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Special relativity and interferometers

JUNE 1, 1988

D. Han
National Aeronautics and Space Administration, Goddard Space Flight Center (Code 636), Greenbelt, Maryland 20771

Y. S. Kim
Department ofPhysics and Astronomy, Uniuersity ofMaryland, College Park, Maryland 20742 411-1

(Received 22 January 1988)

The Lorentz group, which is the language of special relativity, is a useful theoretical tool in
modern optics. It is shown that the SU(1,1) interferometer of Yurke, McCall, and Klauder can
serve as an analog computer for %igner's little group of the Poincare group.

One hundred years ago, the Michelson interferometer
played a decisive role in the development of the special
theory of relativity. These days, it is expected that a new
generation of gravitational wave detectors will be based
on interferometers. ' The mathematics of Lorentz trans-
formations is an important theoretical tool both in the
design of these new instruments and in the study of
coherent-state and squeezed-state light sources. ' At the
same time, modern optics may prove useful in studying
special relativity. As is illustrated in Fig. 1, this situa-
tion is like the analogy between the forced harmonic os-
cillator and the driven LCR circuit through a second-
order difFerential e uation,

In their paper, Yurke et al. presented a group-
theoretical approach to the analysis of interferometers.
They noted that the conventional interferometers such as
those of the Mach-Zender or Fabry-Perot type can be
characterized by the group SU(2). They then introduced
a class of interferometers characterized by SU(1,1) which
can in principle achieve the phase sensitivity h(b ap-

proaching I/N, where N is the total number of photons
entering the interferometer.

The purpose of this paper is to show that the SU(1,1)
interferometer of Yurke et al. can serve as an analog
computer for %igner's little group. The role of %'igner's
little group is illustrated in Fig. 2. The little group unifies
the internal space-time symmetries of massive and mass-
less particles, as Einstein's F. =(m 2c +c p )'~ gives the
energy-momentum relations for both slow and rapidly
moving particles.

Let us start with a massive particle at rest ~hose four-
momentum is

(0,0,0, m ) .

We use the four-vector convention: x"=(x,y, z, t) We.
can boost the above four-momentum along the z direction
with a parameter k,

p =trt (0,0, sinhA, , cosh', ) .

The 4)(4 matrix which transforms the four-vector of Eq.
(1) to that of Eq. (2) is

Fo coscut
MWV' II

II
C

ace
1 0 0 0
0 1 0 0
0 0 coshA, slnhA,

0 0 sinhl, cosh',

Massive
Slow

between
Massless
Fast

Special
Relativity

Modern
Optics

FIG. 1. Analogy of analogies. The analogy between the
forced harmonic oscillator and the driven LCR circuit is mell
known. Since the Lorentz group is rapidly becoming one of the
standard languages in optical sciences, there @vill be instances in
which one formula in the Lorentz group mill describe one phys-
ics in optics and, another physics in special relativity.
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FIQ. 2. %'igner's little group. As E=(~ c +~'p')'" is one
formula for the energy-momentum relation for massive and
massless particles, the little group gives a unified picture of the
internal space-time symmetries. This 6gure is from Ref. 7.
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Let us next rotate the four-vector of Eq. (2) using the
rotation matrix

cos8 0 sin 8 0
0 1 0 0R8= —sin8 0 cos8 0
0 0 0 l

%e then boost the four-momentum along the negative x
direction using the matrix

cosh' 0 0 —sinhq

0 1 0 0
0 0 1 0

—sinhg 0 0 cosh'

where tanhri=2a(sin8)/[1+a (sin8) ], with a = tanhA, .
%e then rotate this vector using the rotation matrix of
Eq. (4). The net result is

D(A.,8}=R (8}S(g)R(8},

and this transformation leaves the four-momentum p in-
variant,

D(A. , 8)p =p .

The kinematics of these three transformations is de-
scribed in Fig. 3.

The multiplication of the three matrices is straightfor-
vvard, and the result is

D(A, , 8)=

1 bu (1——a )/2 0
0 1

—Q uu

0 0
0 1 bu /2— abu /2

0 —abu /2 1+a bu /2

u = —[sin(28)]/[1 —a (sin8) ]

b=l+(1 —a )(tan8)

X

This complicated expression leaves the four-momentum p
of Eq. (2) invariant. Indeed, if the particle is at rest with
vanishing velocity parameter a, the above expression be-
comes a rotation matrix. As the velocity parameter a in-
creases, this D matrix performs a combination of rotation
and boost, but leaves the four-momentum invariant.

Let us approach this problem in the traditional frame-
work. The above transformation clearly leaves the four-
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FIG. 3. The Lorentz kinematics based on the mathematics of
the SU(1,1) interferometer of Yurke et a/. The starting point is
a massive particle moving along the z direction with its four-
momentum given by Eq. (2). This momentum is rotated around
the y axis, boosted along the x axis, and then rotated around the
y axis, as shown in this figure. The net eA'ect is a transformation
which does not change the initial momentum. This is not an
identity transformation, but a Lorentz-boosted rotation. This
Lorentz-boosted rotation becomes a gauge transformation in
the in6nite-momentum, zero-mass limit.
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FIG. 4. The signer rotation angle vs laboratory-frame rota-

tion angle. %'e have plotted 0 as a function of 0 for various
values of e using Eq. (11). 6I =29 when +=0. 0* is nearly
equal to 20 for moderate values of a, but it approaches 0 as a
becomes 1.
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W(8') = —sin 8 0 cosH 0
0 0 0 1

(10)

The D matrix of Eq. (9) serves the same purpose as that
of Eq. (6). Thus

A ()I, ) W(8' }A ( —A, ) =R ( 8)S(r) )R (8) .

By taking the traces of both sides of the above equation,
we can calculate the %'igner rotation angle 8*. The re-
sult is

cos8' = f 1 —(1—at )( tan8}~]/[1+ (1 —a2)(tan8) J .

In Fig. 4, the signer rotation angle 8 is plotted as a

momentum p invariant. Then we can boost the particle
with its four-momentum p by A ' until the four-
momentum p by A ' until the four-momentum becomes
that of Eq. (1), rotate it around the y axis, and then boost
it by A until the four-momentum becomes p of Eq. (2).
This rotation in the rest frame is called the 8'igner rota-
tion T. he transformation of the O(3)-like little group
constructed in this manner should take the form

D(A, , 8)= A (A, ) W(8') A '(A, ),
where W is the signer rotation matrix

r

cos8' 0 sin&* 0
0 1 0 0

function of 8. 8* becomes 28 when a=0 and remains ap-
proximately equal to 28 when u is smaller than 0.6. 0*
vanishes when a~1. Indeed, for a given value of 8, it is
possible to determine the value of 8* which is the rota-
tion angle in the Lorentz frame in which the particle is at
rest. In the limit of a~ 1, the D matrix takes the form

D(u)=

1 0 —u

0 l 0 0

u 0 1 —u/2 u/2
u 0 —u /2 1+u /2

(13)

This matrix performs a gauge transformation on the
four-vector of a photon traveling in the z direction. This
means that Lorentz-transformed rotations become gauge
transformations in the in6nite-momentum, zero-mass
limit, as is illustrated in Fig. 2.

Let us go back to Eq. (11). This equation allows us to
design a new interferometer. This equation allows us to
make a quantitative analysis of Wigner's little group.
Indeed, the interferometer of Yurke et al. serves two im-

portant purposes. It also suggests that there may be
many more cases in which modern optics will produce
analog computers for special relativity.

The authors would like to thank Professor E. P.
%igner for maintaining his interest in this work and for
stimulating discussions on the idea of unifying the little
groups for massive and massless particles.
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