Determination of the scattering matrix by use of the Sturmian representation of the wave function: Regular solution

Robin Shakeshaft

Department of Physics, University of Southern California, Los Angeles, California 90089-0484 (Received 12 November 1987)

In a previous paper [Phys. Rev. A 35, 3945 (1987)] the Sturmian expansion of the irregular solution of the Schrödinger equation was considered. Here I consider the expansion of the regular solution.

Recently Tang and I considered¹ the expansion of the irregular solution of the Schrödinger equation

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} - \frac{Z}{r} + W(r) - E\right]\psi(r) = 0, \qquad (1)$$

where rW(r) vanishes for $r \sim \infty$, in terms of the Sturmian functions

$$S_{nl}^{k}(r) = \frac{1}{(2l+1)!} \left[\frac{(n+l)!}{(n-l-1)!} \right]^{1/2} \times M_{n,l+1/2}(-2ikr) , \qquad (2)$$

where $M_{a,b}(z)$ is the regular Whittaker function and where $k = \sqrt{2E}$; I drew a branch cut along the positive real E axis and took the branch of k which is positive when E is on the upper edge of the cut. In this Brief Report I consider the expansion of the regular solution $\phi_{kl}(r)$ of Eq. (1). The regular solution, which for E on the upper edge of the cut contains an outgoing scattered wave, satisfies the integral equation

$$\phi_{kl}(r) = \phi_{kl}^{(0)}(r) + \int_0^\infty dr \, g_{kl}(r,r') W(r') \phi_{kl}(r') \,, \quad (3)$$

where $\phi_{kl}^{(0)}(\mathbf{r})$ is the regular pure Coulomb wave solution, that is,

$$\phi_{kl}^{(0)}(r) = i^{l+1} \left[\frac{1}{2\pi k} \right]^{1/2} \frac{\Gamma(l+1-i\gamma)}{(2l+1)!} \times e^{\pi(\gamma/2) - i\eta_l(k)} M_{i\gamma,l+1/2}(-2ikr) , \qquad (4)$$

where $\gamma = Z/k$, $\eta_l(k) = \arg \Gamma(l+1-i\gamma)$, and where $g_{kl}(r,r')$ is the Coulomb Green's function, which can be expanded as²

$$g_{kl}(\mathbf{r},\mathbf{r}') = \sum_{n=l+1}^{\infty} \frac{S_{nl}^{k}(\mathbf{r})S_{nl}^{k}(\mathbf{r}')}{Z + ink} .$$
 (5)

I now assume that E is real and positive and lies on the upper edge of the cut. [Equations (7) in the following may be analytically continued to other E.] Since $\phi_{kl}^{(0)}(r)$ is a standing wave, and is therefore a superposition of both outgoing and ingoing waves, it cannot be expanded in

terms of the $S_{nl}^k(r)$, which have outgoing-wave character.³ However, the difference $\phi_{kl}(r) - \phi_{kl}^{(0)}(r)$ behaves as an outgoing wave, and furthermore it is regular at the origin. Consequently, $\phi_{kl}(r)$ can be expanded as

$$\phi_{kl}(r) = \phi_{kl}^{(0)}(r) + \sum_{n=l+1}^{\infty} a_n S_{nl}^k(r) , \qquad (6)$$

with coefficients a_n which should decrease rapidly (exponentially for a W of Yukawa form) as n increases. Inserting this expansion into both sides of Eq. (3), and using Eq. (5) and the linear independence of the $S_{nl}^k(r)$, immediately yields the following linear equations for the coefficients:

$$\sum_{m=l+1}^{\infty} F_{nm} a_m = b_n \quad , \tag{7a}$$

$$b_n = (S_{nl}^k \mid W \mid \phi_{kl}^{(0)}) / (Z + ink) ,$$
 (7b)

$$F_{nm} = \delta_{nm} - (S_{nl}^{k} \mid W \mid S_{ml}^{k}) / (Z + ink) , \qquad (7c)$$

where the scalar product $(c \mid d)$ is defined as

$$(c \mid d) = \int_0^\infty dr \, c(r) d(r) \; .$$

n

We just used the Sturmian expansion (5) of the Coulomb Green's function without asking whether it

TABLE I. Diagonal [N,N] Padé approximates to the l=0and l=1 phase shifts for the potential $W(r)=4\exp(-2r)/r$, with k=0.5 and Z=2.

Ν	$\delta_0(k)$	$\delta_1(k)$
1	-0.37	0.45
2	-0.37	-0.44
3	-0.40	-0.46
4	-0.29	-0.44
5	0.17	-0.55
6	0.95	-0.63
7	1.03	-0.572
8	1.39	-0.542
9	1.37	-0.541
10	1.34	-0.556
11	1.33	-0.555
12	1.35	-0.555
Exact	1.364	-0.5554

converges. In fact, for E on the upper edge of the cut, it converges only when acting on a regular function which has outgoing wave character.³ We must now pay the price for letting it act on $W(r)\phi_{kl}^{(0)}(r)$, a function which is regular but which contains a component having (damped) ingoing wave character since $\phi_{kl}^{(0)}(r)$ is a standing wave. The price we pay is that b_n grows (exponentially) as n increases, which calls into question the existence of Eqs. (7). However, since $W(r)\phi_{kl}^{(0)}(r)$ is a normalizable function, it could in principle be represented to arbitrary accuracy, over the significant range of r, by a finite sum of normalizable basis functions with (damped) outgoing wave character.³ Using this device, we could modify Eq. (7b); the modified b_n would decrease (exponentially) as *n* increases beyond a sufficiently large value, and the coefficients a_n could be obtained by truncating the sum over m in Eq. (7a) and inverting a finite-dimensional matrix whose elements are F_{nm} . In practice, rather than modify b_n it is perhaps more convenient to use the Padé method. For example, suppose we wish to determine the non-Coulombic phase shift $\delta_I(k)$ defined by

$$\tan[\delta_l(k)] = A_{kl} / (1 + iA_{kl}) , \qquad (8a)$$

$$A_{kl} = -\pi(\phi_{kl}^{(0)} | W | \phi_{kl}) .$$
(8b)

- ¹R. Shakeshaft and X. Tang, Phys. Rev. A 35, 3945 (1987).
- ²L. C. Hostler, J. Math. Phys. **11**, 2966 (1970); A. Maquet, Phys. Rev. A **15**, 1088 (1977).

We can express
$$A_{kl}$$
 as $A_{kl}^{(0)} + \Delta A_{kl}$, where $A_{kl}^{(0)} = -\pi(\phi_{kl}^{(0)} | W | \phi_{kl}^{(0)})$ and

$$\Delta A_{kl} = -\pi \sum_{n=l+1}^{\infty} a_n (\phi_{kl}^{(0)} \mid W \mid S_{nl}^k) .$$
⁽⁹⁾

We now form a sequence of approximations $\{\Delta A_{kl}^{(M)}, M = 1, 2, ...\}$ where $\Delta A_{kl}^{(M)}$ is obtained by retaining only the first M terms in the sum of Eq. (7a), putting $a_n = 0 = b_n$ for n > M + l. We extrapolate the sequence by the Padé method. The phase shifts, obtained from the [N,N] Padé approximates to ΔA_{kl} for the same potential $W(r) = 4 \exp(-2r)/r$ considered previously,¹ are shown in Table I. The rate of convergence of $\delta_l(k)$ is comparable to that found from the Sturmian expansion of the irregular solution, but the present calculation was easier to implement.

I thank Tu-nan Chang for calculating the exact phase shifts for comparison in Table I. This work was supported by the National Science Foundation under Grant No. PHY-8713196.

³For further discussion of this point see R. Shakeshaft, Phys. Rev. A **34**, 244 (1986); **34**, 5119 (1986).