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Recently, Handy and Bessis derived, for singular multidimensional Schrodinger equations,
infinite sets of hierarchical inequalities fulNled by the moments of the ground-state wave function.
These inequalities, when increasing in number, provide tighter lower and upper bounds to the
ground-state energy. This analysis makes use of nonlinear multivariate determinant functionals
{Hankel-Hadamard determinants) which de5ne complicated convex sets in the space of the "missing
moments. " It is possible to reformulate all the above in terms of /inear programming. The previous
sets are now replaced by new sets de6ned by /inear inequa/indies. This new formulation makes the
general moment approach highly practical. %e describe the general formalism and give a simple
one-dimensional example to illustrate it. The three-dimensional quadratic Zeeman problem, in the
transition region, is analyzed by this method. Preliminary results for values of the magnetic field

8=0.2, 2, and 20 {in atomic units) are given.

I. ImRODUCnOW

In an earlier work Handy and Bessis' showed how a
moment analysis for bosonic systems led to the genera-
tion of rapidly convergent lotoer and upper bounds to
quantum eigenvalues. This approach is particularly
effective for strongly coupled systems requiring some type
of singular perturbation analysis.

The need for such methods as the above is self-evident,
for without bounds no absolute statements of accuracy
can be made. Also, the results of our method when ap-
plied to many strong coupling problems greatly com-
plement conventional perturbation-theory techniques. In
addition to these, the moment approach enjoys several
other important properties.

(i) The moment method is readily applicable to un-
bounded, or otherwise singular, potentials, as demon-
strated in Sec. IV.

(ii) The presence of a continuum spectrum (scattering
states) in the Hamiltonian does not afFect the moment
formulation. Those scattering states are projected out in
an exact manner. This property is an important one.
Some methods are affected by the existence of a continu-
ous part to the spectrum of the Hamiltonian operator.
This is discussed in a recent work by Cizek and Vrscay.

(iii) The moment method applies to excited states, pro-
vided the nodal zones are known. For instance, in some

three-dimensional problems considerations of parity will

determine the nodal zone of the first excited state. For
one-dimensional problems, one takes as unknown the
nodes of the excited state; the method then provides
bounds to the location of the nodes and to the energy of
the excited state.

The original moment formulation' made use of non-
linear moment inequality constraints involving Hankel-
Hadamard determinants,

dependent upon the moments I u I of the ground-state
wave function for the system in question. Refer to the
Appendix for a discussion of the "moment problem" and
the definition and properties of the Hankel-Hadamard
(HH) determinants. The HH determinants, symbolized
by Eq. (1.1), correspond to nonlinear multivariate func-
tionals of the moments.

For many finite-dimensional quantum systems, the mo-
ments wi11 satisfy a recur sive homogeneous linear
diN'erence equation in which the energy appears as a pa-
rameter. The order and dimensionality of this linear
difference equation will determine the number of initia1
moments that must be specified before all other moments
can be determined. %'e designate the former as missing
moments. Clearly, all remaining moments wi11 be hnearly
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dependent upon the missing moments.
It follows from the discussion above that the HH deter-

minants will become nonlinear multivariate functionals of
the missing moments and energy. It has been argued in
Ref. 1 that the only solution to the HH inequalities corre-
sponds to the physical ground-state energy and missing-
moment values. At the practical level, for a given finite
set of HH inequalities and arbitrary energy value one
must determine if there exists or not a missing moment
subset that can satisfy all the HH inequalities. If such a
subset exists, then the associated energy value is a possi-
ble physical value. If no subset exists, then the associated
energy value is physically impossible. In the case of
singular strong coupling quantum systems, it has been
our experience that relatively few HH inequalities need to
be considered in order to determine an accurate answer
for the physical ground-state energy. Furthermore, the
accuracy obtainable is dramatic because it comes by way
of rapidly conuerging lower and upper bounds.

Given an arbitrary energy value, the determination of
the feasibility (existence) or infeasibihty (nonexistence) of
a missing moment subset, consistent with the HH ine-
qualities, is generally diScult through a direct analysis of
the nonlinear multivariate Hankel-Hadamard deter-
minant functionals. For quantum systems with at most
three missing moments one can do this. Some theoreti-
cally important problems fall in this category. 6 Unfor-
tunately, for many one-dimensional problems, and for all
multidimensional systems, this is not the case. Indeed„
the latter will always involve an in6nite number of miss-
ing moments.

The principal objective of this work is to develop an
equivalent linear formulation to the HH moment method
for calculating rapidly converging lower and upper
bounds to the bosonic ground-state eigenvalue. ' As will

be shown in the following sections, such a linear reformu-
lation is possible through the theory of linear program
ming. The development and use of hnear programming
techniques has been very prominent in mathematics,
economics, and operations research.

The impact of the lineanzation program to the general
moment method is important. It allows for far-reaching
practical applications to multidimensional quantum sys-
tems. In this paper we shall concentrate on one of these,
the quadratic Zeeman e8'ect for strong magnetic 6elds. '
This problem has been the focus of much theoretical
research for the past 25 years, as documented in ihe
comprehensive work by Le Guillou and Zinn-Justin. '

In Sec. II we give a comprehensive overview of the
essential logical structure of the linear-programming re-
formulation. An explicit one-dimensional example is
considered in Sec. III, that of the sextic potential. Final-
ly, in Sec. IV we extend the method to the three-
dimensiona1 quadratic Zeeman problem. For this prob-
lem we can obtain unprecedented energy bounds for mag-
netic field strengths 8 in the "transition regime" (8 ) 1,
measured ln atomic units). More efficien codes are
presently being developed that wi11 allow us to extend
these results to the hyperstrong regime (8 &2X10 )

(refer to Sec. V). Despite this, the energy-bound results
quoted in this paper for the transition regime surpass

available bound results, as developed in the excellent
work of Cizck and Vrscay.

In the following sections and the Appendix we present
a detailed discussion of the linearized moment method
for generating convergent bounds to bosonic ground-state
eigen values. As indicated in the Introduction, the
method can also be applied to excited states once their
non-negative structure is understood. In this section we
outline the basic logic, as applied to the ground state, so
as to facilitate the discussion given in the remaining sec-
tions.

The first important issue is the fact that for any mul-
tidimensional nondegenerate (finite degree of freedom)
bosonic system, the ground state must be non-negatiue"
and have finite power moments, as summarized by Eqs.
(2.1) and (2.2). In this work, "non-negative" is used in
the conventional sense and in addition denotes a function
which is positive on a support of nonzero measure. Ac-
cordingly, for the ground state we have

0'g„„„d(x)& 0,

rn (p) Jx 0 ggpgpg(x)DX

(2.1)

(2.2)

(2.3)

where L is a second-order linear (partial) differential
operator with polynomial coeFicients. By multiplying
(2.3) by x~ and integrating by parts, one gets a linear re-
cursion relation for the physical moments. Implicit in
the integration by parts is the fact that physically bound-
ed solutions exhibit fast asymptotic decrease to zero. Ac-
cordingly, there are no end-point contributions.

(ii) For the quadratic Zeeman problem to be con-
sidered, the potential is not a rational fraction in x&; it in-
volves square roots. By transforming to parabolic coordi-
nates one can recast the problem into a form consistent
with (2.3). It is often possible to transform a given system
into one consistent with (2.3).

(iii) The focus on rational fraction potentials is mandat-
ed if one wants to work with ordinary power moments.
Alternatively, one can work with generalized moments.
As an example, certain magnetohydrodynamic tokamak
stability models' work with effective potentials of the
foi m

where x~= ii, x, '.
The relations above are necessary and sufhcient. That

is, the only solution of the Schrodinger equation satisfy-
ing Eqs. (2.1) and (2.2) is the ground state. '

The second phase of the general moment method re-
quires obtaining a moment equation for the particular
Schrodinger equation being considered. This is usually
straightforward.

(i) %hen the potential is a rational fraction in the com-
ponents of x, the Schrodinger equation can be written as
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V(x) =P(x, sin(x), cos(x)), (2.4)

where I' is a polynomial. The generalized moments are

p „=f x exp(inx)+g„,„„d(x)dx. (2.5)

It is easy to derive a linear recursion relation for these
moments. It is also straightforward to obtain the neces-
sary and suScient conditions for the generalized rno-
ments in (2.5) to correspond to a non-negative function
measure.

%e do not intend to overwhelm the reader with all pos-
sible cases that can be analyzed in terms of the moment
method. However, it should be clear that a very large
class of problems can be addressed.

As alluded to in the Introduction, the moment equa-
tion referred to above will serve to distinguish two sets of
moments. One of these will be the "missing moments. "
Only by specifying these can the remaining moments be
determined. The latter define the second set of moments
and are linearly dependent upon the former.

The aforementioned moments equation combined with
the non-negativity property of the ground-state wave
function define a "moments problem. "' The traditional
moments problem concerns itself with the specification of
the necessary and sufBcient constraints that a set of mo-
ments must satisfy in order that they correspond to a
non-negative function measure. These take on the form
of the Hankel-Hadamard determinant inequalities re-
ferred to in the Introduction, and are discussed in greater
detail in the Appendix.

The energy F. appears as a parameter in the moment
equation. Accordingly, the moments will be dependent
on the missing moments as well as on the energy.
Through the infinite hierarchy of HH moment inequality
constraints, both the missing moments and energy will be
constrained to a progressively decreasing, physically al-
lowed, subdomain. Thus, not only can lower and upper
bounds be established for the physical energy, but also
the same can be realized for the missing moments.

Of additional practical significance is the fact that for
singular strongly coupled systems the size of the missing
moment and energy domain decreases very rapidly as
more moments are considered. This is demonstrated in
all of the cited works (for two-missing-moment prob-
lems), and will also be shown here to apply to the
infinite-missing-moment case as mell.

As indicated in the Introduction, the nonlinear nature
of the original Hankel-Hadamard moment formulation'
is impractical for systems with more than three missing
moments. Firstly, because of the homogeneous nature of
Schrodinger s equation, the associated moment equation
will also be homogeneous. Consequently, through any
appropriate choice of normalization, one can always
reduce the number of missing moments by 1. For a
three-missing-moment problem, the imposition of an ap-
propriate normalization prescription mill yield two in-
dependent missing moments. Thus for such problems,
the determination of the energy-missing-moment subset
consistent with the HH inequalities will require a three-

m (p) =f x~%(x)dx . (2.6)

For the first 2I+1 moments Im (p), 0(p &2I I, a finite
number of nonlinear (in the moments, and therefore in
the missing moments as well) determinant inequality con-
straints [see Eq. (2.9)] are derivable from the expressions

I
f g C;x' 4(x)dx )0—00 ~ 0

for all real C; (not all 0) (2.7)

C;m(i+j)CJ &0

for all real C; (not all 0) . (2.8}

The quadratic form relation in (2.8) expresses that the m
matrix has only positive eigenvalues or, equivalently, that
the Hankel-Hadamard determinants must be positive:

dimensional numerical search. Clearly, for problems
with many missing moments, such numerical searches are
impossible. To remedy this di%culty, we were motivated
to reformulate the nonlinear moment method (HH in-

equality constraints) in terms of a linear theory. In this
we have been successful. That is, we shall establish the
existence of an equivalent linear formulation of the non-
linear Hankel-Hadamard moment approach.

As referred to in the Introduction, given a finite num-
ber of HH determinants (corresponding to a matrix
dimensionality less than or equal to some given maximum
dimensionality}, if for some energy value there exists a
missing-moment subset consistent with the HH inequali-
ties, that missing moment subset must be convex. This
will be proven in the subsequent discussion. The bound-
ary of this missing-moment subset will correspond to in-
tersecting nonlinear hypersurfaces. It will be shown that
this subset can be considered as the envelope of an un-
countably infinite number of intersecting hyperplanes.
All of this will comprise the first phase of our lineariza-
tion program.

The second phase of the linearization program will be
to determine which of the infinitely many hyperplanes are
more important in adequately enveloping the nonlinear
missing-moment bounded convex subset. The identifi-
cation of these "optimal" hyperplanes will make our pro-
gram more eScient. In particular, they will enable us to
quickly determine if for some arbitrary energy value
there does not exist a missing-moment subset, thereby al-
lowing us to conclude that that energy value is physically
impossible.

In order to make the previous discussion more specific
we consider the general one-dimensional problem. The
Hamburger moments of a non-negative function %(x),
when they exist, are defined by
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m (0) m (1) m (2)
m(1} m(2) m(3)

4
4

m (k) m (k +1) m (k +2)

m(k)
m(k +1)

m (2k)

(2.9)

for k =0, 1, . . . , I.
Both Eqs. (2.9) and (2.8) are equivalent. It is important

to note that they clearly show that a jtnite number of
nonlinear (in the moments) HH inequalities are
equivalent to an injtnite number of hnear (in the mo-
ments) lIlcqualltlcs (bccausc t11c C s caI1 take OI1 aIly
value).

Let us symbolize the linear-moment-missing-moment
dependence by m(p)=g~l Q(p;/;E)ul, where u, are
the I. missing moments (uo = 1) and iA'(p;/;E) is an ener-

gy (E) -dcpclidcflt coefficien rccllrsivcly obtainable fro111

the moment equation. Inserting this relation into (2.8)
snd interchanging the summations yields

A&[E;C]u, &8 [E;C] for all C, , (2.10)
f=1

%'here

Al [E;C]= g C,M(i —+j;1;E)Ci

8[E;C]=—Ao[E;C] .

For fixed E and I, (2.10) corresponds to an uncountably
infinite set of inequality constraints for the missing mo-
ments ul due to the arbitrariness of the C's. It is clear
that these linear inequality constraints define in the
missing-moment space the hyperplanes that completely
envelope snd determine the nonlinear missing-moment
subset implicitly de6ned by (2.9). It is known from
linear-programming theory that if there is a solution
subset to (2.10) then it must be convex. Thus all of the
preceding discussion corresponds to the 6rst phase of our
linearization program, ss previously described.

One of the major contributions of this work is a
prescription for identifying s finite subset of C vectors
which will quickly tell us if a physical missing-moment
convex subdomain exists (for a given E value). Let us as-
surne that such an optimal finite set of vectors is given
and see how a linear-programming formulation develops
for the missing moments.

For a system with I. missing moments let us index the
aforementioned optimal set of vectors by C( n ), for
1&n &X (N="NDX"}. We can then generate from
(2.10) the corresponding set of linear inequality con-
straints for the missing moments ul. This is represented,
symbolically, by ( A«(E) = AI [E;C'"'])

g A«(E)uI & B„(E), 1 & n & X .
/=I

The determination as to whether or not a u solution ex-
ists for (2.11) is addressed through the theory of linear

programming. It is important to stress that what is of
importance is the issue of existence (feasibility) or nonex-
istence (infeasibility) of a u, -solution subset. The usual
description of linear-programming theory in most texts is
in the context of optimizing some objectiue function Thi.s
is not what we are immediately interested in. The theory
of linear programming is first concerned with feasibility
(existence of a solution subset} and second with optimiz-
ing some linear objective function within the
feasible —convex-solution subset. Indeed, the linear-
programming code that we used [International
Mathematics and Scientific Library (IMSL) code zx3LP]
defines feasibility ss a Phase-1 problem, and optimization
of some specified objective function as a Phase-2 problem.

Once a finite set of C'"' vectors has been defined, one
would use the Phase-1 version to determine if a missing-
moment subset is feasible or not. If there is no u& solu-
tion (infeasible), then the associated energy value is physi-
cally impossible.

The preceding discussion assumed that the C'"'s had
been specified. The actual procedure for generating these
vectors is more complicated. Let us adopt an inductive
strategy and assume that for some energy value we have a
feasible missing™moment subset Sz corresponding to C'"'
for n &N ["NDX"=N in Eq. (2.11)]. We wish to gen-
erate more C vectors which will "reduce" Sz into a much
smaller convex missing-moment subset or even totally
reduce the region into nothing, that is, infeasibility,
thereby concluding that the associated energy is unphysi-
cal. To achieve this we must 6nd the extremal Uel"Iices

for the bounded domain S~.
For the kth coordinate uk, the extremsl vertices are

the two vertex points of S~ for which the u„thcoordinate
value is a maximum or minimum. This can be deter-
mined by considering (2.11) and the linear objective func-
tion +uk (where the choice of sign corresponds to the
maximum or minimum extremal kth vertex). This en-
ables us to use the Phase-2 linear-programming code to
determine sll the extremal vertices.

Because of convexity, the average of all the extrernal
vertex points of Sz wiH also be s point within S&. At this
deep interior point we can define a matrix (refer to Sec.
III) such that its nonpositive eigenvalue eigenvectors cor-
respond to the desired new C,C „.. . , vectors
that reduce the Sz subset.

By partitioning an arbitrary energy interval in small
steps, and implementing the program above at each E
point, energy bounds can be obtained. The bounds be-
corne narrower as the dimensionality I is increased. The
multidiroensional extension of the linear-programming
formalism above remains exactly the same. This is made
clear in Sec. IV and in the Appendix.
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Consider the sextic potential problem

Tllerefole, with the cllolce of Iloi'iiiallzatloil iil (3.5), olie
concludes

4—"+(&x'+gx )%=E% . (3.1) 0& u (p) & 1 for 0&p &p,„. (3.7)

Define the Hamburger moments by

m (p)= f x~%'(x)dx . (3.2)

Due to parity invariance, the ground state is a symmetric
configuration: the odd-order moments will be zero. Ac-
cordingly, through the change of variables x =y, the
even-order Hamburger moments will become the Stieltjes
moments of a corresponding function,

~(2p)= f, X'[q'(~~)/i/~ 14

=u(p) . (3.3)

It is known that the bosonic ground-state wave function
is non-negative. " This, together with the moment recur-
sion relation given in the following [obtained from Eq.
(3.1) by multiplying by x ~ and integrating from —ao to
+ ~], define a moment problem through which the
quantization of E, the energy, can be obtained.

From Eq. (3.1) it follows that the Stieltjes moments
satisfy

u (p +3)= [2p (2p —1)u (p —1)—A, u (p + 1)

+Eu (p) J/g . (3.4)

It will be noted that u(0), u(1), and u(2) must be
specified (as well as E) before the remaining moments can
be generated. These are denoted as the "missing mo-
ments. " Of course, the implicit arbitrariness of 4's nor-
malization allows us to reduce the number of missing mo-
ments by 1. Contrary to the trivial choice u (0)=1, used
in Ref. 1, it will become necessary to take the more subtle
choice

u (p)= g M(p;q)u (q), (3.8)

M(p;q)=5~v for 0&p &2 . (3.9)

Clearly the M-matrix elements satisfy Eq. (3.4) for fixed q,
and can be recursively generated through the initializa-
tion conditions in (3.9):

M(p+3;q) =[2p (2p —1)M(p —1;q)—AM(p+1;q)

+EM(p;q)]lg . (3.10)

From (3.5) it follows that

u(0)+u(p, „)=u(0)+g M(p, „;q)u(q)=1 (3.1 1)

As can be seen, Eq. (3.7) will limit the set of the effective
missing moments [u(1) and u(2)] to within the unit
square.

The choice represented by (3.5) is not unique. For the
three-dimensional quadratic Zeeman problem (see Sec.
IV) we shall be working with the analogue of
u (0)+u (1)+u (2)=1. This choice will not limit all the
moments to be between 0 and l; however, for linear-
programming purposes, this alternate normalization will
also be adequate. It also bounds the missing moments.

From Eq. (3.4) it is clear that the homogeneous linear
dependence of all moments on u (0), u (1), and u (2) may
be expressed by

u(0)+u(p, „)=1. {3.5)

The expression p „(PMX ) corresponds to the lpMx-

imum moment order generated. It will be progressively
increased. The reason for the choice (3.5) is that for
linear-programming purposes one should work within a
bounded region of the missing-moment space. Note that
in addition to the necessary physical bound 0 & u (p) (for
all p), Eq. (3.5) leads to other bounds,

u(p)= f, ~'[p«y )/&7]~~

= f,~'[q'«Z )/v'& ]~Z

yP + y y y
1

& f, [q'«Z )/v'Z ]4
+ f ~™"['p«Z)/v'Z]4,

(3.6b)
&u(0)+u(p, „)=1for p &p,„.

OI

2

u(0)= 1 —g M(p, „;q)u(q)
q=1

Substituting in Eq. (3.8), one obtains

u{p)= g M(p;q)u(q),

1 if q=0,
u(q) if q=1,2,

[1+M(pmaxi0)l '

(3.12)

(3.13)

(3.14)

M(p;0)/[1+M(p, „;0)]if q =0
M(p;q) —M(p;0)M(p, „;q)/[1+M(p,„;0)]if q =1,2 . (3.15)
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From the Appendix, the necessary and sufBcient condi-
tions for the u (p} to be the moments of a non-negative
function are

2

I g U;y' [0'(v'y )/i y ]dy &0
i=0

g —At„' ' (q}u(q) &At„' ' (0),
q=1

2

y —At'„"„(q)u(q}&At„"'„(0},
q=1

(3.23)

(3.24)

2

I y g ~;y' fq'«y }r'i y ]dy & o
0 i=0

(3.17)

for all possible U;, m;, and I.
The integral inequalities above are equivalent to the

qlladfatlc form inequalities

and

l, J =0
u;u(i +j)ur &0 for v&0 (3.18)

E,j=0
ic;u (i +j +1)wr &0 for w&0 . (3.19)

In principle, only for the physical energy E&h will the ine-
qualities above, uncountably in6nite in number be
satis6ed.

In the Hankel-Hadamard formulation' one replaces
the positivity of the quadratic forms (3.18) and (3.19) by
the corresponding nonlinear determinant inequalities,
giveil in the followlllg and explallled iil tile Appendix,

„«0for 2n + 1 &p,„,m =0, 1 . (3.20)

One would then have to implement a three-dimensional
search in order to determine the corresponding bounded,
physically allowed, subdomain for the missing moments
[u (1) and u (2)] and E.

As indicated in Sec. II we wish to develop an alternate,
yet equivalent, linear formulation of (3.20). The inspira-
tion for this is already provided by the equivalence be-
tween the finite number of nonlinear inequalities in (3.20)
and the infinite number of linear inequalities in (3.18) and
(3.19). In addition, it is possible to select from among the
uncountably many v's and w's an optimal finite set which
will quickly determine if (3.18} and (3.19) have a u(1)-
u (2) solution set for given E. This will be the focus of
the following discussion.

Substituting Eq. (3.13) into (3.18) and (3.19), there fol-
low the relations

g u(q)
i j =0

U;Q(i +j;q)u, &0, (3.21)

g u(q)
i,j =0

ur;Q(i +j +1;q)urr. &0, (3.22)

for all nonzero v and vr.
Recalling the definition for u(q) frefer to Eq. (3.14)],

we may rewrite Eqs. (3.21) and (3.22) in a manifestly
linear-programming representation (refer to the discus-
sion in Sec. II with regard to the feasibility and optimiza-
tion aspects of the general linear-programming problem)

for any choice of nonzero v's and vr's. We have made ex-
plicit the fact that the coefficients At'„z' r(q) and
At~"z r(q) depend upon the v-w vectors, E and I. The E
dependence comes from the implicit energy dependence
of the 4 coefficients defined in (3.15), and explicitly re-
ferred to in the following relations which define the At' "
coeScients:

1
At'„Fr(q)= g U;QF(i +j;q)v, ,

ij =0
I

At„"'zr(q)= g ur;1Q'z(i+1+1;q)w, .

(3.25)

(3.26)

g Q(p;q)u(q) &1—M(p;0) for p &p,„.(3.29)

As stated earlier, we cannot solve the infinite number
of inequality constraints (3.23) and (3.24) (I fixed, v and w
arbitrary) in order to determine whether or not, for given
E, there exists (feasible) or not (infeasible) a u (1),u (2)
subdomain satisfying the inequalities. Clearly, in order to
determine if the choice for E is unphysical, it is not neces-
sary to solve all of these inequalities. It is suScient to
determine if there exists a finite subset of inequalities
(that is, a finite number of v and w vectors) for which no
u (1),u (2) solution is possible. Before describing one al-
gorithm for achieving this, we must clarify the
significance of a "convex" set.

The theory of linear programming is built around the
concept of convex sets. More specifically, the solution set
to an arbitrary linear-programming problexn of the gener-
ic form (regardless of the objective function)

g M„lul&8„, 1&n &X (3.27)
1=1

corresponds to a convex set U„„„,„.A convex set is
de5ned by the property that if two points lie within it, so
too must all points along the straight hne connecting
them. From this it follows that the linear superposition
(with positive weights) of any collection of points in
Uconvex MUSt alSO belOng tO UcoIIvex~ in PartiCular, SO muSt
their average. We shall make use of this in the algorithm
to be described below.

We present a general description of our programming
logic. The set of inequalities Under consideration is those
of Eqs. (3.23) and (3.24}, as well as those resulting from
0&u(p)&1 for 0&p &p,„[referto Eq. (3.7)]. Thus we
have

2

g —At„' ' (q}u (q) &At„' ' (0),
q=1

At'"~ r(q)—u (q) &Atzr(0), ,
q=l
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For a given E we first generate the M matrices (clearly

1+2I &p,„).We make use of (3.29} [which includes

0&u(1), u(2) &1] to initialize our linear-programming
algorithin. That is, the inequalities in (3.29) will immedi-

ately limit the possible physical u(1), u(2) values to
within the unit square. The corresponding feasible region
is necessarily convex. %'e symbolize it in the illustration
in Fig. 1.

Using the standard linear-programming code ZX3LP

available through the IMSL computer library, we deter-
mine all the vertices of the convex region above corre-
sponding to extremal values for each of the coordinates
(refer to the discussion in Sec. II). Referring to the sym-
bolic illustration in Fig. 1, the points P, and P3 corre-
spond to the vertices for which the u (1) coordinate as-
sumes its minimum and maximum values, respectively.
The points P4 and P2 correspond to the minimum and
maximum for the u(2) coordinate. We now take the
average of these four points, P, =(u„u2). It must lie
within the convex domain.

At the point P& we determine if there are any nonposi-
tive eigenvalues of the matrices T' ' with components
defined by

(3.30)

where

Let us assume that T' ' has some nonpositive eigenvalues.
We may assign the corresponding eigenvector(s) to be the
v or w coeScient vectors in (3.23}—(3.26), depending on
0's value. For each of these nonpositive eigenvalues, the
associated v or w vector will define inequality relations
which invalidate the requirements of the moment prob-
lem, as defined by Eqs. (3.21) and (3.22). Geometrically,
these inequalities correspond to lines which cut the feasi-
ble region in Fig. 1 into a much smaller feasible region, as
depicted in Fig. 2. For each "cutting" line, P, must lie

Pq
gl II ~

FIG. 1. Symbolic "feasible region" for the sextic potential
problem.

FIG. 2. Symbolic inductive "cutting" procedure obtained

through the linear-programming method.

on the side being cut.
%ith respect to Fig. 2, the updated convex region is

defined by the vertices P &, P2, P3, P4, and P5. %e now
repeat the application of the linear programming code
ZX3LP and determine the new vertices corresponding to
extremal values for each of the coordinates. By taking
the average of these, a new interior point P2 can be
defined. At this new point we again determine the ine-
qualities that will reduce the updated feasible region.
The preceding inductive process is repeated until one of
two things happens (bearing in mind that p, „

is fixed at
some arbitrary value).

(a) After a finite number of "reductions" no feasible re-
gion remains for the chosen E value [no solution exists
for Eqs. (3.23)—(3.26)].

(b) After a finite number of reductions, an average
point Pk is reached for which only positive T eigenvalues
exist.

For given E, if case (a) arises, then clearly E is unphysi-
cal. If case (b) is manifested, then we say that E is a
physically possible value, for the p,„"order"used. For
the latter case, progressively increasing p~,„will also in-

crease the maximum dimensionality of the underlying v-
ar vector space. The inductive application of the euttiqg
procedure will quickly result (for some p,„value) in case
(a) for a given unphysical E value. In this manner one
obtains a fast decreasing energy interval of allowed ener-

gy values. The end points of this interval will define the
lower and upper bounds to the true physical ground-state
energy.

For the case A, =g = 1, the data in Table I give the re-
sults obtained for the ground-state energy. For some

p,„values, more than one possible energy interval ap-
pears. In every case, all but one of these disappeared at
the next higher p,„value. %e also quote the typical
number of inequality relations required for determining
the infeasibility (nonexistence) of a u (1),u (2) solution
subdomain for given p,„.This number is referred to as
N [refer to Eq. (2.11)]. This is an important parameter
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TABLE I. Linear-programming results for the ground-state
energy bounds of —4"'+(x +x )4I=E%'.

Possible energy intervals

6

8
9

10
11
12
13
14

(1.31,1.61), (2.01,3.61), (4.71,5.0)
(1.38,1,61)
(1.41,1.48)

(1.422, 1.476)
(1.422, 1.438), (1.438„1.444)

(1.4345, 1.4380)
(1.4352,1.4366), (1.4366,1.4369)

(1.4352, 1.4357)
(1.43555, 1.43570)

10
17
20
24
25
28
35
37
43

because it shows the relatively small number of inequali-
ties necessary in order to obtain good results. Linear-
programming codes can handle hundreds of independent
variables (i.e., missing moments) and thousands of in-
equality constraints. Our problems, including the three-
dimensional quadratic Zeeman problem (discussed in Sec.
IV), fall far short of the typical large-scale linear-
programming applications of operations research and
economics.

principle, with various ansatz, have been obtained by
many authors. Lower bounds coming close to the upper
bounds are totally absent from the literature for magnetic
field strengths in the transition region 8 « l. %'e refer
the reader to the work of Cizek and Vrscay.

Many methods have been devised to solve the quadra-
tic Zeeman problem. The nature of these techniques fall
into the various categories specified in the following: (i)
variational, (ii) adiabatic, (iii) Pade approximation to
(2e)' [refer to Eq. (4.7)], (iv) super adiabatic, and (v) an-
alytic resummation methods. Although some of the re-
sults of the calculations using two methods as different as
(i) and (v) come very close, the discrepancy in the result
increases with 8, as quoted in the tables given in the
comprehensive work of Le Guillou and Zinn-Justin. '

Some authors quote "error" bounds. These are cer-
tainly meaningful in the sense that inside their own ap-
proximation scheme the author can estimate the error.
However, to confirm the high quality of some of these
calculations, the knowledge of true lower bounds that
converge to the Rayleigh-Ritz upper bounds' is neces-
sary.

Returning to the moments analysis of (4.1), we trans-
form the system to parabolic coordinates,

g=r —z y0, 7)=r+z &0. (4.3)

As an example of how to implement the preceding for-
malism on a multidimensional problem, we consider the
important quadratic Zeeman effect for superstrong mag-
netic fields. ' In atomic units, the Schrodinger equation
is

qI „„„~(g,il) =p(g, g)exp(Bgg/4) .

We now transform (4.1) into

(4.4)

It is also convenient to work within the p(g, i) ) represen-
tation defined by

+2——6+ (r' z') —Z/r Eq—=0—.
8

(4.1)
8 Bp 8 Bp , Bp Bp

8( 8( 8rI Bg ' g Bi)

The z axis is taken along the direction of the uniform
magnetic field 8. The magnetic field is measured in units
of 2.35 X 10 G and the length in units of the Bohr radius.
The electric charge Z is in proton electric charge units,
while for the energy, the rydberg is one-half in these
units.

Simple scale invariance shows that

+p[ ,'(E+-,'8)(g+-i))+Z]=0 . (4.5)

It will be noted that the asymptotic behavior of the
ground state is

'Ps„„„z-exp[—8(r —z )/4 —(2e)'~2
~

z
~ ]

as r~ ~ , (4.6)

E(Z,B)=Z E(1,8/Z ), (4.2)

where E(Z, B) is the ground-state energy. We may there-
fore take Z =1 in our calculations without loss of gen-
erality.

One of the main dif5culties of the system above, be-
sides the totally unbounded nature of the potential and
the presence of a continuum (scattering states), comes
from the fact that at large distances (r~+ ~, in the z
direction) it is the Coulomb potential Z/r which binds
the system. However, this Coulomb potential is of third
order with respect to the magnetic potential at large
transverse distances. This makes the problem extraordi-
narily diScult. It is therefore not surprising that the at-
tainment of reliable and precise ground-state energy
values has attracted many researchers for the past 25
yeal s.

Upper bounds, using the Rayleigh-Ritz variational

(4.7)

Because of (4.6) it follows that within the p representation
no unphysical 4 solutions (unbounded configurations
with infinite moments) will appear. This is so because
such configurations ~ould also have infinite moments
within the p representation. As such, only the physical
ground-state solution is the unique solution of the two-
dimensional Stieltjes-moment problem formulation given
in (4.5).

The two-dimensional Stieltjes moments within the par-
abolic coordinate representation are defined by

u(m, n)= I dg I di) g i)"p(&~, i)) .

These will satisfy the "star" relation
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n~u (n —l, m)+m u(n, m —1)——,'(Bn +e)u(n, m +1)
——,'(Bm +s)u(n + l, m)+Zu(n, m)=0 . (4.9)

Because the ground state is symmetric,

for 0 & m +n & 2(q,„)+1.
The M(m, n;q) matrix elements satisfy the same star

relation that the moments do, for fixed values of q. The
necessary initialization conditions are

%,(r,z)=+,(r, —z), (4.10) M(k, k;q)=6k for 0&k, q &q (4.14)

it follows that

P(g, Ti) =P(ri, g); (4.1 1)
%c shall adopt the following normalization condition:

accordingly,

u(m, n)=u(n, m) . (4.12)

q max

u(q, q)=1 .
q=0

(4.15)

u(m, n)= g M(m, n;q}u(q, q),
q=0

(4.13)

It can be immediately seen that the missing moments
correspond to the set Iu (q, q}

~
0(q & ~ j. In order to

see how all the moments can be generated, lct us adopt an
inductive strategy and assume that all the moments on
the first 2k —1 antidiagonals [u (i,j )

~

0&i +j (2k —1I
are given, as well as u (k, k), for some arbitrary "k." One
can then generate all the moments along the 2k antidiag-
onal by taking n =k —i and m =k +i —1 for
i =1,2, . . . , k. That is, solve for u (n, m +1}recursively
through (4.9). Taking m =n =k, one can then solve for
u(k, k+1). Finally, all the moments along the 2k+1
antidiagonal are generated by taking n =k —i and
m =k +i, i =1,2, . . . , k. Once the u (n, m +1) moment
(for n &k) is determined, u(m+1, n) is also determined
through (4.12). By induction, all moments up to the
2(q,„)+1antidiagonal can be generated, given all the
missing moments up to order u (q,„,q,„)(q „.

„

="MSN").
It is clear from the preceding that although the full

Zeeman problem is an injinite missing-moment problem,
we can always work with a finite number of missing mo-
ments, 1+q,„and allow q, „

to increase. Consistent
with this, the homogeneous and linear dependence of
u ( m, n ) upon the missing moments can be expressed by

q max

qmax

u(m, n)= g M(m, n;q)u~,
q=0

(4.16)

1 if q=O,
u(q, q) if q &0, (4.17)

M(m, n;0} if q =0,
M(m, n;q) —M(m, n;0) if q &0 . (4.18)

Note that due to the choice of normalization [Eq.
(4.15)] all the missing moments stay within the unit hy-
percube in the missing-moment space,

0&uq g1, 1&q &q~,„. (4.19)

From the discussion in the Appendix, the complete set
of necessary and suScicnt conditions for the two-
dimensional Stieltjes moments to correspond to a non-
negative function measure are

We may solve for the zeroth-order moment [u (0,0)1 in
terms of the other missing moments. Accordingly, one
obtains

qmax Dm{o l, o2)

Q; J M(cT (+ li, +ll, cr2+ Jk +Jl', q)Q; j~ uq
k, h = 1

Dm {oi, o2)

Q; 'J' 'M(o, +ik+i&, cr2+jk+jI, O}Q; " '
k, 1=1

(4.20)

where cr t, cr2 ——0 or 1. Some of the expressions appearing in (4.20) are defined below.
{ol,o~)For each cr, z value selection, the Q;,

'
correspond to difFerent independent variables. The (il„j„)=(ij)k corre-

spond to a particular coordinate pair ordering (not a moment ordering),

(0,0)i, (1,0)2, (0, 1)i,(2, 0)4, (1,1)q, (0,2)6, . . . , (O,q,„—1)„(q,„,O)b, . . . , (O,q,„)„.. . , (4.21)

a =(q,„)(q,„+1)/2,
b =0+1,
c =(q,„+1)(q,„+2 ) /2

(4.22)

» Eq (4 20), Dm (cr~, crq) is the dimensionality of the
appropriate 0-vector space. Because of the symmetric
property given in (4.11) only the cases (o~ ——0, oz ——0),
(cr, = 1, o2=0), and (o, = 1, cr2 ——1) need to be con-
sidered. Refer to the Appendix for additional
clarification. Once q,„and01,2 arc spccifi d thc dimcn
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TABLE II. Linear-programming results for the quadratic Zeernan problem; 8=0.2, 2, and 20 a.u.

(Z =1).

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
2
2
2
2
2
2
2

2
2
2
2
2

20
20

3
3
3

5

3
3
3

4

5

5

5

5

3
5

Maximum dimension
D (1,0)

11
12
13

15
20

8

9
10
11
12
13
14
15
16
18
20
21

8

17

Feasible energy
Interval (bounds)

(0.38,0.74)
(0.52,0.71)
(0.54,0.62)

(0.546,0.620)
(0.548,0.618}
(0.550,0.610)
{0.570,0.605}
(0.582,0.595)

(0.58870,0.59205)
(0.75,1.11)
(0.89,1.05)
(0.97,1.05)

(0.970,1.044)
(0.970,1.044)
(0.976,1.041)
(0.982,1.029)
(1.006, 1.027)
(1.008,1.027)
(1.010,'1.026)

{1.0205, 1.0232)
(1.0209,1.0224)

(1.95,2.40)
(2.17,2.25)

18
20
25
35
40

45
47
7Q

15
20
22
40
40
43
45
50
58
60
70
80
30
4Q

sionality must be chosen consistent with

(q,„+1)(q,„+2)/2 if (o, ,o2)&(1,1)

(q,„)(q,„+1)/2 if cr, =o 2
——1 .

(4.23)

The reason for the above is simple. The sequence defined
by (4.21) orders the (i,j) in terms of increasing i +j.
Thus if (i,j)k, satisfy 1&k, l &(q,„+l)(q,„+2)/2,
thell ik +li+ ji +ji & 2(q „)aild 1+lk+ i(+ji +ji
& 2(q,„)+1. Both of these correspond to moments gen-
erated from the q,„missing moments. That is, the sums
above identify the antidiagonals of maximum order
2(q,„)+1,which in turn correspond to the moments
that can be generated from the Arst q,„missing mo-
ments.

If 1(k, l &(q,„)(q,„+1)/2,then 2+ik+ii+j„+jI
& 2(q,„—1)+2. This also corresponds to the set of mo-
ments which can be generated from the first q,„missing
moments.

The programming logic for the system defined by (4.19)
and (4.20) is coNiplerelp idelitlcal to tlie one-d1mensional
system described in the Sec. III. Some results are given
in Table II for the magnetic-field-strength values 8 =0.2,
2, and 20 a.u.

%'e have developed a linear-programming reformula-
tion of the general moment method for generating lower
and upper bounds to energy levels of multidimensional
singular Schrodinger equations. %'e have applied this
new method to the three-dimensional quadratic Zeeman

e6ect in the transition region. Our bounds compare well
with the most reliable results given in Ref. 10.

The reason why we have not yet provided lower and
upper bounds with more significant figures, and for more
magnetic field values, is that w'e are using available
linear-programming software not specifically designed for
our needs. The type of linear-programming application
required by us is not of the standard kind. As such, we
need to develop a more suitable code. An example of our
needs is the fact that to achieve higher precision in our
data, we must work with extremely small convex domains
at the threshold of feasibility. %'e are currently develop-
ing such an algorithm, ' and will communicate a more
comprehensive set of results in a future work. In particu-
lar, we shaH focus on bounds for the second transition re-
gion, corresponding to Geld strengths of 10 -10' G.
Despite the preceding remarks, the results quoted in
Table II provide definite and unprecedented information
on the ground state of the system.
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%e give below all of the necessary results of the "prob-
lem of moments" relevant to our work. %e shall first
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consider the one-dimensional problem.
Historically, the Stieltjes-moment problem was first

solved in 1895. In 1921, the Hamburger-moment prob-
lem was solved. Although the latter includes the former,
we shall present these in their proper historical order. As
indicated in Sec. II, "non-negative" is used in the conven-
tional sense and also refers to a function which is positive
on a support set of nonzero measure.

I. Stieltjes-moment problem

„)0for m =01, n&0, (A 1)

Given a sequence u (p), p =0, 1,2, . . . , there exists a
non-negative function f(x) defined on [0, oo) such that
u (p) = Io"dx x~f (x), if and only if

„[u]—:det

u (m) u (m +1)
u(m+1) u(m+2)

t

u(m+n) u(m+n+1)

u(m+n)
u(m+n+1)

0

u (m +2n)

(A2)

2. Hsmburger-moment problem

Given a sequence m (p), p =0, 1,2, . . . , there exists a
non-negative function g(x) deffned on ( —00, + ~ ) such
that m (p) = J " g(x)xi'dx, p =0, 1,2, . . . , if and only if

b,o „[m]&0for all n &0 . (A3)

As for the Stieltjes case, the "necessary" aspect of the
Hamburger-moment theorem follows from the integral
inequalities I" dx P (x)g (x) & 0 for all non-negative po-
lynomials on the entire real axis. Unlike the Stieltjes
case, any non-negative polynomial on ( —~, + 00 ) must
be of the form P (x }= ( g, C,.x ') . The converse or
"suf6ciency" aspect of the Hamburger-inoment theorem
is involved, and once again the reader is referred to the
relevant references.

It is natural to seek at an intuitive level some under-
standing of how the Stieltjes- and Hamburger-moment
theorems are interrelated. Indeed, suppose f (x ) is

The 6 „'sare referred to as Hankel-Hadamard deter-
minants. The Stieltjes theorem by itself is indeterminate.
That is, there may be more than one non-negative distri-
bution having the same moments. Additional informa-
tion, such as the satisfaction of the Carleman conditions,
is required before one can conclude that a unique solution
exists. The fact that our applied interests involve mo-
ment recursion relations associated with determined
physical systems should make our entire moment ap-
proach completely deterministic with respect to identify-
ing the unique physical solution desired. This is clearly
supported by the numerical results cited.

The "necessary" aspect of the Stieltjes-moment
theorem follows from the fact that on the half-real axis
[0, ~ ) any non-negative real polynomial P (x) & 0 must be
of the form P(x)=x'(g;C;x'), where i =0, 1, and the
C's are real and arbitrary. The inequahties in (Al) follow
from considering the integral relations f 0 P(x)f (x) &0
for all non-negative polynomials on the half-real axis.
The '"sufficiency" aspect of the Stieltjes theorem (i.e.,
proving the existence of some non-negative distribution
on the half-real axis) is much more difficult. We refer the
reader to the relevant references for further details.

defined on the entire real axis (—ao, + ~ ) and the nature
of f's Hamburger moments are such that uniqueness is
ensured [i.e., the only distribution on ( —~, + ~ } having
f's moments is f]. We may then ask, what are the neces-
sary and sufficient conditions on f's Hamburger moments
in order for f (x) to be zero on the negative axis and
non-negative on [0,+ ~ )? One simple solution would be
to impose (A3) on the functions f (x } and xf (x). One
would then conclude that f (x ) & 0 and xf (x ) & 0 for all
x. The only consistent answer is that f (x)=0 for x &0
and f (x) &0 throughout [0, 00 ). Furthermore, the Ham-
burger moments mould e8'ectively become Stieltjes mo-
ments. This line of reasoning correctly leads us to the ac-
tual Stieltjes-moment relations, as summarized by the in-

equality relations in (Al).
Intuitive speculations can be paradoxically erroneous.

Thus one may ask, suppose Z(x) is zero throughout the
negative real axis, could we not then use the Harnburger-
moment theorem to specify conditions under which it
would be non-negative throughout the non-negative real
axis [0, ~ P. This would lead to only one set of deter-
minant inequalities AO„~O for all n. This is clearly
wrong from the perspective of the Stieltjes-moment
theorem which requires two sets of determinant inequali-
ties. Indeed, because of its indeterminate nature the
Hamburger-moment-theorem inequalities could not be
used to conclude that the only non-negative distribution
on (—00, + ao ) having Z's moments is Z. Thus we could
not conclude that Z(x)&0 for x &0. Instead, we can
only conclude that there exists some non-negative distri-
bution on (—~, + ~ ) having Z's moments.

To summarize all of the preceding, the Stieltjes- and
Hamburger-moment theorems are indeterminate. The
Hamburger problem is potentially more indeterminate
than the Stieltjes case. Indeed, as indicated on page X of
the comprehensive work by Shohat and Tamarkin, it is
possible for a given Hamburger problem to be indeter-
minate; however, if the Hamburger moments m (p) are
taken to be the Stieltjes moments of some distribution on
[0, ao }, m (p)=u(p), the Stieltjes problem can be deter-
minate.

As indicated previously, the derivation of the Ham-
burger Hankel-Hadamard inequalities for a non-negative
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function g (x) follows from the following integral inequal-
ities, valid for arbitrary C, 's {not all zero):

I
dx C;x' g x ~0, I&0.—co ~ 0

An alternate form for (A4) is the quadratic-form expres-
0

y„c;m (I +j)C', & 0 for C. . . not ail zero .

The expression above requires that all the eigenvalues of
the symmetric monmnt matrix be positive. This is
equivalent to requiring that the Hankel-Hadamard deter-
minants (A3) be positive. The proof that (A4) or (A5)
are sufficien for estabhshing that g(x} must be non-
negative, on the entire real axis, is much harder, and we
refer the reader to the relevant references. The impor-
tance of the integral formulation in (A4) is that it serves
to define a linear formulation of the nonlinear moment
inequalities in (A3) and to motivate the multidimensional
generalization of the Hankel-Hadamard inequalities.

where the DJ's and J are arbitrary and Sxed. If one im-
poses the conditions (A3) or (A4) on ID(x) then it follows
that ID(x) &0 for all x. If we now vary the D, 's and J,
then we can conclude that at each x value, the function
h (x,y) must be non-negative for all y. It therefore fol-
lows that requiring

f" dxf" dy pc, x' g Djy' h(x, y}&0,
j=0

(A7)

for all C;,D (not all C s or DJ's equal to 0), 0&i &I,
0&j &J, estabhshes h(x, y) as non-negative throughout
the two-dimensional plane.

Searing in mind that the set of aII two-dimensional po-
lynomials (gl. OQ,.~X'yj}, for I&0, includes the special
case (g; C;x'} Q~DJyI}, it follows that an alternate and
morc effective sct of necessary and sufficien colldltlons
for iI (x,y ) to bc Iloll-ncgativc ls

I 2

f dx f dy g Q; x'y~ h(x, y)&0, (AS)
l,j=

3. Melddimensional gemeralixstions

We now describe the multidimensional analogue of the
preceding formalism. We shall not give the form of the
multidimensional Hankel-Hadamard conditions. They
can be readily deduced from the linear-quadratic-form re-
lations to be given below. ' Of greater importance to us
will be the hnear relations that ensue.

Lct us define thc llltcgral fllnctloll In(x) with rcspcct
to some two-dimensional function h (x,y):

J
ID(x)= f dy g D)y' h(x,y), (A6)—cc

for all possible Q;~ values (not all 0) and I.
The two-dimensional Stieltjes-moment problem would

correspond to imposing (A8) on f (x,y), «f (x,y), and
yf (x,y). One would conclude that each of these must be
non-negative throughout the entire two-dimensional x-y
plane. That is, f (x,y) &0 for the non-negative quadrant
and zero elsewhere. In addition, the Hamburger mo-
ments for such an f(x„y)would really be Stieltjes mo-
ments.

As for the one-dimensional case„(AS) can be easily
converted into a quadratic-form expression involving the
moment matrix m (ik+iI, jk+jI), provided some coordi-
nate pair sequence ordering is adopted [i.e.,
(0,0)„.. . , {i,j)k, . . ].. The multidimensional counter-
part to the one-dimensional Hankel-Hadamard nonlinear
moment inequalities immediately follows. '

As for the one-dimensional case, the integral represen-
tation previously mentioned also serves to define the
linear formulation of the multidimensional moment
method. Because the quadratic Zeeman problem dis-
cussed in Sec. IV is developed in terms of a Stieltjes prob-
lem, we focus on such cases in the remainder of this dis-
cussion.

The missing-moment structure of the quadratic Zee-
man problem (refer to Sec. IV) dictates the appropriate
coordinate pair ordering to be

(0,0)„(1,0)I, (0, 1)I,(2,0)~, (1,1)I,(0,2)6, (3,0)I, . . . .

(A9)

Thus the (i,j)1,th pair occupies the k =(i +j )(i +j
+1}/2+j + 1 position. Note that the pairs are grouped
in terms of increasing i +j. In the following discussion
we shall implicitly assume that the coordinate pairs
(i,j )k (ik,jk——}are ordered in accordance with the preced-
ing.

As discussed in Sec. IV, upon transforming to parabol-
ic coordinates the symmetric nature of the ground state
[f(x,y ) =f (y, x )] ensures that the non-negativity condi-
tions for the two-dimensional Stieltjes function f(x,y)
(restricted to x &0, y &0) are completely specified by
demanding non-negativity for the Hamburger extensions
h, (x,y)=f (x,y) and hl(x, y)=xf(x, y) [apply (A8) to
h, z]. That is, because of the x yexchange sym-metry no
new constraints are to be obtained by looking at yf (x,y).
This is a matter of principle. However, since in practice
we can only work with a 6nite number of constraints, it is
possible that some numerical enhancement of the tight-
ness of the eigenvalue bounds can be obtained by working
with additional types of moment relations. Indeed, such
improvement is found by also considering the non-
negativity conditions for the Hamburger extension of
hl(x, y)=xyf {x,y). Thus for the quadratic Zeeman
problem the necessary and sufBcient conditions for non-
negativity off (x,y), on the non-negative quadrant, are to
be obtained from applying (A8) to each of the functions
f (x,y), xf (x,y), and xyf (x,y).

In keeping with all the speci6cations in the preced-
ing, the relevant quadratic-form expressions for the
two-dimensional Stieltjes-moment problem, as applied
to the quadratic Zeeman effect, are ( u (i,j )
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= jo"dx Jo"dy x'y'f (x,y))
Dm(o &, e&)

(O &, O&) (0'1,&2)0; 1 tt (0')+tk +tt, try+ Jk +Jt )II( j
I, l = i

(A10)

where (o „o2)=(0,0), (1,0), and (l, l). For each of these
(o l, o2)

three cases, the 0; '
correspond to di6'erent sets of

variables. The dimensionality Dm(o&, oz) is specified in

(4.23).
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