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Kith the help of numerical simulations using an extended Su-Schriefkr-Heeger-type Hamiltoni-

an, the existence of solitary waves in a polyformamide stack is shown. Each formamide unit in the
stack has three geometrical degrees of freedom during the time simulation. The passing of a solitary
wave through the stack and its reAection at the end of the chain is sho~n. In addition, the collision
of two solitary waves is discussed.

INTRODUCTION

The activation of oncogenes has been discussed since
their discovery around 1970. One of the unsolved prob-
lems in this context is chemical carcinogenesis, the reason
for about 80% of all tumors. ' Many theories have been
proposed which are based on local effects of carcinogens
bound to DNA. Simple statistical considerations, howev-
er, show that the probability of removing a histone by lo-
cal effects is far too small to explain carcinogenesis
through chemicals. i Three different possibilities for ac-
tivation of oncogenes by long-range effects are given in

the literature.
(1) The tertiary structure of DNA is changed by the

binding of a metabolized carcinogen to DNA. This is ac-
companied by a corresponding change in the surrounding
structure of water and the distribution. of K+ ions. All
of these cause a change in that DNA-protein interaction
which regulates an oncogene.

(2) The DNA could become a conductor via an internal
"charge transfer" (CT) between the DNA and the pro-
tein. The binding of a carcinogen can cause a complete
filling of the valence bands of one or both of the interact-
ing chains. Therefore, as second-order perturbation
theory shows it, the dispersion and polarization forces be-
tween the two chains strongly decrease, ' At the same
time, the periodicity of the backbone of the polynucleo-
tide is broken and its band structure is destroyed. Both
electronic effects cause the release of the protein from
DNA.

(3) Let us assume that a bulky carcinogen is bound to a
nucleotide base. Certainly the structure of DNA in the
neighborhood of the attached carcinogen will change. In
Uiuo repair enzymes can remove the carcinogen within a
few hours and start a solitary wave. Due to their long
lifetime, they can cover large distances in DNA (e.g., see
Ref. 7). This long-range effect can influence the interac-
tion between the DNA and the histone to a great ex-
tent. "

Solitons are localized excitations rather than wave
packets of large amplitude. They propagate without
change of shape or loss of energy. They are stable to
small perturbations. Moreover, they have the remarkable
property of surviving collisions with other solitons. Soli-
tons arise in systems which are both nonlinear and disper-

sive. ' %aves are called solitary waves, if they do not ex-
actly fulfill the soliton conditions (for instance, they have
long but not infinite lifetimes).
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FIG. 1. (a) Chemical structure of cytosine. (b) Chemical
structure of formamide.
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FIG. 2. Geometry of a formamide dimer used for the deter-
mination of the electron-phonon coupling constant.

Solitons were used by Davydov to explain the trans-
port and reserve of energy of proteins. They can travel
along the hydrogen bonds perpendicular to the main po-
lypeptide chain in a helical conformation, "

H—N—C=0 H—N—C=O.
In this case, the coupling of the high-frequency vibrations
along the C=O bond with the low-frequency vibrations

FIG. 3. Projection of the calculated formamide dimer (all an-
gles 120', except yo) along the helix axis. This axis goes through
the H atoms of the C=0 group of the formamide molecules.
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FIG. 4. Difference between the resonance integral (between the X atoms of the two formamide molecules in the dimer) calculated
directly ~ith the Hartree-Fock method and from the fitted Taylor series (At». ) as a function of the coordinate z (8=g=O) for three
difkrent orders of the 5t (- . - ., fourth order; ———,fifth order;, sixth order).
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TABLE I. Range and largest error of the hopping integrals

in 10 ' hartrees.
TABLE III. Selected force constants (10 out of 84) in 10

hartrees/bohr [E',j,k according to Eq. (g)].

N

O
O
0

C
0
N

Q
N

0

35.048
36.237
25.647
13.750
65.885
52.434
0.565

12.338
14.876

min(t~ i, )

0.108
1.156

—0.026
0.167
2.741
0.559

—0.092
0.235

—0.368

Amax{tg I, )

0.005
0.003
0.004
0.002
0.003
0.002
0.010
0.002
Q.QQ3

—329 756.99
—2.03
—4.79
—2.32

1.96
9.04
2.32

11.31
5.97
1.72

along the 0 H hydrogen bonds provides the non-
linearity which is a necessary condition for the existence
of a soliton. Su, Schrieffer, and Heeger (SSH) proposed a
soliton for the interpretation of the semiconductor prop-
erties of polyacetylene. ' They define hopping integralst„„+j between two neighboring sites n and n + I and pos-
tulate a linear electron-phonon coupling. The reflection'
and the stability against small perturbations'4 have been
shown with a modified SSH Hamiltonian' (stabilized
against lattice shrinking) and in the case of soliton
reflection with the help of the Pariser-Parr-Pople (PPP}
Hamiltonian as well. '

I.adik and Cikek give the first formalism to prove the
hypothesis of conformational solitary waves in DNA. s'9

They introduce three geometrical variables for each base.
Variable z„describes the change from its equilibrium

value of the stacking distance of the nth unit, variable y„
describes the rotation of this base in the plane perpendic-
ular to the main axis of the double hehx (following
Krumhansl and Alexander' ), and the angle 8„measures
the tilting of the base against the plane perpendicular to
the main axis (a more detailed explanation is given
below). The formalism includes the spin as well as the
two different strands in the DNA double helix. The
electron-electron interaction is described by the PPP ap-
proximation. This Hamiltoman has been apphed with
small changes to a polyformamide stack as a first test for
this hypothesis for chemical carcinogenesis.

In the double-helix structure of 8-DNA in the 8 con-
formation, the planar nucleotide molecules are arrange;d
in stacks. This means that the molecular planes of the

bases are parallel to each other and perpendicular to the
helix axis. Each base is shifted by 3.36 A along the helix
axis and rotated by 36 around it with respect to the next
base. The stacked molecules are bound together by a
sugar-phosphate chain, the so-called backbone.

The molecu1ar orbitals of planar molecules such as the
nucleotide bases can be divided in three classes. The
inner-shell or core orbitals are localized around the nuclei
and are not involved in the chemical bonding. The o or-
bitals are symmetric with respect to the molecular plane.
These orbitals are usually localized between two atoms.
The m orbitals are antisymmetric with respect to the
molecular plane and are delocalized over the whole mole-
cule. The occupied cr and m orbitals together form the
chemical bonding. Atoms whose atomic orbitals contrib-
ute to the n molecular orbitals of a molecule are called m

centers. For instance, the DNA„ the four di8'erent nu-
cleotide bases C, N, and 0 have p orbitals and therefore
they are "m centers. " The four nucleotide bases are
called guanine, cytosine, adenine, and thymine. The
chemical structure of cytosine is shown in Fig. 1. To
reduce the computational e8'ort, we have used, instead of
cytosine, formamide, which is a section of the cytosine
molecule as shown in Fig. 1. C(2) and N(3} are saturated
by two additional hydrogen atoms. The sugar-phosphate
backbone of the DNA is simulated by a correction term
in the potential.

METHOD

Because of the large distances between the molecules
within a stacked arrangement similar to 8-DNA and the

TABLE II. Electron-phonon coupling constants up to second order in hartrees/bohr.

i,j,k, N, N

0.0035
—0.0048
—0.0167
—0.0096

0.0029
0.0202
0.0137
0.0341
0.0471
0.0071

t. - .i,j,k, N, C

0.0083
—0.0101
—0.0200
—0.0006

0.0053
0.0209
0.0009
0.0157
0.0024

—0.0087

0.0021
—0.0035
—0.0121

0.0061
0.0026
0.0174

—0.0100
0.0283

—0.0320
—0.0011

i,j,k, C, C

0.0158
—0.0176
—0.0361
—0.0086

0.0084
0.0351
0.0101
0.0404
0.0206

—0.0042

0.0001
—0.0008
—0.0037
—0.0021

0.0010
0.0074
0.0043
0.0153
0.0150

—0.0018
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FIG. 5. Propagation of a solitary wave as a function of all geometrical variables and of time.

localized character of the core and 0 electrons, one can
assume ' that interactions between the molecules are,
first of all, due to the localized m electrons. Therefore it
seems to be justi6ed to separate the m. electrons from the
0 system. %'hile the inAuence of the core and 0 electrons
can be described with a classical potential, the m electrons
must be treated explicitly with a tight-binding-type mod-

el. The electron-electron interactions are included only
implicitly via the parametrization.

Consequently, the Hamiltonian is divided into six
diferent parts:

@km +@0+~el +~el-conf +~conf +~bb

~ 5%

10

~ I ~ ~ ~
*

~ ~ ~ ~
~ 0 ~
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~ ~ ~ ~ ~ ~
~ ~ g ~ ~

* ~ ~I ~ ~
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FIG. 6. Development of the kinetic (upper curve) and total (lower curve} energy in time for the propagation of a solitary wave.
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Bh;„gives thc klllctlc cllcfgy of tllc system,

n=1

I„;„is the kinetic energy due to 8„;„.It is given by

The same is valid for E „&,and so on. The index for
ihe site is n. X gives the number of molecules in a stack.
The geometry variables z, y, and 8 are defined in
the sanm way as by Ladik and Ciiek ' (see Fig. 2). Fig-
ure 2 shows a stacked formamide dimer. The variables
z„,q„,and 8„arede6ned as the deviations from their
equilibrium values (n —1)z0, (n —1)y0, and 00. These
are given as in 8-DNA by zo ——3.36 A, yo ——36', and
80=0. The helix axis is denoted by z. IQ Fig. 2, molecule
1 is in its equilibrium position, while for molecule 2, a de-
vlatlon of z2, p2, and 8'p is sketcbed. Figure 3 sho%vs a
projection of a stacked dimer in its equilibrium geometry
onto the plane perpendicular to the z axis. The bond
lengths are given in angstroms, and all bond angles are
assumed to be 120'. M gives the total mass of a molecule.

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
I

1 2 3 0 5
t. (PS )

FIG. 7. Development of the kinetic E, upper curve) and total
|lower curve) energy in time for the collision of two solitary
waves.

8 and 8&, respectively, are the inertial momenta for the
two different rotational axes (for qr, the rotational axis is
the main axis z of the formamide helix, and for 8, it is the
y axis; see Fig. 2). The matrix elements formed with the
help of atomic orbitals of a basis set, (X„~80

~
X, ),

create a block-diagonal matrix. Each block describes a
single molecule (only m electrons are considered explici-
ty). For N single molecules, 80 is defined as

g=1 n =1

+ X &gh X (g, .h, .+h, .g, .) .
g, k=1 n =1

C'g „and Cg „arecreation and annihilation operators
for m electrons at atom g in molecule n. ez stands for the
Coulomb integral of atom g. The P's are the different res-
onance integrals between atoms g and h in one molecule.
The values of Izg and pgh are chosen to be equal to the
corresponding Pock matrix elements of an ab initio calcu-
lation of a formamide molecule using a minimal STO-3G
(Slater-type orbitals contracted from three Gaussian
functions) basis set. All Hartree-Fock calculations have
been performed with the program package
GAUSSIAN-74. The exponents and contraction
coeScients of the applied atomic basis functions have
been taken from the basis-set library of this program
package. The indices g and h number the m centers in the
molecule. 6 is the total number of m centers in it. The
electron-electron interaction is not explicitly considered
for this first calculation. The field-operator formulation
of quantum mechanics was used by Su, Schrie6'er, and
Heeger' ' in their work on topological solitons in po-
lyacetylene, in which they had to introduce only one
geometrical variable. In order to facilitate comparison
between these two diferent kinds of solitons, the field-
oyerator formulation was also adapted by Ladik and
Ciiek ' in their original theory of conformational soli-
tons in DNA (in which they had to use, instead of one,
three geometrical variables). However, one should keep
in mind that the @eave-function formulation provides a
completely equivalent description of the problem.

8,I
describes the interaction of the n electrons along

the stack including only first neighbors,

6 % —1

@el g r000g, h 2 + n+l, gcn h+C n hen+I g
g, h=1 n=1

to 0 0 I, is the resonance integral of the undistorted stack
between atoms g and III in neighboring moleeules. They
have been determined together with the electron-phonon
coupling constants.

The term A'„,„&represents the electron-phonon cou-
pling. The coupling constants are expanded into a Taylor
series. hz„is defined as

and analogously for 58„and Aqp„. Then, one can write
A',

I „„&as follows:



4434 D. HOFMANN, %'. FORNER, AND J. LADIK 37

@el co-nf 2 2 f j&gg 2 ™~~ ~% (Cn+igcni+C nicn+ig) .
i+j+kyo gh=f yl=J

We have performed calculations on formamide dimers
(see Fig. 2) treating the two molecules together as a su-
permolecule using the above-mentioned STO-3G minimal
basis set for diferent sets of coordinates z, 0, and g.
These calculations give the matrix elements of H, ~„„f
which are equal to the corresponding Fock matrix ele-
ments between the 2p, m atomic basis functions. To ob-
tain these matrix elements as an analytical function of the
geometrical variables, they have been expanded into a
Taylor series, The coeScients of this series, which are
the electron-phonon coupling constants t, k I„have
been determined by a least-squares fit. In Fig. 4, the devi-
ation of this Taylor series from the exact value is
displayed as a function of z for the resonance integral be-
tween the two nitrogen atoms of the dimer for diferent
orders of the Taylor series (p=4, S, 6). Obviously, the de-
viations in the sixth-order curve are negligible. The
points in which Hartree-Fock calculations have been per-
formed are chosen randomly. Comparative calculations
on point sets of difFerent sizes (200, 400, 600, and 800
points) have shown that a 200-point set is not dense
enough to allow a reliable fit, while 400 points are enough
for this purpose. ' For more details see below.

The operator H„„fcontains e6'ects of the o.-electron
system and the nuclear repulsion:

One obtains the coe%cients K; & in the following way:
At first, a potential surface scan (STO-3G basis) is per-
formed for the dimer. Then, from the hypersurface, the
n.-electron energy (Eo+E,i+E,i „„f)is subtracted. Last,
the coeScients are fitted to this modified hypersurface
with the least-squares method, as described above for the
coupling constants.

The numerical results show that formamide stacks are
not stable in the chosen conformation on the ab initio lev-

el. In DNA, the stacked nucleotide bases are bound to-
gether covalently by sugar-phosphate groups called the
backbone (BB). Therefore it seems to be reasonable to
add a term to the potential which simulates such a back-
bone. In the equilibrium geometry, the gradients of the
total potential energy of a formamide stack turned out to
vanish, with the exception of the ones at the two terminal
molecules. These two sets of nonvsnishing gradients are
equal in absolute value but of opposite sign. Therefore sn
additional term A'aa, leading to an energy contribution

EB~, can be designed, which shifts the two nonzero sets
of gradients in the equilibrium geometry
(z„=8„=y„=0,symbolized by eq) to zero. For this
purpose, a linear ansatz for EBB can be used:

/V —1

EaB ——A, g b,z„+Aq g h8„+A„Qb,y„
.Y —] i+j+k &p

H,„„fgg —— K; ) i, Az„'hW„bg&"„.
n=l ij +k&0

n=1 n = I

I
~I / I " I I j I I I I / I I I r / / F I Ij / / I / j I I' / I / I I'/ I/ n I I I' j I I r I/ I /' I

FIG. 8. Passing of tvvo solitary ~aves as a fonction of all geometrical variables and of time.
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The requirement that the equilibrium geometry represent
the minimum of the total potential energy E leads to

BE
(~BB+Econf +~el-conf )

Z1 cq 1BZ
Cq

and finally, together with (9), to

(10a)
1

l

«.onr+ E.l-.o.r }
Bz 1

CC}

The potential-energy terms not appearing in (10a) are
geometry independent. Since the derivative of E„„f
+E,1„„fwith respect to z„has the same value as that
with respect to z„but with opposite sign, (10b) deter-
mines A, uniquely. For A& and A„,the same considera-
tions apply. As shown below, (10b}is equivalent to

G

Kl, 0,0 2 g fl, O, O, g, hPi, g, l, h

g, h =1

(For the definition of P2 g, h, see below. )

To solve the dynamical problem, one needs the gra-
dients for a geometry Iz );, III;, and I lpI; at a time z; to
calculate the new configuration I z I, +, , ( 8 I, + „and
I y I;+,. These are computed analytically. Because the
formulas for all three variables are analogous, only the
derivative of the energy with respect to [Z I is given.

The backbone term is only for the molecules at the
chain ends of interest [see Eq. (9)J,

1 I

i 1 i l i i )
f I ~$ i f 1 l i t l

t I 1 t t l

A

cl
conf

i +j+k &p

j,k &0
iy0

iK;
~ k( b,Zn l Mjn lb,y„

FIG. 9. Passing of two solitary waves as a function of z and
time.

~as= — Esa= ~.
Bzhl t)z l

From the classical term 8„„f,one gets

(12}
—bz„' 'b, 8~ beak) .

The electronic part simplifies to

(13)

i+j+k«p 6
F.„„nf2g—— g if ikgh(P g „ i hhz„' ', b8„,b9„,P+ g„hhz—„' 'bii hen) .

j,k&0 g, h=1
i p0

Here the elements of the density matrix I' are de6ned by

n*

P„,=2 g c;„c;,
i=1

(15}

(16)

and (see, e.g. , Ref. 19) that

(g
~
Ho+H„+H„„„f~ P) = g(P„,H„,)

= gP„, H„,
f,S Pf

is valid ( g is the wave function).
Assuming the determined gradients over a tirnestep ~0

(n ' denotes the number of occupied orbitals), where c;
„

is the rth coeNcient of the ith eigenvector. This can be
verified by using the fact that

to be constant, one can integrate the classical equations
of motion for each molecule at a time ~;,

F„(i)=Mz„(i),

z„(i+1)=z„(i)+rOF„(i)/M.

(18)

(19)

For the determination of the new coordinates, the formu-
la of Su and Schrie8'er was used, '3

z„(l+1)=z„(i)+roz„(i+1) .

As already said, a formamide stack was chosen as a
model for a nucleotide base stack to avoid its complexity.
Formamide can be considered as a section of a cytosine
molecule [N(3)-C(2)-O(7)]. The structure of the stack
should imitate the structure of B-DNA. Therefore the
equilibrium stacking distance is 3.36 A, qp0

——36, and the
plane of the molecule is perpendicular to the main axis.
The sugar-phosphate chain is simulated by ABB. For-
mamide has three n. centers ( G =3 ). The mass of for-
mamide is M =45.0 g/mol. e&——115.6 g A and
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S6) in Table II.
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rst, the energy of interaction of the
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FIG. 12. ReAection of a solitary wave as a function of all geometrical variables and of time.

—329.758] hartrees. The greatest error was
0,0095)(10 hartrees. Table III gives the first ten classi-
cal constants. It is now easy to show that
3,= 1.31 X 10 hartrees/bohr, A z

——3.45 X 10 har-

trees, and A =2.00X 10 hartrees.

The conservation laws are examined to exclude errors
in the numerical integration. The momentum and angu-
lar momentum is, over the whole time, zero in the accu-
racy of the computer. The fluctuations in the total ener-

gy compared to the total kinetic energy (see Fig. 6) ap-
pear to be small.

In the second simulation, a collision between two soli-

Three computations were carried out. The 5rst shows
the propagation of a solitary wave, the second the cross-
ing of two diS'erent waves, and the last one the refiection
of a solitary wave from the chain end. For the erst calcu-
lation in the starting con6guration, all variables were set
to zero except z& ———0.5 A.

In Fig. 5, all three geometrical variables {hz I, {bBI,
and {hyI at the time are shown. The ordinate gives the
time and the abscissa {zI and {b,z I. Each molecule is

symbolized by a triangle. The backbone corresponds to
the dashed line. The rotation axes are displayed in a way
that the 8 axis would be perpendicular to the paper plane
and the y axis parallel to the z axis (not true for the real
stack). To aBow us to distinguish between positive and
negative q, the triangle is rotated in the latter case about
180'. In the first case, the triangle stands, consequently,
on the bottom; in the latter, on the tap. The variables
were multiplied by 6 for a better visualization.

The solitary wave passes, in approximately 3.6 ps, the
whole stack (98 A). This corresponds to a velocity of 2.7
km/s, where only small dispersion occurs. The mean
value of the kinetic energy is 8.4 meV. Together with the
velocity, this leads to an upper limit of the kinetic mass
of roughly 400 electron masses (m, ).
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tary waves starting from diferent chain ends is studied.
This is obtained with an initial excitation of

z) ———0.5 A,
e

z3o ——0.5 A .

Figure 7 shows the time development of the total and ki-
netic energy after this excitation. As in the former case,
the total energy fluctuations remain an order of magni-
tude smaller than the kinetic energy. The mean value of
the kinetic energy, averaged over 6 ps, is 16.8 meV. The
velocities of the two solitons are equal, and they pass
each other without any perturbation.

By looking at Fig. 8, we see clearly that z contains the
most information (8 about the same, g not recogmzable).
This justifies Fig. 9, where z is drawn from up to down (in
B), the index n of the molecule from left to right, and the
time (in ps) from front to back. The passing of the soli-
tary waves can be observed easily. This figure suggests
that some other vibrations had been excited besides the
two solitary waves from the starting configuration, espe-
cially after rejections at the chain ends. Figure 10 shows
this also. In this drawing, z is given as a function of n.
The time t is given in ps. The width of the solitary waves
can be estimated to six sites.

In the last calculation, the solitary wave emitted by a

more complex excitation has been studied. To save com-
potation time, the length of the stack had been limited to
15 units. The first three molecules were gradually excited
in all three variables (z = —0.8, —0.4, and —0.2 A, and
8,p= —12', —6', and —3'). For the time step, 0.01 ps
has been chosen. The constancy of the energy is not
worse than before, but the kinetic energy is larger than
that seen previously (Fig. 11).

The high kinetic energy can also be seen in Fig. 12.
Many vibrations are visib1e, but the three-dimensional
projection (Fig. 13) makes the reflection very clearly
recognizable.

CONCLUSION

It has been shown numerically that solitary waves exist
in polyformamide with the described formalism. This
has been proven, because only small dispersion occurs
during the propagation of the wave. Furthermore, these
waves are reflected and can pass through each other. The
geometry imitates the DNA B. Therefore similar long-
range e8'ects are to be expected for DNA.

Investigations of the effective mass of the solitary wave
and its stability against impurities, as well as the intro-
duction of electron-electron interactions in the PPP ap-
proximation, are in progress in our laboratory.
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