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S. Jasty, M. Al-Naghy, and M. de Llano recently presented [Phys. Rev. A 35, 1376 (1987)] an ar-
gument to justify the weak divergence of the pressure at random close packing for a classical con-
tinuous system with hard cores. Their analysis is based on the behavior of the equilibrium canoni-
cal partition function at random close packing. Therefore this approach is erroneous owing to the

nonequilibrium nature of the glassy state.

In a recent article,! an attempt is presented to justify
the conjecture that the pressure P of a system of hard
disks or hard spheres has an algebraic singularity at the
Bernal density pp and so

P/pgkT—-D(1—p/pg)~ " as p—pp, (1)

with D >0 and O <a < 1. The argument used in Sec. II of
Ref. 1 is based on the nonvanishing of the equilibrium
canonical partition function Q (N, V,T) at pg and on the
expansion of Q(N,V,T) about p=pg. Now it is well
known that a classical continuous system of hard disks or
hard spheres possesses a thermodynamic limit owing to
the stability and the temperedness of the hard-core poten-
tial.2 Therefore, in the thermodynamic limit, the equilib-
rium partition function Q (N, ¥, T) gives rise to a unique’
pressure P, which is a continuous, decreasing function of
the specific volume v =p~!. Accordingly, in the thermo-
dynamic limit, the equilibrium partition function
Q(N,V,T) yields the two equilibrium branches of the
equation of state joined by a straight tie-line which corre-
sponds to the first-order Kirkwood transition. In addi-
tion, P possesses® a simple pole at the density p, of closest
packing (stable crystalline phase). Accordingly, the pres-
sure P is finite for 0<p <p,. Therefore,® for arbitrarily
large N,

I—vp/v)
as v —vg ,

(2)

Q(N,V,T)—Q(N,Nvg, T)e "'

where vy '=pp <p, and C is a pure number. Note that
(2) yields, with the aid of Egs. (1) and (2) of Ref. 1, the ex-
pected finite pressure P/kT —Cvg ' as v —vp. Therefore
Eq. (11) of Ref. 1 is erroneous for two reasons. Firstly,
only two terms in the expansion of the exponential func-
tion in (2) are kept. This leads to the wrong Helmholtz
free energy per particle f in the thermodynamic limit,
defined by Eq. (2) of Ref. (1), viz., f independent of v and
so P =0. [This result can also be corroborated directly
from the formulas of Ref. 1, since according to Eq. (12),
an intensive pressure requires that B/A4=0(N) and
B=O(N"1!)as N— . However, this latter behavior im-
plies the contradictory result, which follows from Egs. (2)
and (11) of Ref. 1, that f is independent of v.] Clearly, all
the terms in the exponential function in (2), an infinite
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number, must be kept. Secondly, BN —1 as N — « since
the pressure P, which is defined after the thermodynamic
limit is taken [see Eqs. (1) and (2) of Ref. 1], does not
diverge at v =vy. Therefore, a=0 in Eq. (12).

Now on rapid cooling, the equilibrium liquid may
bypass crystallization and solidify continuously into a
glass—via the (metastable) supercooled liquid phase. Ex-
perimentally, therefore, a (nonequilibrium) glass may be
obtained as an extension of the equilibrium fluid branch.
Nonetheless, metastable states cannot be derived from
the equilibrium partition function after the thermo-
dynamic limit has been taken. Consequently, knowledge
of the equilibrium partition function only is of no avail in
the study of a metastable or a nonequilibrium state.
However, partial knowledge of P, for instance, in the
form of the first few virial coefficients, may be used to
generate a nonequilibrium pressure, as is done in Ref. 1
via Padé approximants. Also, knowledge of the thermo-
dynamic pressure of a supercooled liquid or an amor-
phous solid—for instance, via molecular-dynamics com-
puter simulations—yields a partition function which is
different from that of the stable crystalline solid phase.>*
Therefore, if an algebraic singularity is assumed in a
(nonequilibrium) thermodynamic pressure P at an amor-
phous close-packing density p; < p,, then

P/p kT —B(l1—p/p,)™" as p—p;, (3)

with B >0 and p >0. However, the value of u can be re-
stricted if one invokes® the finiteness of the heat capacity
as p—p;. Now

—p+l

as p—p,. (4

Therefore, if Cp is finite, then® 0 <y < 1. Clearly, the case
p=1 cannot be excluded. The behavior (3) withO<u <1
results from a nonequilibrium partition function
Q...(N,V, T) which, for arbitrarily large N, gives®

4527 ©1988 The American Physical Society



4528 COMMENTS 37

l—p tial for the occurrence of the singularity in (3). Finally,

o1 the behavior (3) with u=1 corresponds? to the case when

1——
v

Qne(N,V, T)—>Q (N,Nv,, T)exp

l—p

Qne(N)Nv];T)=0, ViZ.,

asv—v,, (5) .
Q..(N,V,T)—f(N,T) 1—7‘ as v—v, ,
with Q,.(N,Nv,,T)s£0. Note again that all the terms in
the infinite series for the exponential function are essen-  where f (N, T) is independent of v.
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