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Determination of the scattering matrix by use of the Sturmian representation
of the wave function: Regular solution
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In a previous paper [Phys. Rev. A 35, 3945 (1987)] the Sturmian expansion of the irregular so!u-
tion of the Schrodinger equation was considered. Here I consider the expansion of the regular solu-

tion.

Recently Tang and I considered' the expansion of the
irregular solution of the Schrodinger equation

+ ——+8'(r) —E i)i(r)=0,1 d 1(1+1) Z
2 dr 2r

where rW(r) vanishes for r —ao, in terms of the Sturmian
functions

terms of the S„",(r), which have outgoing-wave charac-
ter. ' However, the diff'erence P&t(r) ttp't t—'(r) behaves as
an outgoing wave, and furthermore it is regular at the
origin. Consequently, Pzt(r) can be expanded as

Pki(r) =4'k'i'(r)+
n =1+1

1 (n + I)!
(2l + 1)! (n —I —1)!

&( M„ i +,qi( —2ikr ), (2)

with coefficients a„which should decrease rapidly (ex-
ponentially for a 8'of Yukawa form) as n increases. In-
serting this expansion into both sides of Eq. (3), and using
Eq. (5) and the linear independence of the S„"i(r), immedi-

ately yields the following linear equations for the
coefBcients:

where M, b(z) is the regular Whittaker function and
where k =&2E; I drew a branch cut along the positive
real E axis and took the branch of k which is positive
when E is on the upper edge of the cut. In this Brief Re-
port I consider the expansion of the regular solution
Pki(r) of Eq. (1). The regular solution, which for E on the
upper edge of the cut contains an outgoing scattered
wave, satisfies the integral equation

&kt(r) =&'i't'(r)+ f"«g.t('r') ~(')Okt('),
0

where tttkt'(r) is the regular pure Coulomb wave solution,
that is,

F„a =b„,
m =l+1

b„=(S„"(
I

W
I

y~a'i') I(Z + tnk),

F„=5„—(S„"i
~

W
~

S"i)I(Z+ink),

(7a)

(7c)

where the scalar product (c
~
d) is defined as

(c ~d)= f drc(r)d(r) .

We just used the Sturmian expansion (5) of the
Coulomb Green's function without asking whether it

y(0)(r) t i+ i

1/2
1 I'(1+1—iy)

2+k (2l + 1)!

TABLE I. Diagonal [N, N] Pack approximates to the l =0
and 1=1 phase shifts for the potential 8'(r)=4exp( —2r)/r,
with k =0.5 and Z =2.

m{ y/2) —i gI(k)
X e '

M;r i+, g2( 2ikr), —

where y=Z/k, i)i(k)=argl (l +1 iy), and whe—re

g„i ( r, r '
) is the Coulomb Green's function, which can be

expanded as

S„"i(r)S„"i(r')
gkI(r, r')

Z +ink

I now assume that F. is real and positive and lies on the
upper edge of the cut. [Equations (7) in the following
may be analytically continued to other F..] Since ttt'kt'(r) is

a standing wave, and is therefore a superposition of both
outgoing and ingoing waves, it cannot be expanded in
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50(k)

—0.37
—0.37
—0.40
—0.29

0.17
0.95
1.03
1.39
1.37
1.34
1.33
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1.364

5,(k)

—0.45
—0.44
—0.46
—0.44
—0.55
—0.63
—0.572
—0.542
—0.541
—0.556
—0.555
—0.555

—0.5554
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tan[5, (k)]= 3„(/( I +i &„,),
~ k( = ~(4"a'i'

I
lI'

I ski )

(Sa)

(Sb)

converges. In fact, for E on the upper edge of the cut, it
converges only when acting on a regular function which
has outgoing wave character. %e must now pay the
price for letting it act on 8'(r}P'ki'(r), a function which is
regular but which contains a component having (damped)
ingoing wave character since tiki'(r) is a standing wave.
The price we pay is that b„grows (exponentially} as n in-

creases, which calls into question the existence of Eqs. (7).
However, since W(r)P'ki'(r) is a normalizable function, it
could in principle be represented to arbitrary accuracy,
over the signi6cant range of r, by a finite sum of normal-
izable basis functions with (damped) outgoing wave char-
acter. Using this device, we could modify Eq. (7b}; the
modified b„would decrease (exponentially) as n increases
beyond a sufficiently large value, and the coefficients a„
could be obtained by truncating the sum over m in Eq.
(7a) and inverting a finite-dimensional matrix whose ele-
ments are I„.In practice, rather than modify b„ it is
perhaps more convenient to use the Pade method. For
example, suppose we wish to determine the non-
Coulombic phase shift 5i(k) defined by

can expr css 3kI as

~ii = ~(4'k'i'
I
~

I
4'k'i'}»d

I,I +5 AI,.1 where
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We now form a sequence of approximations tb 3k& ',
M =1,2, . . . I where EAki ' is obtained by retaining only
the first M terms in the sum of Eq. (7a), putting
a„=O=b„ for n «M +I. %e extrapolate the sequence
by the Pade method. The phase shifts, obtained from the
[N, Ã] Pade approximates to 5Aki for the same potential
lV(r)=4exp( 2r)/—r considered previously, ' are shown
in Table I. The rate of convergence of 5i(k) is compara-
ble to that found from the Sturmian expansion of the ir-
regular solution, but the present calculation was easier to
implement.
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