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Comment on "Critica1 exponent for glassy packing of rigid spheres and disks"
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S. Jasty, M. Al-Naghy, and M. de Llano recently presented [Phys. Rev. A 35, 1376 (1987)] an ar-

gument to justify the weak divergence of the pressure at random close packing for a classical con-
tinuous system with hard cores. Their analysis is based on the behavior of the equilibrium canoni-
cal partition function at random close packing. Therefore this approach is erroneous owing to the
nonequilibrium nature of the glassy state.

In a recent article, an attempt is presented to justify
the conjecture that the pressure P of a system of hard
disks or hard spheres has an algebraic singularity at the
Bernal density p~ and so

P!pttkT~D(1 p/pit ) — as p~ptt,
with D ~0 and 0~a &I. The argument used in Sec. II of
Ref. 1 is based on the nonvanishing of the equilibrium
canonical partition function Q(N, V, T) at pit and on the
expansion of Q(N, V, T) about p=pit. Now it is well

known that a classical continuous system of hard disks or
hard spheres possesses a thermodynamic limit owing to
the stability and the temperedness of the hard-core poten-
tial. Therefore, in the thermodynamic limit, the equilib-
rium partition function Q (N, V, T) gives rise to a unique
pressure I', which is a continuous, decreasing function of
the specific volume U =p '. Accordingly, in the thermo-
dynamic limit, the equilibrium partition function
Q(N, V, T) yields the two equilibrium branches of the
equation of state joined by a straight tie-line which corre-
sponds to the first-order Kirkwood transition. In addi-
tion, P possesses a simple pole at the density po of closest
packing (stable crystalline phase). Accordingly, the pres-
sure I' is finite for 0&p ~po. Therefore, for arbitrarily
large X,

number, must be kept. Secondly, PN +1 as —N +ac sinc—e
the pressure I', which is defined after the thermodynamic
limit is taken [see Eqs. (1) and (2) of Ref. I], does not
diverge at u =Uitt. Therefore, ct =0 in Eq. (12).

Now on rapid cooling, the equilibrium liquid may
bypass crystallization and solidify continuously into a
glass —via the (metastable) supercooled liquid phase. Ex-
perimentally, therefore, a (nonequilibrium) glass may be
obtained as an extension of the equilibrium Iluid branch.
Nonetheless, metastable states cannot be derived from
the equilibrium partition function after the thermo-
dynamic limit has been taken. Consequently, knowledge
of the equilibrium partition function only is of no avail in
the study of a metastable or a nonequilibrium state.
However, partial knowledge of I', for instance, in the
form of the first few virial coefficients, may be used to
generate a nonequilibrium pressure, as is done in Ref. 1

via Pade approximants. Also, knowledge of the thermo-
dynamic pressure of a supercooled liquid or an amor-
phous solid —for instance, via molecular-dynamics com-
puter simulations —yields a partition function which is
different from that of the stable crystalline solid phase. '

Therefore, if an algebraic singularity is assumed in a
(nonequilibrium) thermodynamic pressure P at an amor-
phous close-packing density pi g p{), then

CN( l —
U& /U)

Q(N, V, T)~Q{N,Nuit, T)e e as v ~utt, P/p, kTB(1—p/p, ) " as p p, , (3)

where Uz
' ——pz ~po and C is a pure number. Note that

(2) yields, with the aid of Eqs. (1) and (2) of Ref. 1, the ex-
pected finite pressure P/kT~CU& ' as U U~. Therefore
Eq. (11) of Ref. 1 is erroneous for two reasons. Firstly,
only two terms in the expansion of the exponential func-
tion in (2) are kept. This leads to the wrong Helmholtz
free energy per particle f in the thermodynamic limit,
defined by Eq. (2) of Ref. (1), viz. , f independent of U and
so P =0. [This result can also be corroborated directly
from the formulas of Ref. 1, since according to Eq. (12),
an intensive pressure requires that B/A =O{N) and
P=O (N ') as N ~~. However, this latter behavior im-
plies the contradictory result, which follows from Eqs. (2)
and (11)of Ref. 1, that f is independent of U.] Clearly, all
the terms in the exponential function in (2), an infinite

with 8 p 0 and IM g 0. However, the value of p can be re-
stricted if one invokes the finiteness of the heat capacity
as p~p, . Now

p2

XkT
BV
r)P

~8p
P&

» l S i (4)

Therefore, if C~ is finite, then 0~@&1.Clearly, the case

p = 1 cannot be excluded. The behavior (3) with 0 ~p & 1

results from a nonequilibrium partition function

Q„,(N, V, T) which, for arbitrarily large N, gives
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BX
Q„,(N, V, T)~Q„,(N, Nu„T)exp

1 —P U

tial for the occurrence of the singularity in (3). Finally,
the behavior (3) with p = 1 corresponds to the case when

Q„,(N, Nu, , T) =0, viz. ,

as u~u, , (5)

Q„,(N, V, T)~f (N, T) 1—U)
as U ~U)

with Q„,(N, Nu, , T)&0. Note again that all the terms in
the infinite series for the exponential function are essen- where f (N, T) is independent of u.
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