
JUNE 1 1988UMP 37 NUMPHYSICAL REVIE% A

sd.e,sio~ f acta yi s stems
~

me correlation d
MR i-eld g admen p'

~

g'+me c
tion in Nand signal a e

WO 0

-Universrtat I.egpzgg,

ecember 1987)
n Physik, Karl-Marx- niU

C'Received 21 Decem

acements during dil'usionlation o molecular displacemenlatlon of subsequent mo acemen
th l ti th

Ana y lcl t' al express1ons
orks are derived. n

'
t ese

d ulse

a, ongl fractal netw
s di8'usion in odue to anomalous 1

f f and Gunter Vo~ta
Dernocratie gepubhc

Pfei er, aJo g
Sektio

I. INTRODUCTION

ce (r(t) & traveled by an-s uare distance r

formative quantl y

w the scahng law
ro agation. n t ls q

be shown to follow t e sc

(1(r(f)'& =at",
diff'usion (»= I } andthe cases of bo

'
diff' ath ordinary diff' ' — andlnclucilng

omalous difFusanorQ

ii iil tlifcc diniciisionsFor ordinary dlffuslon ln t re s

(2a=6D,
oeScient.denoting the se - oe clif-diffusio coe ci@1th D en

Information on
of molecular mi be e

h„ t 1

the time interval 0 '
f as

d' lacements r(t and r ur-tor sum of the isp a

m one 04-
he time intervals

ly. Taking t e mea
tains

2&( [r(f +Sf) r(f))—(r(&+r b, f)'& = r)' + r(r(

+2(r(t) r f +f+hf) —r(f}]& . (3)

r f)[r(f+b, i)—r(&))

tureen the mean-that for a hnear relation betake

n hthanusion, the as1 t term on the g - si
indicates t a
are uncorre a edinary diffusion a ecremen ts during or ina n

e en den
re lsp alaceIDent 1n-

hence ind pf S1On, hO+ever, t edie uslo
creases less t an
one has

(g

ent exper

TTWEEN SUSSEQUENII CORRKI.ATION BET%RE
MSP

the mean-squarere dlS-. (3}and replacing t eRcaffaiigiiig Eq.
. (3}.byplacementsnts m Eq

"—"—(hr)"] .r f r — =—[(f+hf)" f"—(r f)[r(f +Sf)—r(t)] =— (5)

n-s uare displacements on
1, h i lid

By replacing t e i n

onsidered transport p eno

e = t/t between t e u
ant.

transferred lnt
Introducing t e

uent time intervals,eq
the dimension ess rep

(1+x)"—1 —x"r t)[r(t+bt) r(t)]& f—( )
x

(f(t}'&

correlation function.
h d d

the reduce corrwit
ws the plots of t e reFigure 1 shows t e

I

—0.5

R Seld-t analytically NMRused to treat ana ytliis cxpfcssioii is t ana y
imentsint egrscil

uent displacernentslation indicates that subsequent
fractal networlecular mlgraduring IIlole

5

e into an
negative y1 correlated.

I the following,n
ion foI' this corranalytical expression

X

nctioned correlation funcFIG. 1. Representat&on

p acel cements ln su qce bse uent im
ratio x =At/t.

erican Physical Society1988 The American



BRIEF REPORTS 4515

(r(t)r(t, ) & = ( r(t, ) I [r(t) —r(t, )]+r(t, ) ) & .

By applying Eqs. (1) and (6), the difference between these
equations may easily be shown to lead to the normalized
correlation function

(r(t)[r(t, +t)—r(t, )]&

(r(t)'&

:—g (y) =-,'[(1+y)"+(1—y)"—&y "] (9)

for y = t
~
/t & l.

For ordinary diffusion («.= 1), Eq. (9) reduces to
g(y)=1 —y as a straightforward consequence of the fact
that there is complete correlation during the overlap of
the two intervals and none outside. %'hen considering
separation times t, exceeding the interval length t (i.e.,
for time intervals without any overlap), Eq. (8) has to be
replaced by the equivalent identity

(r(t)r(t, }& =(r(t)I [r(t, ) —r(t)]+r(t) I &,

and instead of Eq. (9) one obtains

g (y) =-,' [(y +1)'+(y —1)"—2y']

(10)

with y &1. Corresponding to the fact that there is no
overlap of the considered time intervals any more, in the
case of ordinary diffusion g (y) becomes identical to zero
for all y & 1. Figure 2 shows the complete dependence of
the correlation function g(y) on y for different scaling
factors «. As an asymptotic representation of Eq. (11) for
y ~~1, i.e., for suSciently large spacings between the two
time intervals, one obtains

III. NMR FIKI.D-GRADIENT KXPKRIMKNTS
UNDER THK INFI.UKNCK QF ANOMAI. GUS

DIFFUSIQN

tion f versus the ratio x between the subsequent time in-
tervals for di8'erent scaling exponents K. Clearly, for ~
approaching the value of 1 for ordinary difF'usion, the re-
duced correlation function becomes zero. Equation (5)
will be applied in the Sec. III for the calculation of the
NMR signa. 1 intensity.

The main features of the correlation of molecular mean
displacements, however, are more clearly visualized upon
considering the displacements during two time intervals
of identical duration with starting points separated
from each other by the time interval t, . The calcula-
tion of the corresponding correlation function
( r( t )[r( t

& + t ) r( t,—) ] & requires a separate consideration
of the cases ti & t and ti & t: In the former case we use
the identities

(r(t)r(t+t, ) & =(r(t)I [r(t+t, ) —r(t)]+r(t) ) & FIG. 2. Representation of the reduced correlation function
g {y) [cf. Eqs. (9) and (11)],describing the correlation of molecu-
lar displacements in the intervals of identical duration t shifted
against each other by the time interval t„ in terms of the ratio
y = t l /t.

Due to this fact, this method has been successfully ap-
plied to the investigation of both homogeneous and
heterogeneous' systems, and a series of papers can be
found in the literature dealing with the theoretical
analysis of NMR difFusion measurements in heterogene-
ous systems (cf., e.g., Refs. 11—15). As yet, however, all
these considerations have been based on the assumption
that in the individual subregions molecular difFusion is
following the ordinary law of Fickian diffusion.

A first attempt of an analytical treatment of field-
gradient experiments to study diffusion in fractal net-
works has been based on the phenomenological equations
of motion of nuclear magnetism (Bloch equations). For
this purpose, the decay rate of nuclear magnetization
M(r) at position r due to anomalous diffusion was
represented by an expression of the type

dM(r)ldt o: t ~V' M(r),
with p) 0 de~oting an appropriately chosen constant. '

Ho~ever, the general validity of such a procedure is
questionable, and the analytical form of the distribution
function for difFusing particles is an open problem. '

In Ref. 4 it can be shown that the proposed way to deter-
mine the NMR signal attenuation may lead to incorrect
results.

In the present Brief Report, the time dependence of
nuclear magnetization is considered within the concept of
accumulating phases" which has been successfully ap-
plied to the analysis of a series of NMR diA'usion studies
in heterogeneous systems. ' ' In this procedure the at-
tenuation of the transverse nuclear magnetization is
represented by the relation

+= (cosy&,

The NMR field-gradient spectroscopy allows an in situ
measurement of molecular displacements from several
hundred nanometers up to hundreds of rnicrometers.

with y denoting the deviation of the precessional phase of
an individual spin from the average value. %'ith the Lar-
mor condition
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relating the precessional frequency ~ to the applied mag-
netic field 8, the phase deviation p(t) at time t may be
easily shown to be

+(I}= -7f'[a(z(t }) -&a&]dt

= —y gz t'dt'. (16)

In these equations, g denotes the gradient of the magnetic
field, which has been assumed to determine the direction
of the z axis. y is the gyromagnetic ratio of the resonat-
ing nuclei and z(t') denotes the z coordinate of the spin
under consideration at time t'. In the following we shall
consider two difrerent experimental conditions: a time-
independent field gradient (constant-field-gradient
method) and a sequence of two identical field-gradient
pulses (pulsed-field-gradient method).

In both cases the calculation is based on the assump-
tion that the phase distribution can be approximated by a
Gaussian function' ""*' so that one obtains

Hence the problem is reduced to the determination of the
mean-square value of g.

NMR 6eld-gradient self-difusion measurements are
commonly carried out by applying a sequence of two rf
pulses in addition to the magnetic field gradient. %hile
the first rf pulse (Ir/2 pulse) defines the initial value of g&

(for a constant field gradient), the second one (Ir pulse),
applied at time r, affects a change of the sign of qv. At
time t =2v, the mean-square value of q passes through a
minimum, thus giving rise to the formation of an NMR
signal, the so-called spin echo. Hence, in order to deter-
mine the attenuation of the spin echo, we have to calcu-
late the mean-square value of

y(I=2')=y f g(t')z(t')dt' —f g(t')z(t')dt'
0 r

This calculation must be based on the relations obtained
for the correlation between subsequent molecular dis-
placements.

1
cosy exp

2Ir&g'& 2 q'

=exp( —(cp'& /2) . (17)

A. Constant field-gradient experiments

Under the inhuence of a constant field gradient g0, the
mean-square value of y according to Eq. (18) is given by
the relation

(q(t =2r}')=y'g,' f f (z(t')z(t"))dt'dt" + f f (z(t')z(t"))dt'dt" 2 f f (—z(t')z(t"))dt'dt"
0 0 0 0 0

which may be transferred into the following form:

(p(t =2~)') =y'g,' f f (z(t')z(t'+8))d8dt'+ f f (z(t')z(t' 8))d8d—t'

+ f f (z(t')z(t'+8))d8dt'+ f f (z(t'}z(t' 8))d8dt-
8=0 r'+ 7- 8=0

2 f —f (z(t')z(t'+8))d8dt'
t'=0 (9= r —i'

(19)

(20)

If one assumes isotropy of space, i.e., the validity of the
equation

procedure, the right-hand side of Eq. (19) may be in-
tegrated, and one obtains

(z(t')z(t'+8) ) =-,' (r(t')r(t'+8) ),
one can easily show by means of the identity

&z(t')z(t'+8) & = &z(t')z(t') &-
+ (z(t')[z(t'+8) —z(t')]) (22)

( cp( t =2I } ) =2 (1—1/2"} I I .+I
3(K+1)(K+2) y g at'+

Inserting this expression into Eq. (17), the echo attenua-
tion due to diffusion on fractal networks is found to be
given by the relation

(z (t')z(t'+8) ) = [(t'+8)"+t' "—8—']
6

(23)

and using Eqs. (1) and (5) that the integrands of Eq. (20)
are equal to (1—1/2")4'(t =2r)=exp — )' g «'+

6(K+ 1)(K+2)

It may be easily shown that in the limiting case of ordi-
Ilary c11ffuslon (K= 1, cx =6D) Eq. (26) coiIlcldes with the
corresponding, familiar expression '

(24)(z(t')z{t' 8)) = [(I' 8)"+I'" 8—"] . — — —
6

With Eqs. (23) and (24), in a straightforward but tedious O(t =2r)=exp( —
,', y g Dt ) . — (27)
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B. Pulsed-field-gradient experiments

In this case the field gradient is applied not permanent-
ly but in the form of two short pulses of length 5, intensi-

ty g, and separation A. If the first field-gradient pulse is
between the m/2 pulse and the m. pulse and the second
one is between the m pulse and the spin echo, instead of
Eq. (19) one has

fi +5 fl +6—f tl +6+5 t&+5+6—r'
t y(t =2r)') =y'g' f, f, , tz(t')z(t'+0) )d0dt'+ f, 1, (z(t')z(t'+0) )d0dt'

2—f, f (z(t')z(t, +6+t'+0))d0dt' (28)

with t i & r denoting the time interval between the m/2 pulse and the first-gradient pulse. Following the above outlined
procedure, the attenuation of the spin echo is found to be

2 2

q/(t 2&) exp y g [ i (Q+g)~+2+ i (Q $)~+2 pa+2 /~+2)
3(s'+ 1 )(lr+2) (29)

The fact that this result does not depend on the time t, of the insertion of the first field-gradient pulse may be under-
stood as follows: In the present experiment the molecules are labeled by the first gradient pulse. Therefore t, does only
notate the starting point of the diffusion process, and any dependence of the result on t, would violate the time invari-
ance of the observed transport phenomena.

For field gradient pulses of short duration (5 g& 5 }, Eq. (29) reduces to

4(t =2r)=exp yg—5
6

which by means of Eq. (1}may be written as

4(t =2r)=exp[ —y g (i (r(b ) )/6] .

This equation, which is formally identical with the corresponding expression for ordinary diftusion, coincides with the
expression predicted on the basis of the propagator concept of NMR pulses field-gradient spectroscopy.
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