separations explains
the "almost-good" quantum numbers KH, 3, and T asso-
ciated with hyperspherical potential curves. These latter
quantum numbers are in one-to-one correspondence with
MO quantum numbers and can be replaced by them. In
particular, the quantum number T is identical to the fa-
miliar cr, ir, 5 etc. labeling of MO, corresponding to angu-
lar momentum projection K=O, 1, 2, etc. The quantum

number A is given by ( —1) "=(—1)',where n„gives
the number of hyperbohc nodal surfaces (where ri ——rz).
The quantum number KH of Herrick is found to be sim-

ply the value of (nz n, ) f—or the separated-atom Stark
level to which the MO correlates. It is also the eigenval-
ue of a„ the z component of the SA Runge-Lenz vector.
Alternatively, KH can be identified as the asymptotic ei-
genvalue of the two-center operator Q(R) arising from
the separation of the MO problem in A, ,p coordinates.
Finally, attention has been drawn to the validity of the
MO quantum number ( —1)'=( —I )'=m( —1)s for overall
two-electron states. This corresponds to states being of
even (g) or odd (u) symmetry under reversal of the inter-
nal MO coordinate r. Its presence accounts for the oc-
currence of sequences of states of similar character, e.g.,
'5', P', 'D', etc. which arise from all MO's of 0 sym-
metry. Previously, such sequences have been identified
only on the basis of complicated group-theoretical argu-
ments.

In the MO model, the process of autoiomzation is
analogous to the dissociation of molecules, e.g.,
H2+~H+ + H, and selection rules allow one to identify
decay modes due to either radial or rotational coupling in
the MO basis. The process of light absorption is particu-
larly simple, since the electromagnetic Geld couples only
to the MO coordinate r. Again, this is in complete analo-

gy to the description of vibronic transitions in molecules
arising from the absorption of light.

ACKNQ%1. EDGMENTS

%'e would like to express our gratitude to P. T. Green-
land for helpful consultation on the subject of nodal sur-

faces in the two-center Coulomb problem. This work was

partially supported by the Deutsche Forschungsgemien-
schzft under the Schwerpunktprogramm Atom- und
Molekultheorie and by the U.S. Department of Energy
(Division of Chemical Sciences, Offices of Basic Energy
Sciences and Energy Research).

~U. Fano, Rep. Prog. Phys. 46, 97 (1983).
~L. Lipsky, R. Anania, and M. J. Conneely, At. Data Noel.

Data Tables 20, 127 (1977).
3J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett. 10, 518

(1963).
4J. Macek, J. Phys. 8 1, 831 (1968}.
~(a) C. D. Lin, Phys. Rev. A 10, 1986 (1974); (b) 16, 30 (1976); (c)

25, 76 (1982); (d) 29, 1019 (1984).



37 MOLECULAR-ORBITAL DESCRIPTION OF THE STATES OF. . . 4613

6H. Klar and M. Klar, J. Phys. 8 13, 1057 (1980).
7J. E. Homos, S. %. MacDowell, and C. D. Caldwell, Phys.

Rev. A 33, 2212 (1986}.
8J. Botero and C. H. Greene, Phys. Rev. Lett. 56, 1366 (1986).
9D. R. Herrick, M. E. Kellman, and R. D. Poliak, Phys. Rev. A

22, 1517 (1980).
'OM. E. Kellman and D. R. Herrick, Phys. Rev. A 22, 1536

(1980);J. Phys. 8 11,L755 (1978).
"D.R. Herrick, Adv. Chem, Phys. 52, 1 (1983).
'2D. R. Herrick and M. E. Kellman, Phys. Rev. A 21„418

(1980).
'3(a) J. M. Feagin, J. Phys. B 17, 2433 (1984); (b) Bull. Am.

Phys. Soc. 29, 801 (1984); {c)Nucl. Instrum. Methods 824/25,
261 {1987).

'~(ai J. M. Feagin, J. S. Briggs, and T. Weissert, in Abstracts of
the Fourteenth International Conference on the Physics of
Electronic and Atomic Collisions, Palo Alto, CA, 7985, edited
by M. J. Coggiola, D. L. Huestis, and R. P. Saxon (ICPEAC,
Palo Alto, 1985), p. 147. (b) J. M. Feagin and J. S. Briggs,
Phys. Rev. Lett. 57, 984 (1986).

y ~

Lett. 47, 497 (1981),
G. S. Ezra and R. S. Berry, Phys. Rev. A 28, 1974 (1983).

~7J. L. Krause, J. D. Morgan, and R. S. Berry, Phys. Rev. A 35,
3189 (1987).

'SS. %'atanabe and C. D. Lin, Phys. Rev. A 34, 823 (1986).

'9G. Hunter, 8. F. Gray, and H. O. Pritchard, J. Chem. Phys.
45, 3806 (1966).

2oG. Hunter and H. O. Pritchard, J. Chem. Phys. 46, 2146
(1967);46, 2153 (1967).

2'J. Maddox, Nature 323, 391 (1986).
22R. T. Pack, Phys. Rev. A 32, 2022 (1985}.
2sH. Essen, Ent. J. Quantum. Chem. XEE, 721 (19771.
24J. M. Rost and J.S. Briggs, Z. Phys. D 5, 339 (1987).
25J. D. Power, Proc. R. Soc. London, Ser. A 274, 663 (1973).
26P. T. Greenland, Phys. Rep. 81, 131 (1982).
~7D. R. Bates and R. H. G. Reid, Adv. At. Mol. Phys. 4, 13

(1968).
28D. R. Herrick and O. Sinanoglu, Phys. Rev. A 11,97 (1975).
29K. Mimer and K. Taulbjerg, J. Phys. 8 (to be published).
3oC. A. Coulson and A. Joseph, Ent. J. Quantum. Chem. 1, 337

(1967).
3~M. Barat and %'. Lichten, Phys. Rev. A 6, 211 (1972).
32J. C. Slater, Quantum Theory of Matter (Krieger, Huntington,

1977), Chap. 20.
3R. T. Pack and J. O. Hirschfelder, J. Chem. Phys. 52, 4198

(1970).
34A. Froman, J. Chem. Phys. 36, 1460 (1962).
3sC. J. H. Schutte, The Theory of Molecular Spectroscopy

(North-Holland, Amsterdam, 1976},Vol. I, Chap. 5.
36A. F. Starace and J. H. Macek, Phys. Rev. Lett. 58, 2385

{1987).


