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The weak algebraic divergence of the pressure at random close packing in a classical system of
hard spheres or hard disks does not rely on the behavior of the equilibrium canonical partition func-
tion at such packing, as suggested by M. Alexanian [Phys. Rev. A 37, 4527 (1988)], but rather is a
result numerically suggested by the series analysis reported earlier.

The nature of the pressure divergence in a continuous
classical system of hard disks or hard spheres, as the
random-close-packed (RCP) density is approached, was
recently investigated. ' The principal thrust of that paper
was a seven-virial-coeIcient "derivative-logarithm"
series analysis. Studies such as this one were carried out
earlier in more traditional critical-exponent series-
analysis work for spin systems ~here series with 20 or
more coefficients are encountered. Our analysis was ap-
plied to the low-density pressure-P series
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where V is the volume in units of some length cubed so
that, for large V, it can be taken as an integer, and z is the
fugacity e" with p the chemical potential. The pres-
sure in the thermodynamic limit is then obtained with the
first Mayer equation

via Pade approximants, to generate a nonequilibrium
pressure branch that ultimately diverges at RCP.

This procedure is expressly condoned in the preceding
Comment [middle of paragraph above Eq. (3)]. Never-
theless, disagreement is therein expressed over a con-
jectural, heuristic attempt reported in our paper, to ex-
tract, formally, the nonequilibrium RCP pressure state
from the equilibrium canonical partition function. %'e

agree that this attempt must be abandoned, but em-
phasize that the subsequent numerical conclusions re-
ported in our paper are independent of this picture, since
we worked directly with the pressure virial series itself.

Our conjecture was inspired in part by the model prob-
lem, attributed to Ford, of a particular grand partition
function that is volume- and activity- (but not
temperature-) dependent. The model is exactly soluble
and yields an explicit pressure-density equation of state.
The pressure has a striking resemblance to the general
features displayed by the hard-sphere system as revealed
by both laboratory and computer experiments. Ford
proposed the grand partition function

P(z)lkT= lim V 'ln[:-( Vz)]

ln( 1+z), z (1
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The density p(z) is introduced through the second Mayer
equation

"r)P (z) Ik Tpz =z
Bz

Eliminating z between Eqs. (3) and (4) yields the equation
of state P (p) This .function can, furthermore, be
identified with the canonica1 pressure via a theorem by
van Hove as reenunciated by Huang. Thence
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FIG. 1. Pressure-vs-density equation of state as given by Eq.
(5), in aribtrary units.
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(5a)

I'/kT = . 1n2, —,
' &p& —,

'

This is graphed in Fig. 1 (thick curve) and represents the
equilibrium (or stable) branches of the system. The thin
curves in the figure correspond to the takeo nonequilibrium
(or metastable) portions which are analytical extensions
of Eqs. (Sa) and (5c). The two poles, at p=1 and )o=2,
are reminiscent of the random and regular (primitive-
hexagonal) close-packing divergences, respectively,
known to occur in the classical hard-sphere system. As
one might expect, a series analysis of (5a) does indeed'
point to the first (weak) divergence at p= l.

I stress again, however, that these considerations are
merely heuristic and did not infiuence in any way the nu-
merica1 outcome of the derivative-logarithm analysis in

Ref. 1 of the pressure virial series (1).
Although entirely missed during several decades of

"integral-equation" studies" such as the Percus-Yevick,
hypernetted-chain, scaled-particle theory, etc. , bifurca-
tions such as those appearing in Fig. 1 at point A (as den-
sity is raised) or point 8 (as density is lowered), have re-
cently shovvn up within density-functional theories' ap-
plied to the hard-sphere ftuid. In some cases, ' these bi-
furcations are very close to the empirical RCP density
value. The integral-equation schemes of Ref. 11 are basi-
cally "third-virial-coeScient approximations'" in the
sense that„upon expansion about zero density, they
reproduce exactly the coefficients in (1) up to 83. Exten-
sions' that reproduce also up to 8& have proved both ex-
tremely diScult and expensive to solve in terms of com-
puter time. The series analyses reported in Ref. 1 incorp-
orate virial coeScients up to 87, although it should be
mentioned that in a recent new version of the third-
virial-coeScient approximation, Gonchar and Rudyk'
also found both bifurcation followed by two divergences
in the pressure of the hard-sphere system.
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