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A comparison of dynamical theories and metastable states in regular and glassy (mean-6eld) spin
models with underlying Srst-order-like phase transitions is made. %e emphasize that for the glassy
case, fiuctuations probe the region in phase space where metastable states exist. This is contrasted
to the situation for regular spin models. %'e physically interpret our results in terms of a dynamical
instability of the paramagnetic phase in the glassy models. For the glassy case we conclude that as
soon as metastable states exist, the mean-6eld model exhibits an ergodic to nonergodic transition
where full ensemble averages are no longer equal to time averages.

I. INTRODIJCTI(ON

In three previous papers' (hereafter denoted by pa-
pers I) we studied the relaxational dynamics in two
mean-field (MF) spin-glass (SG) models with discontinu-
ous Edwards-Anderson (EA) order parameter tIEA at the
glass transition temperature. In particular we considered
a soft-spin version of the p-spin (p y2) interactions SG
model' and a soft-spin version of a p-state Potts glass
(PG) model. To be concrete in this paper we treat only
Pott's models, although, as we indicate below, our argu-
ments seem very general.

The main results of papers I, snd a subsequent paper
by Kirkpatrick and Wolynes (hereafter denoted by paper
II), can be stated as follows. The dynamical theory for
the equilibrium two-spin site-diagonal time autocorrela-
tion function predicts a continuous slowing down and a
freezing at a temperature which we denote by T„. As
T~T& the relaxation time diverges according to a
power-law singularity, and at T„ the EA order parame-
ter jumps discontinuously from zero to a finite value.
The transition at Tz can be related to static or equilibri-
um theory. In paper II it was shown that the freezing at
T„ locates s thermodynamically metastable state in the
sense that the (component ) average free energy of the
frozen state is of O(N), where N is the number of lattice
sites, higher than a continuation of the paramagnetic
state free energy. The notation Tz was introduced to sig-
nify that in non-mean-field models the long-time dynam-
ics is expected to be governed by activated transport be-
tween the possible metastable states. It was also sho~n
that at Tz there are an extensive or macroscopic number
of possible metastable states with the same qEA. Due to
the existence of a macroscopic number of metastable
states, it wss shown that the canonical free energy I, was
not the physically meaningful free energy. Furthermore,

F, was not equal to the average free energy Fof the meta-
stable states. Instead, F, was shown to equal the
paramagnetic-state free energy. This indicates that con-
ventional arguments which do not allow metastable states
in exact equilibrium statistical mechanics do not apply to
the PG case because the extensive number of metastable
states make up for their small Boltzmann weight. Al-
though the above conclusions were drawn based on an ex-
plicit calculation for the infinite range Potts model, the
implications are more general. The generality follows
from the following: (a) there be a macroscopic number of
solutions to the variational equation with each carrying
approximately equal weight and (b) they be grouped in
such a way that the probability of transition between
these groups is small at least on the experimental time
scale. It seems reasonable that both these will be satis6ed
by generic random systems and consequently I'" is the
physically meaningful free energy. At a temperature
Ttt ~ T„, the number of metastable states becomes
nonextensive and st Tz the SG model undergoes s true
equilibrium transition. Below Ttt the distinction between
Ii and I', is no longer necessary at least in the thermo-
dynamic limit. In analogy with the structural glass prob-
lem, T» was identi6ed as the Kauzmann temperature.
Recently, some of the key results contained in paper II
have been obtained from a purely dynamical approach by
incorporating the memory of initial condition into the
equation of motion.

In a regular-nonrandom-mean-field spin models with
first-order phase transitions, dynamical theories can also
locate rnetastable states. There are, however, severa1 cru-
cial difFerences between the pure system and the SG mod-
els discussed above. First, the number of metastable
states is nonextensive and the canonical free energy is
physically meaningful, and consequently F, is equal to
the (component) average free energy. Second, in regular
models, the parts of phase space which correspond to
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metastable states can only be probed if there are external
nonequilibrium perturbations that are of O(N). Thus in
the absence of an external field, metastable states in pure
systems belong to a disjoint part of phase space and the
canonical and average free energy is higher [by O(N)]
than the stable state. As the temperature is approached
where metastable states 6rst exist, both equilibrium static
fluctuations and equilibrium time correlation functions
are well behaved. %e also note that once a system is in a
metastable state it will stay there forever because nu-
cleation out of the metastable state is impossible in
mean-field models. " It is also for this reason that
metastable states can be described precisely within
mean-field models.

It is the purpose of this paper to address the question
of how a dynamical theory for fluctuations can locate
metastable states in SG models that are in some sense far
[-0(N)] away. It is known'i that static Suctuations are
finite as T~T~+ so that one cannot argue that usual
thermal fluctuations cause the transition. However, we
show below that equihbrium time correlations and their
(luctuations are singular as T~ T~+. Further, we will ar-

gue that the transition at T„ is, in a well-defined techni-
cal sense, an ergodic to nonergodic transition where time
averages no longer equal complete ensemble averages. 'i
%e stress that although the phase transition at Tz is
caused by dynamical effects it is also possible' to discuss
this glass transition using purely static or statistical
mechanical methods. The transition is therefore both a
dynamical and thermodynamic phase transition.

The fundamental reason that metastable states can be
located by fluctuation effects in random systems is that
the symmetry of the disordered paramagnetic phase and
the glassy phases is identical. This should be contrasted
with the difFerence in symmetry between the paramagnet-
ic and the macroscopically ordered phases. It should be
noted that these remarks are fairly general and also hold
good for both the spin-glass problem (which is addressed
here) as well as the structural glass problem. In the latter
case the global symmetry of the liquid phase and the
glassy phase are the same while that of the crystalhne
phase is differen.

There are several implications of our results. First, the
transition at T„ is an unusual example of a dynamic
blocking transition. l The phase transition occurs be-
cause the paramagnetic state electively becomes dynami-
cally unstable and not because a different thermodynamic
state has a lower free energy. Secondly, conventional sta-
tistical mechanics can be used for T & T„ if restricted
phase-space averages, or restricted saddle-pont evalua-
tions, are used so that one focuses on a metastable state
mth 6mte qEA. Such ideas are common ~n glassy phys-
ics in general but in these mean-field SG models the
dynamical calculations force this interpretation of statist-
ical mechanics.

The plan of this paper is as follows. In Sec. II we
de6ne the soft-spin Potts models and give some results
from previous work. For completeness, in Sec. III we
briefly discuss the relaxational dynamics of a soft-spin
ferromagnetic Potts model and illustrate the points for
the regular model discussed above. In Sec. IV we consid-

er the soft-spin PG model. The main new contribution is
the calculation of the dynamical PG susceptibility for
T~ T&+. %e conclude the paper in Sec. V with some fur-
ther discussion.

H. THE POTTS MODELS AND SOME
PREVIOUS RESULTS

A. The model

Our motivation for considering Langevin or relaxation-
al dynamics for Potts models as opposed to some more
conventional spin dynamics is that Langevin dynamics
seems more generic to other statistical mechanical sys-
tems (e.g., liquids and their glass transition). Having de-
cided upon Langevin dynamics, it is simpler to consider
soft-spin field theories with Potts symmetry rather than
"hard" lattice models. The appropriate field theory with
p-state Potts symmetry ' is ( —«P; p ~) in an exter-
nal magnetic Seld is

a, b, c =1
abc i i i

N p —1 N

(2.1b)

and for the MF PG model the I J;1 j are random and frus-
trated and we assume that they are Gaussian distributed,

I'(I~, )= exp — N
2mJ 2J2

(2.1c)

The N dependences in Eqs. (2.1b) and (2.1c) are chosen
such that well-defined thermodynamic limits exist. The
last four terms in Eq. (2.1a) are single site terms. Q and T
are Potts coupling constants given by

I I I
Qatar= g eaeiec

I=1
(2.2a)

(2.2b)

(2.2c)

(2.2d)

a =1 i =1

(2.1a)

where P= T ' (with Boltzmann's constant kz taken to be
unity), a, b, . . . denote spin components in a (p —1)-
dimensional vector space, and (i,j) denote lattice sites.
The erst term in Eq. (2.la) couples sites together and JJ.
denotes the interaction between sites i and j. The MF
ferromagnetic Potts model corresponds to
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The [e'I (I =1,2, . . . ,p) determine the Potts symmetry
and they are given elsewhere. ' Some useful identities
are

(2.3a)

p —1

g eaeI =p5a 1—I I'

and the linear response function

G.,(I —I') =5.,G (I —I')
X

=—g [X,", (I, I')],
i=1

where

C;; (&, &'):—(P;(&)P,(&'))&

(2.Sb)

(2.5c)
(2.3c)

and

8. DyIlaINlcal egllatlons

Here I o is a bare kinetic coeScient which sets the micro-
scopic time scale and g;(r) is a Gaussian random noise
with zero mean and variance,

(P(r)g,'(I') ) = 5,,5.,5(I —I') .
0

(2.4b)

In usual systems Eq. (2.4b) ensures an approach to equi-
librium. In the dynamical calculation two physical quan-
tities of interest are the equilibrium spin-spin correlation
function

C„(r—I') =5,b C(t I')—
=—g[C,- (r, r')]

i=1
(2.5a}

As mentioned above, we assume Langevin dynamics
for P;(t),

(2.4a)

(2.5d)

Here the square brackets denote (for the PG case) an
average over the random interactions and h denotes an
external magnetic field. %e have also used that in the
paramagnetic phase both C and 6 are diagonal in the
vector indices a, b. In general, causality yields the rela-
tion

(2.5e)

with B(t y 0)= 1 and B(I & 0)=0.
For the PG case we need to carry out the average over

the quenched random interactions. In the mean-field (or
saddle-point) approximation this is easily accom-
plished ' with the dynamical functional integral formal-
ism of De Dominicis' and Janssen et al. ' In the X~ w

limit, the mean-field equation of motion for P;(co), the
Fourier transform of 4;(t), averaged over the random in-

teractions, is

p —1 JN1
p;(oi) =Go(oi)[f (oi)+& (oi)]—Go(oi)g3 g Q S, J '

y,'( o)IyI;(oi oui )—
b, e=1

I dpi doii—Go(o3) Q T,s,g ((); (OI I )P;(CO2)$; (OI —OI I
—OI2),

b„,d =1 2' 27K
(2.6a)

with Go(o~) a renormalized bare propagator

Go '(m)=&o Intro
' P—J "dr e—' 'G(r)

0

and

(2.6b)

and f (co) a renormalized noise term

(2.6c)

(f,"(oi)f, (oi') ) =2~5(oi+ oi')5;, 5„

X +p df "Ct
I 0 —oo

(2.6d)

Note that Eqs. (2.6) is an effective single site equation of
motion for the PG problem. For the mean-6eld Potts fer-
rornagnetic model we will work directly with Eqs. (2.4).

C. Dynamical stability matrix for the PG model

The equation of motion for the Potts variable p;(oi ) [cf.
Eqs. (2.6)], is derived by solving the self-consistent equa-
tions for the Q fields which are introduced to decouple
the multisite interactions. The multisite interactions are
obtained when the quenched average over the random
bonds is performed. The equations for the Q fields are
obtained by a saddle-point solution of a dynamical field
theory. ' Around the chosen saddle-point (SP) solution
there are Gaussian fluctuations which determine the sta-
bility of the SP solution. ' Thus one expands the field
theory for the Q fields around the mean-field solution,
i.e., let 5Q ~=Q ~—Q ~. The resulting generating func-
tional (or partition function) for the Gaussian fiuctua-
tlons In the dynamical Q fields Is

Z= JD[5Q] exp[ —XA2(5Q)], (2.7a}

with A2 the quadratic form
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A, (5Q)= g g fdt, fdt, fdt, fdt, 5Q. t'(t, , t, )[A»"5,.5~b5(t3 —t, )5{t,
a, b, c,d a,P, y, v

X 5Q,rd"(t3, t, )e(t, —t, )e(t, —t, ) . (2.7b)

Here the notation is identical to that used in Ref. 19 ex-
cept we also have vector labels. The Greek superscripts
take on values 1 or 2 and

ity measure is determined by the mean-field dynamical
Lagrangian. The fields i', are

g 1122 g 2211 g 1221 g 2112

3 ~~"=0 otherwise,
(2.8a)

1(.'(t) =P;(t),
p', (t)=i p;(t),

(2.8c)

and

C:b~"(ti ti t3 t4)=&0:(ti)+S(t2W'(t3)itd(t4) &MF

x ( |lier( t3)ting( t4)) MF, (2.8b)

where ( )M„ indicates that this correlation function is to
be calculated in the MF approximation, i.e., the probabil-

I

where iP is the auxiliary response field which is intro-
duced in the dynamical functional integral approach to
enforce the equation of motion. '

The correlation functions defined by Eqs. (2.7) can be
related to the dynamic spin-glass susceptibilities by add-
ing a source term to the field theory from which the
mean-field equations of motion for P;(co) are obtained.
One finds (t, ~ t2 and t3 ~ t„)

{5Kb (t i&t2)5E~Z(t3&t4) ~ 3 3 X [{@ia{ti)@ib(t2 )@jr(t3)@jd(t4)~g]MF
JM N

, Q,g(t„t, )Q,'d"(t3, t, )+ — 5„5bd5(t, t, )5(t, —t4)A'—»'. (2.9a)

The average on the left-hand side of Eq. (2.9a) is with respect to the theory defined by Eqs. (2.7). The fields 4,, are

4,', (t) =iiti;(t),
4',,(t)=p;(t),

and

(2.9b)

Q of(tl t2)
N g [{@'(tl )@'b(t2) ~g]MF '

i=1
For example, the PG susceptibility is given by'9

Xpo(Q& Q ) =fd( t i
—t3 )d ( t4 —ti )exp[& Q( t i

—t3 ) + i Q ( ti —tg ) ]Xpo( t i
—tip t4 ti )

with

(2.9c)

(2.10a)

gpo( i 3, t~ —t2)=Np lim g (5Q„(t„t2)5Qbb(t3yt4)) 5(ti t3)5(t2 t4)—
t~if4-" b pX

yf3

p —1

g [X',,'{t, t3)X,;(t, t, )] . — —
i J'=1 a, b =1

In principle, the static PG susceptibility calculated with equilibrium statistical mechanics should be given by

Xpo — lim Xpo(Q, Q') .
Q, Q'~0

(2.10b)

(2.10c)

g g f dt5 fdtb[5(t, t3)5(t2 tb)5„—5bf A ' ' PC,~,f'—'(t—„t2,t5, tb)]

P[Pg y~
5 q5P„

X (5Qf (t3, tb)5Q~~"(t3 tg))6(tb t3)= 5„5~5—(ti t3)5{t2 t4) . ——
p

(2.11)

Foi nonergodic system the gp& defined by Eq. (2.10c) is not necessarily equal to the susceptibility calculated with equi-
librium statistical mechanics. Finally, we note that the propagators defined by Eq. (2.7a) can be written as the solution
of the integral equation'
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It is shown in Sec. IV that the above integral equation for
Xpz can be decoupled from the rest and can be solved
when the limits indicated in Eq. (2.10b) are satisfied.

ul. RKVImV m DVXWMICS n THE REDUX.WR

PGTTS FKRR{OMAGNKT

In this section we first show how external perturba-
tions can probe metastable states in conventional spin
models with Srst-order phase transitions. Following this
we show that equilibrium time correlation functions are
well behaved as the temperature is approached where
metastable states erst exist. %e conclude by interpreting
our results.

(I o '8, +r o
—PJ)gi (t)

= —g,p(p —2)({}
&

(t)

—[~o(p 1—)+fop {p' 3—p+3) 1& t, (t) . (3.2b)

Note that for p =2 the Potts model reduces to an Ising
model and Eq. (3.2b) predicts a continuous mean-field
transition at ro P,J=——J/T, . For p ~2 the Potts model
has a discontinuous transition at T, & Jlro. Above the
true thermodynamic transition the Potts model has well-
defined metastable states and the temperature where
these states 6rst appear can be obtained from the non-
trivial long-time solutions to Eq. (3.2b}. Let

A. Macroscopic equation for external perturbations

The starting equations are given by Eqs. (2.4), (2.1a),
and (2.1b). Defining

N

(I'i, (t)-=—g ((i;(t) (3.1a)
i=1

and

(t.(t)= ((t.(t) )&,

these equations give (as N ~ ~ }

I—:limit (t) .
t e)

Equation (3.2b) gives

p (p —2)m "o PJ
m +g3 +

ro

with

t},:—u o(p —1)+fop (p' —3p +3) .

(3.3a)

(3.3b)

(3.3c)

{3.3d)

(I 8, +r, PJ)P.(—t)

1= —gi g Q.t„—g (({},'(t)((};(t))&
b, e=1 i =1

p —1

T,t„d g(P;(t)—P;(t)P;(t) )~
.

b, c,d=1 i =1
(3.lc)

Equation (3.1) is a reliable equation as long as the under-
lying first-order transition is only weakly discontinuous.
For the Potts model this can always be adjusted to be
true by choosing either a small g3 or by choosing p to be
close to 2 [cf. Eq. (3.3c)].

To discuss Eq. (3.1d) it is convenient to use the Ie I as
basis vectors and write

p. (t)= g e,'p, (t) . (3.2a)

Assuming a magnetization ln the I = Io direction gives

In usual {hard) MF lattice models the averages decouple
and one is left with a closed equation for P. In soft-spin
models, however, even in the MF limit there are Iluctua-
tions in the length or size of the spin variables. Howev-
er, in Sec. III 8 we show that these length fiuctuations are
always nonsingular in the regular case and that we can
replace Eq. (3.lc) by

p —1

(I, 'B, +ro PJ}P.(t)= —g, g—Q.„,P„(t)P,(t)
b, @=1

p —1

T,t„drab(t)p, (t)pd(t) .
b, c,d =1

{3.1d)

Equation (3.3c) yields

4ro PJ
2

— 1—
2 g2 6 ro

(3.3e)

Since m must be real, Eq. (3.3e) is a physical solution only
if

T & T. = [1 g9'(p ——2)'~—4~ro] '

rp
(3.4)

where T„ is the temperature where well-de6ned metasta-
ble states 6rst exist. This identification can also be
justified by using statistical mechanical methods to study
the regular Potts model.

Equation (3.2b) can be easily solved analytically. The
complete solution is of no real interest to us here. For a
comparison to the PG case, we sketch in Fig. 1 the fixed
points {FP)of Eq. (3.2b) and indicate their stability prop-
erties. For T & T„ the FP m+ are complex and uns~"hie
and the only stable FP is the m =0 solution. For T & T„
both the m =m and m =0 FP are stable while the
m =m& is an unstable FP. The physical conclusion is
that if (I}& (t =0}~ m+ then for long times there will be a

0

continuous slowing down and eventually there will be a
freezing to a finite magnetization for T ~ Tz given by
m =m . Otherwise the long-time net magnetization is
zero. %e interpret this result further below. Here we
note that for Pt (t =0) ~m+ the external perturbation

0
has to be macroscopic.
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FIG. 1. Fixed points of Eq. (3.21) and their stability proper-
ties for T~wr~.

while in a metastable ferromagnetic state g-O(X ).
Since all fluctuations are 6nite it is clear that the
paramagnetic and metastable ferromagnetic states are in
disjoint parts of phase space. The important physical
conclusion, when compared with the PG case discussed
in Sec. IV is that as T~ T„equilibrium time correlation
functions decay in the usual way and there is no anoma-
lous linear transport.

B. Equilibrium time correlation functions as T~T„

To calculate equilibrium time correlation functions in
the regular Potts model we treat the nonlinearities in Eqs.
(2.4) as small and construct a self-consistent one-loop
theory. Such an approximation is sufficient to illustrate
the general structure of ihe theory and draw some gen-
eral conclusions. This approximation is also identical to
the approximation used in our previous work on the PG
model. We calculate two distinct correlation functions,
I1TlCO Q 0,

IV. DYNAMICS IN THK POTI'S GLASS MODEL

In this section we Arst review the results of I and com-
pare them to the results in Sec. III. Following this we
consider the dynamical stability of the SP solution and
fluctuations about the SP solution as T~Tz+. We con-
clude by relating the transition at Tz to an ergodic to
nonergodic transition.

A. Mean-Beld solution

C;; (co)=f dt e' '(P;(t)P, (0))i (3.5a) In papers I we approximately solved Eq. (2.6) for
Imu &0,

C ' (to)= —g C;J(to) .
I,J

(3.5b)

with the equal time spin correlation function given by

To one-loop order and as E~~, these correlation func-
tions can be calculated by standard methods. ' The Anal

results are C ' =5,&C,

C,, (t =0)

C(co)= f dt e' 'C(t) . (4.1)
0

The approximation was a self-consistent one-loop result
and it is technically very similar to the theory given in
Section III B. The PG undergoes either a continuous or
discontinuous transition depending on how large the cu-
bic term in the field theory is compared to the quadratic
term. Here we are interested in the discontinuous case
and in papers I it was argued that our results are reliable
only if the transition is weakly discontinuous. The result
for C(co) is

C;;(t =0)= — = (ro —2p (p —2)g&C;, (t =0)
fp

p( )
C(t =0)

[ ico+r&I—(co)]
(4.2a)

+C ( t ())[u ( + 1 ) +3f2 ] I
—I with the equal time spin correlation function given by

IE

I (to) is a renormalized kinetic coefficient

(3.6b) T0

=
I ra pC(t =0)—2p (p ——2)giC (t =0)

—2p (p —2)g&C (t =0)
+2pi(p —2)gii f dt e'"'C;;(t) . (3.6c)

0

The equation for C(to} is given by Eqs. (3.6) with the only
change being that ro is replaced by ro PJ. —

Some conclusions can now be drawn. Examining Eqs.
(3.6) and Eqs. (3.2)-(3.4), it is clear that the equilibrium
time correlation functions will not exhibit any anomalies
as T~T„+. As already mentioned this is because the
equilibrium time correlation functions do not probe the
part of phase space where metastable states exist. We
represent this as follows. If we define a one-dimensional
phase space by (essentially the magnetic susceptibility)
the collective coordinate

(3.7)

the»t is clear that in a paramagnetic state +-0(pf),

+C(t =0)[uo(p+1)+3fop ]I

(4.2b)

I (co }is a renormalized kinetic coefficient

I '(to}=10 '+p f dt e'"'C(t}

+2p (p —2)g', f dt e'"'C'(t) . (4.2c)

For use below we note that in the time domain,
P(t) =C(t)/C(0) satisfies the equation

v, 'P(t)+P(t)+A, , f dt, P(t t, )P(t, )—
0

+A,,f dt, P'(t —t, )P( )t= ,0(4.3a)

with P(t =0}=1,vo:—roI 0, and the nonlinear coupling
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constants are given by

g3
P'

p

(4.3b)

T&TA

0 q+
T&TA

Comparing Eqs. (4.2) and (3.6) we note that although
structurally they are very similar there is a crucial
difference: In the mean-Seld PG model the o8'-site-
diagonal correlation functions are given zero weight so
that

FIG. 2. Fixed points of Eq. (4.3a) and their stability proper-
ties for TNT'.

8. Dynamical stability of the SP solution

The technical consequence of this is that all the correla-
tion functions that appear in Eqs. (4.2) are identical.

To discuss the PG transition we first define the
Edwards-Anderson order parameter

hm C(t):qEA
———q=-

)~ ce fp
(4.5a)

Assllllllllg C(t} has a tlllic pcl'slstcllt part with a Ilollzcro
q and a decaying part, Eqs. (4.2), (4.3), and (4.5) yield the
equation of state

Alq '+q 1(A, , —Al)=q(k, i
—1) . (4.5b)

with s&0 but small. For small s the solution to Eq.
(4.5b) is q =0, or

q+ -c22—c —4 I—2 p
2 2

(4.6b)

Since q must be real and greater than zero, Eq. (4.6b) is a
physical solution only if

T(Tq —— (1—c /4)
Pp

(4.6c)

In papers I and paper II T„was shown to be identical to
the temperature where well-defined metastable states first
exist according to equilibrium or Thouless-Anderson-
Palmer approaches to spin glasses.

We stress that the above conclusion is very distinct
from the regular case discussed in Sec. III. Here we see
that fluctuation efkcts probe the part of the phase space
where metastable states exist. Further insight can be
gained by examining the FP's of Eq. (4.3a) and their sta-
bility. As we indicate in Fig. 2 for T y T„,the FP q+ are
complex and unstable and the only stable FP is the q =0
solut1on. For T + TA both the q —q+ and q =O FP are
stable while the q =q FP is unstable. The physical con-
clusion is that since P(t =0)=1~ q+ for long times there
will always be a continuous slowing down and an eventu-
al freezBlg to a 6nlte qEA for T Q TA given by
%e also note that Fig. 2 for the fluctuations in the PG
ease is very similar to Fig. 1 for the regular model with
exter nal macroscopic perturbations.

Examining Eq. (4.5b) one finds that there is a weakly
discontinuous phase transition with a discontinuity in q
of O(s) at T„ if

(4.6a)

(p —1)p, G(Q)G(Q')
[1—pG(Q)G(Q')]

and for the static PG susceptibility

(p —1)p, 'G'(0)
[1—pG (0)]

(4.8a)

(4.8b)

In the limits indicated in Eq. (2.10b), Eq. (2.11) is exactly
solvable because the mean-6eld correlation function
C ' ' factorizes and because in this limit (5Q '5Q' &

&~P IP2

is not coupled to any other propagator. Two things
should be noted about Eqs. (4.8). First, Eq. (4.8b) is iden-
tical to the result which follows from equilibrium statisti-

To understand how the transition at T„ takes place we
proceed in several steps. %e erst note that the argument
at the end of Sec. III 8 is not directly applicable to the
PG case. The ensemble and disorder average of X,b given
by Eq. (3.7} is of O(N) in both the paramagnetic phase
and PG phase. Superficially this already indicates that in
terms of two-point functions the phase spaces for the
paramagnetic and PG phase are close to one another.
This is relevant since the free energy of the metastable
PG phase is in terms of qEA, the long time limit of a dis-
order averaged two-point time correlation function.

Although the above argument is correct, it might be
argued that Eq. (3.7} is not the correct analogous collec-
tive coordinate for the PG model. Collective coordinates
should be defined in terms of Auctuation in the appropri-
ate order parameter, and for the spin systems this leads to
the choice of the susceptibility matrix. This notion leads
to Eq. (3.7) as the appropriate collective coordinate for
the paramagnetic to ferromagnetic transition. However,
for the random system the susceptibility matrix is itself
random with zero trace. Thus the collective coordinate
should involve a square of the random matrix. The ap-
propriate collective coordinate should be something relat-
ed to a PG susceptibility. ' For example,

X—=y y &y;y;&&y', ((;&, (4.7)
a, b ij

where ( & denotes an equilibrium ensemble average. In
the paramagnetic phase [X]-O(N},while the metastable
PG phase [X]-O(qE„N ). In terms of this collective
coordinate the phase space for the paramagnetic state
and the metastable PG phase are very far apart. It then
follows that there can be a spontaneous phase transition
only if Auctuations are divergent as T~ TA . To investi-
gate this point we have studied the dynamic PG suscepti-
bility. First note that in the strict limit given in Eq.
(2.10b), the Eq. (2.11}can be solved exactly. ' One finds
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cal mechanics. Second, the Eqs. (4.8) are nonsingular at
T„given by Eqs. (4.6}. Thus if there are divergent Auc-

tuations at Tz they must be of dynamical origin.
To study the possible dynamical fluctuations we have

calculated how the hmiting process in Eq. (2.10b},used in

solving Eq. (2.11), is approached. It is not hard to show

that for r=t4 —t, large, but finite, that (5Q 5Q ) still

does not effectively couple to any other propagator.
From Eq. (2.11) we conclude that the behavior of
(5Q '5Q' ) will be determined by the inverse of the
function

/
+ rI} () + && && r& + ~ ~ ~

FIG. 3. (a} Diagram leading to the last term in Eq. (4.10a}.
(b) Diagrams leading to Eq. (4.11c). The notation used is
defined in Ref. 21.

5ae5bd5(ri r3)5(r2 t4) l Cab~cd(tl r2 t3 i4) '

(4.9a)
If the function

F,~q(QQ r) f, d'(, t, —=told(t~ tq)—
Xexp[iQ(t, t, )—+i0'(t 4 t2)—]
X+,b,g (t i

—ti, t4 t 2, v') —(4.9b)

is almost zero on a time scale v for T T„, then we will

conclude that dynamical (Iuctuations are divergent al-

though we know that for T=T„+0+ and ~~00, the
fluctuations are 6nite.

We have calculated F by the perturbative method used
in IV A. The first relevant diagram is shown in Fig. 3(a).
Setting 0=0' the result for F(

—=F' ")at this order is

5~[1 pG (0)] 4g3pG'(0) g Q„b Q~b J e'"'G(0+~)G(0 —ai)C(ai)
bt

(4.10a)

Because we are interested in the dynamical metastable
states, into which the system freezes at T=T„,we utilize
an appropriate definition of dynamical metastability. In
this context it can be shown that for T suSciently close
to T„ the correlation function acquires a very near pla-
teau value for times greater than the initial microscopic
decay time of C(t) but less than the decay time of C(t)
Under these conditions, for T~T~+, C(co) continuously
crosses over to

In the same time regime the diagrams shown in Fig. 3(b)
also contribute and need to be taken into account.
They form a geometric series and one obtains

F(0,0, r&r, )= (p —1)

[1—4gip'(p —2)qG (0)]

X[1—4g@ (p —2)qG (0)—pG (0)] .

(4.11c)

C(ai)
~ r r ——q2m5(ai)+a nonsingular part . (4.10b) For Qw, ~ 1 the causality relation

For T R T„and for r less than the decay time of C(t),
Eq. (4.10a) can be approximated by

F.'",(0,0, ~&~, )=5.,5„[1—i G'(0)]

4g'ii G'«—)q X Q:b Q~b

G(Q)=C(t =0)+iQC(0)= — —q
1

Po

can be used to rewrite Eq. (4.11c)as (q =Foq)

F(Qr, ) 1, r&r, )= (p —1)

[1—2A2q(1 —q) ]

(4.12a)

(4.11a)

where r, is the decay time of C(t) and q is the intermedi-
ate time plateau value of C(r) for vo

' «r «r, From.
Eqs. (2.10) we see that only certain vector labels are
relevant for the PG susceptibility. %e consider

F"'(0,0, ~&~, )= yF.".,', (0,0, ~«~, )

=(p —1 )[1 pG (0) 4gt3p2(p ——2)p—
XG (0)q] .

X [3a,q '+2q(z, —X, ) —(A, , —1)]

+o(q ), (4.12b)

where we have used that near T„,A, , =1, A.2-1+v. and
E «1. Examining Eq. (4.12b}, one sees that it is propor-
tional to the q derivative of the equation of state given by
Eq. (4.5b). This equation defines a PG spinodal point at

5Tg e

%e can now draw some conclusions. For T~T~+,
r, ~ 00 and the dynamic PG susceptibility is proportion-
al to

(4.11b) (4.13)
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For T~ T~+, XpG is singular and for r Sxed the singular
behavior is approached continuously. The PG suscepti-
bility electively has the same value for T=Tz . Physi-
cally our results imply that correlations grow for times
~~ v„but for very long times, ~~~v;, they decay to mi-
croscopic correlations. Technically our results predict a
divergent time-dependent correlation length. This con-
cept is probably generic to many glassy systems.

%e conclude that in the PG there is an ergodic to
nonergodic phase transition at T„due to the divergent
time scale vc. Most important for understanding the
mechanism of this transition is the fact that the equilibri-
um PG susceptibility is not equal to the zero frequency
dynamic PG susceptibility. Eff'ectively there are diver-
gent dynamic ffuctuations as T~ T~+. The paramagnetic
state is interpreted as dynamically unstable for T & T„,
and in the mean field Potts model there will be a transi-
tion at T„ to a "metastable" glassy phase.

Finally we mention that the ergodic to nonergodic
phase transition can be characterized by an order param-
eter which measures the difference between a quantity
calculated via a complete ensemble average and that
same quantity calculated by an infinite time average.
Such an order parameter is not unique and we will not
pursue this point. Using restricted phase-space averages
the statistical mechanics of the metastable states with
finite qnA for T & T„have been discussed elsewhere.

It should be emphasized that the inequality of the zero
frequency limit of the dynamic PG susceptibility and the
equilibrium statistical mechanical PG susceptibility
vapo f A=limn n (yYpG(Q 0') —Xpo&0] is not due to
violations of the ffuctuation-dissipation theorem (FDT).
This particularly important since a similar inequality of
the SG susceptibility calculated using time average and
purely equilibrium methods for a system2 exhibiting a
continuous transition led Sompolinsky and Zippelius to
conclude that the FDT is violated. In our analysis, which
is valid for T = T~+, the FDT is certainly obeyed and yet
it has been established that A&0. This is a clear manifes-
tation of the breakdown of the ergodic theorem, which
imphes that phase-space averages are no longer equal to
time averages. Thus at T =T„ the system undergoes a
transition from an ergodic phase to a nonergodic phase.
Although these conclusions have been reached using
Langevin dynamics for the spin motion, the results
should be valid for any dynamics as long as the correct
equilibrium distribution is obtained in the in6nite time
limit

At T„, the system is frozen into one of an exponen-
tially large number of statistically similar glass states.
Since these states all have the same correlation functions,
it is not necessary to specify which state the system
freezes into at T~. A detailed discussion on the behavior
for T~ Tz is given in Ref. 5.

V. DISCUSSIQN

%e conclude with a few additional remarks.
(1) The dynamics in non-mean-field Potts models is not

clear. %e expect that for T g T~ there will be 6nite
domains with properties similar to the global metastable
states predicted by mean-6eld theory. The long time dy-
namics would then be governed by activated transport, as
the domains change from one metasta, ble state to another.
Experimentally„we would expect a break in the slope of
the temperature dependence of the relaxation times as
one passes through T~.

There is a remarkable similarity between the dynamics
in the regular model subjected to a macroscopic pertur-
bation and the subsequent decay to a metastable fer-
romagnetic state and the decay of the ffuctuation-induced
transition in the glassy case for T & T„(compare Figs. 1

and 2}. It is likely that the methods developed to describe
nucleation out of a metastable state for regular systems
will prove useful for describing the long time dynamics in
non-mean-6eld glassy models for T g Tz. More detailed
arguments along these lines are given in paper II.

(2) Our results are probably generic for SG models
with discontinuous Edwards-Anderson order parameter
which have well-defined metastable states in the mean-
field limit above their true equilibrium transition temper-
ature We . can speculate that in more general glassy
problems such as structural glasses where random in-
teractions are not put in, that similar behavior will occur
if the order parameter (as opposed to the interactions) is a
stochastic or random variable. This conjecture is
motivated by the observation that the most crucial aspect
of our calculations appear to be that the magnetization at
each lattice site has a distribution with zero mean and
square average equal to qE„. ' It is easy to imagine that
hquid-state theories for solidification admit solutions
with these properties. If such solutions exist we would
expect that they could be located by dynamical theories
for fluctuations.

Along these lines it is also relevant to point out that if
a mean-field spin (or liquid) model is considered with a
regular transition at T, and a SG spinodal at T„with
T„&T, . Then our arguments would suggest that the
maximum amount of supercooling would be to Tz, where
the system would spontaneously form a spin-glass state.
This is similar to the situation which probably occurs in
the recent dynamic theories for the structural glass
transition with T, replaced by the crystallization temper-
ature or density.

(3} The most important reason why ffuctuation effects
can locate the metastable PG phase is that the symmetry
of the paramagnetic state and the isotropic spin glass
state is identical. The reason for this is that the
Edwards-Anderson order parameter distinguishing the
paramagnetic phase and the spin-glass phase is in a sense
a microscopic order parameter associated with Auctua-
tions in the magnetization at each site. On the other
hand, the fully ordered ferromagnetic phase is dis-
tinguished by the presence of a non-zero macroscopic
variable, namely, the magnetization and hence the sym-
metry of the phase is perceptibly different. Because the
above arguments only rely on broken symmetry con-
siderations, we believe they should be applicable to any
generic random system and in particular to the structural
glass transition.
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