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Measuring filtered chaotic signals
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According to a recent prediction by Badii and Politi [in Dimensions and Fntropies in Chaotic Sys-
tems, edited by G. Mayer-Kress (Springer-Verlag, Berhn, 1986)], low-pass filtering of chaotic signals
results in systematic errors in the determination of the attractor dimension. %'e show that in an ex-
perimental situation with the additional complication of small sample sizes of low resolution, the
prediction still holds. The entropy E2 appears to be una8ected by the filtering.

An important step in the characterization of chaotic
dynamics is the determination of the dimension of the un-
derlying attractor. Many laboratories have adopted a
method originally proposed by Grassberger and Procac-
cia, that requires only a single-variable time series. This
technique allows the extraction of the correlation dimen-
sion D2 and the order-2 entropy Kz.2 It can still work
with noisy experimental signals, and Abraham et al.
have demonstrated that the method works even for small
numbers of data points, as low as 500.

In this paper we address a problem with such analysis
that was pointed out by Badii and Politi very recently.
A low-pass filtering of the signal, e.g., due to insuScient
bandwidth of the measuring apparatus, results in a
significantly skewed result for the dimension. They test-
ed their prediction for the Duffing equation and the Bak-
er transformation. We pursued the question how weil
this theory would apply to an actual experimental situa-
tion, with the additional restraints of small data sets with
eight-bit resolution,

Badii and Politi consider the case of a chaotic signal
x(t), passed through a single-pole (first-order) low-pass
filter as modeled by

Z = —'QZ +X

with the "filter output" z (t). If the chaos-generating pro-
cess has a phase space of dimension d, the phase space of
the combined system (including the filter) is increased to
d + 1, and so is the number of I.yapunov exponents. The
additional exponent —ri is negative, and sl is equal to the
filter roll-off frequency. Assuming the validity of the
Kaplan-Yorke conjecture, i) will increase the informa-
tion dimension D& determined from signals at the Slter
output (i.e., from a time series of z values), provided that
0& g y A. . Here k denotes the negative I.yapunov ex-
ponent that appears in the denominator of the Kaplan-
Yorke formula. The lower the filter roll-ol' frequency,
the more pronounced this increase. In the limit g~0,
the Slter becomes an integrator, and the increase is pre-
dicted to be as much as 1 over the unfiltered original:
Di(r]=0)=D, (il= ao ) + 1.

Since only the negative Lyapunov exponents are
affected, we expect that the positive ones and thus the en-
tropy K, will remain unchanged in the Ntering process.

~1th K) being an upper bound for Kg, it is reasonable to
assume that E2 will not depend strongly on g. This is a
relevant point because from Ei an experimentally acces-
sible sufficient criterion for chaos can be obtained. One
would prefer such an indicator to be unaffected by any
sources of systematic errors.

For our experiment, we used the system described in
Ref. 7 as a source of chaotic signals. It consists of an
electronic circuit simulating a hybrid optical device and
is described very well by the differential equation

U+aU+bU+cU =d ( U —e )

a, b, c,d, e are constant coefficients depending on com-
ponent values and parameter choice, and —as mentioned
in Ref. 7—a dimensionless time is used. Throughout this
paper, we fix parameters to the same values as in Figs.
3(b), 4(b), and 6(a) of Ref. 7 (approximately a=0.846,
b=2. 100, c=0.704, d=0.945, and e=3.634); this corre-
sponds to mildly chaotic behavior. For these conditions,
one average orbit in phase space takes 4.44 time units,
one unit corresponding to 12.3 ass. The phase-space con-
traction rate ( I/V) V is constant everywhere and equal to
—Q.

An approximate description of the experimental sys-
tem is given by the following two-dimensional map:

+n + 1 ~0 + ~ 1+n + ~ 2+n + ~ 3+n + ~ 4+@+ ~ 5+n

+ A6X„—F„,
(3)

~n+ I =& i&n

with one iteration step corresponding to one orbit. It
resembles the Henon map with the quadratic nonlineari-
ty being replaced with a polynomial. This polynomial al-
lows a good least-squares 5t of all experimentally deter-
mined return maps (see Ref. 7), and there is a way to
smoothly vary aB the A,. siInultaneously such that experi-
mentally obtained bifurcation diagrams can be simulated.
For our present parameter set, Ao ——0.640„A

&

———0.194,
A2 ———2.486„A 3 ——0.227, A4 ——1.251, A 5

——0.480, and
A6 ———0.317. 8, as obtained from the 6t is consistent
with Bi ——exp( —4.44a), so that the phase-space contrac-
tion rates of Eqs. (2) and (3) are equal; we use the latter
value because it is more precise.
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%e proceed as follows. In a first step we convince our-
selves that our computer codes work right by starting
with the Henon map with an added filter equation:

x„+) ——1 —AX„+F„,
F„+i ——BL„,
Z„+,—exp( —g}Z„+X„.

(4)

%e use the standard parameters 3=1.4 and 8=0.3.
For the moment, let us set rl= ~ (no filter). First, we
determine the positive I.yapunov exponent A, + from a nu-
merical computation of the divergence of trajectories.
Given that A, =InB —A, +, we also obtain the Kaplan-
Yorke dimension D &. The Kolmogorov entropy K

&
is

simply given here by E
&

——A.+.
We next iterate Eq. (4) several thousand times and

store the Z values, rounded ofF to eight-bit integer num-
bers. From this file, we determine the order-2 entropy K2
and the correlation dimension D2 with a Grassberger-
Procaccia-type program. The program runs on Atari
104OSTF desktop computers; computing time is 1 h for
5000 data points and embedding dimensions up to 20.
(We find that 5000 is a very reasonable number of points
in terms of speed versus accuracy. ) Typically, the length
scales used in the evaluation (the "scaling region") range
from 2-' to 2-".

Compared to published values (see Table I), D, , K„
and Ez turn out to be in excellent agreement, but
D2 —1.15 deviates from the correct value Dz ——1.224.
This can be attributed to the low resolution intentionally
used here. In a separate test, we varied the resolution
from six to twelve bits without changing the scaling re-
gion. The dimension increased systematically with in-
creasing resolution and converged to the literature value
cited above (we find Di'i "——1.225). Details and our ex-
planation will be given in a forthcoming publication.

Next, we turn to the influence of the filter. For various
values for g, we repeat the determination of D2 and K2.
There is no detectable systematic variation of Ei with rl.
The result for D2 is shown in Fig. 1, in comparison with
the predicted D, =D, (r)) (solid hne). It is perfectly
reasonable that all data points lie below the solid line, be-
cause (a}D, is an upper bound for Di and {b)we just stat-
ed that we underestimate D2. However, the points clear-
ly follow the trend of the solid line, and for g~0, Dz

indeed tends to D, (rl =0)=D,(rl = ~ ) + l.
In the second step we repeat the whole procedure for

the return map [Eq. (3)]. As for the Henon map, we first
compute from the trajectory divergence k+ ——0.52 bits
per iteration or, in ln and time units as for Eq. (2),
A, + ——K] =0.081. %'e note that precisely the same value
holds for the logistic map, ' which can be obtained from
Eq. (3}by truncation (X remains bounded to

~

X
~

g0.65)
in the limit 8~0. From X+ + A, = —a we get

= —0.927. Now D, (rl) can be calculated according to
Ref. 4. Again as above, we evaluate files of eight-bit
numbers from an iteration of the map with simulated
6lters of various g. The entropy E2 comes out indepen-
dent of rl again and is K2 ——0.065 (or 0.42 bits per itera-
tion). So, indeed, Ki gE„as it must be. Figure 2(a),
similar to Fig. 1, shows D2 =Di{rl); obviously the agree-
Inent with the prediction is very good again.

In the third step we finally turn to the time-continuous
system. In order to estimate its entropy, we hold the cir-
cuit at some initial condition and then release it so that it
produces chaotic output again. Due to a tiny spread in
the initial condition caused by electronic noise, the subse-
quent trajectory is diff'erent each time the procedure is re-
peated. We estimate the time required until the spread in
amplitudes covers the whole amplitude range of the at-
tractor. From this "time horizon" and the measured
signal-to-noise ratio we estimate K, =k+=0.0810.02,
which agrees well with the value obtained for the return
map above.

We also calculate A. + directly from Eq. (2) and, within
our precision, A, + is the same for the ffow as for the re-
turn map. We thus use the same values for the reference
curve in Figs. 2(b} and 2(c) as in Fig. 2(a}, except for a
vertical shift by 1.

Now we turn to the actual measurement. We pass the
output signal U of the electronic circuit through a low-

pass filter of selectable RC time constant. At the filter
output, we measure with a LeCroy 9400 transient digitiz-
er which has eight-bit resolution and can store up to
32000 data points in a row. Strictly speaking, its band-
width of 125 MHz contributes a second pole to the
overall frequency response, with q=10. This value is
high enough to be safely considered infinite. The intrin-
sic noise in the circuit ( —85 dB) is negligible at eight-bit
resolution.

From the acquired data, Dz and E2 are evaluated the

TABLE I. Overview of generalized dimensions and entropies used in this work. Dl, information di-
mension; D2, correlation dimension; Kl, Kolmogorov entropy; K2, correlation entropy; q, filter rollo8'
frequency. The asterisk denotes values underestimated due to low resolution (see text). The dagger
denotes no g dependence.

Henon map, Eq. (4)
Ref. 6 This work

Return map
Eq. (3)

Measured

signal

Dl
D2
Dp(q)
El
E2
K,(~)

1.258 26
1.224

0.4192
0.318

1.26
1.15

Fig. 1

0.41
0.32
0.32'

1.09
0.98

Fig. 2(a)
0.081
0.065
0.065

2.09
1.90*

Fig. 2(b)
0.081
0.067
0.067
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FIG. 1. D2 values for simulated low-pass filtering with

di8'erent rollo8' frequencies q for the Henon map. The solid line

shows the predicted D I(g). Note change of scale at the dashed

lines.

same way as above. We find E2 ——0.067, provided the
embedding vectors are sufficiently long such as to avoid
the systematic error described in Ref. 11, which is practi-
cally the same result as for the return map. The results of
the dimension analysis from the filtered signal show the
same trend as predicted [Fig. 2(b)]. This is certainly a
confirmation of the result of Badii and Politi, but beyond
that it demonstrates that the increase of dimension by
61tering can be seen clearly in a realistic experimental sit-
uation with small data sets of low resolution.

In Fig. 2(c) we show points that are derived from time
series of the time derivative of the filter output. For that

experiment, we employed the electronic di8erentiator
that was used in Ref. 7 for producing phase portraits. It
appears that D2 now does not appreciably depend on g,
but retains similar values as D2(i) = ~ ). In other words,
difFerentiation by and large undoes the low-pass filtering,
which is plausible at least for the case of r1~0 where the
filter becomes an integrator. The entropies K2 come out
independent of r) again, with the same value as above.

Our experiment demonstrates clearly that a single-pole
low-pass filter leaves the entropy alone, while the dimen-
sion is increased in agreement with the prediction. The
idea of an increase in dimension of a filtered signal may
first appear counterintuitive. At face value, it sounds
paradoxical that through the introduction of a new time
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FIG. 2. Same as Fig. 1, but (a) fer the return map, Eq. (3), (b)

from experimental data of the low-pass Qtered signal, and (c)
from the derivative of the low-pass 61tered signal.

constant the quantity that describes the geometry of the
attractor —the dimension —should be afFected, but the
quantity that relates to the dynamics —the entropy—
should not. This thought is misleading though.

%hat the filter really does is a redistribution of infor-
mation on the time axis: any given time slot will contain

P~

*
C

I
Pij

q= 0.2

FIG. 3. Influence of degree of filtering on attractor shape. Shown are return maps {Z„+Ivs Z„) of the "6ltered Henon system, "
Eq. (4), with eight-bit resolution. AH four attractors are scaled to the same size.
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more information on the past because of the filter's
memory effect. The Ster can neither create nor destroy
information all by itself. Our understanding is therefore
that, due to the "reshufHing" by the filter, the geometrical
structure of the attractor is modified considerably and ex-
pands into the new phase space of larger dimension, but
the rate of creation of information is unaff'ected.

Figure 3 illustrates how the shape of the Henon attrac-
tor is blurred with increasing q. The corresponding
figures for the attractor of Eq. (3) (not shown) 1ook some-
what similar, and we verified that those in turn are close
look alikes to their experimentally produced counter-

parts. The experimentally produced phase portrait, i.e., a
representation of the attractor of Eq. (2), becomes very
fuzzy even for moderate Altering. Obviously, when it
comes to measuring chaotic signals, it is important to
have suScient bandwidth. If this is not possible, we sug-
gest analyzing the derivative of the measured signal.¹teadded in proof. Since this work was submitted,
Badii and co-workers have demonstrated the increase in
dimension discussed here by numerical filtering of experi-
mental data.

%e thank N. B.Abraham for valuable discussions.
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