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In a previous paper [Phys. Rev. A 35, 3945 (1987)] the Sturmian expansion of the irregular solu-
tion of the Schrddinger equation was considered. Here I consider the expansion of the regular solu-

tion.

Recently Tang and I considered' the expansion of the
irregular solution of the Schrodinger equation
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where rW (r) vanishes for r ~ o, in terms of the Sturmian
functions
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where M, ,(z) is the regular Whittaker function and
where k =V2E ; I drew a branch cut along the positive
real E axis and took the branch of k which is positive
when E is on the upper edge of the cut. In this Brief Re-
port I consider the expansion of the regular solution
¢4(r) of Eq. (1). The regular solution, which for E on the
upper edge of the cut contains an outgoing scattered
wave, satisfies the integral equation
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where ¢{J'(r) is the regular pure Coulomb wave solution,
that is,
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where y=Z/k, n(k)=argl'(l+1—iy), and where
8 (r,r") is the Coulomb Green’s function, which can be
expanded as?
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I now assume that E is real and positive and lies on the
upper edge of the cut. [Equations (7) in the following
may be analytically continued to other E.] Since ¢0'(r) is
a standing wave, and is therefore a superposition of both
outgoing and ingoing waves, it cannot be expanded in
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terms of the SX(r), which have outgoing-wave charac-
ter.> However, the difference ¢,,(r)—$\J(r) behaves as
an outgoing wave, and furthermore it is regular at the
origin. Consequently, ¢,,(r) can be expanded as

bu(PN=00(rN+ 3 a,Skir), (6)

n=I+1
with coefficients a,, which should decrease rapidly (ex-
ponentially for a W of Yukawa form) as n increases. In-
serting this expansion into both sides of Eq. (3), and using
Eq. (5) and the linear independence of the S%(r), immedi-
ately yields the following linear equations for the
coefficients:
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where the scalar product (¢ | d) is defined as
(c |d)= fo drc(ryd(r) .
We just used the Sturmian expansion (5) of the

Coulomb Green’s function without asking whether it

TABLE 1. Diagonal [N,N] Padé approximates to the / =0

and /=1 phase shifts for the potential W(r)=4exp(—2r)/r,
with k =0.5and Z =2.
N 8ol k) 8,(k)
1 —0.37 —0.45
2 -0.37 —0.44
3 —0.40 —0.46
4 —0.29 —0.44
5 0.17 —0.55
6 0.95 —0.63
7 1.03 —0.572
8 1.39 —0.542
9 1.37 —0.541
10 1.34 —0.556
11 1.33 —0.555
12 1.35 —0.555
Exact 1.364 —0.5554
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converges. In fact, for E on the upper edge of the cut, it
converges only when acting on a regular function which
has outgoing wave character.’ We must now pay the
price for letting it act on W (r)¢{J(r), a function which is
regular but which contains a component having (damped)
ingoing wave character since ¢{0(7) is a standing wave.
The price we pay is that b, grows (exponentially) as n in-
creases, which calls into question the existence of Egs. (7).
However, since W(r)d)‘,ﬂ’(r) is a normalizable function, it
could in principle be represented to arbitrary accuracy,
over the significant range of r, by a finite sum of normal-
izable basis functions with (damped) outgoing wave char-
acter.® Using this device, we could modify Eq. (7b); the
modified b, would decrease (exponentially) as n increases
beyond a sufficiently large value, and the coefficients a,
could be obtained by truncating the sum over m in Eq.
(7a) and inverting a finite-dimensional matrix whose ele-
ments are F,, . In practice, rather than modify b, it is
perhaps more convenient to use the Padé method. For
example, suppose we wish to determine the non-
Coulombic phase shift §,(k) defined by
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We can express Ay as AW +AA,, where
A=W ) ana
Ady=—m S a, 8| W|SK). 9)

n=I+1

We now form a sequence of approximations {A A M,
M =12, ...} where A 4/} is obtained by retaining only
the first M terms in the sum of Eq. (7a), putting
a,=0=b, for n >M +1. We extrapolate the sequence
by the Padé method. The phase shifts, obtained from the
[N,N] Padé approximates to A 4, for the same potential
W (r)=4exp(—2r)/r considered previously,' are shown
in Table I. The rate of convergence of §,(k) is compara-
ble to that found from the Sturmian expansion of the ir-
regular solution, but the present calculation was easier to
implement.
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