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The macroscopic description of a quantum particle with passive dissipation and moving in an ar-
bitrary external potential is formulated in terms of the generalized Langevin equation. The cou-

pling with the heat bath corresponds to two terms: a mean force characterized by a memory func-

tion p(t) and an operator-valued random force. Explicit expressions are given for the correlation
and commutator of the random force. The random force is never Markovian. It is shown that p(z),
the Fourier transform of the memory function, must be a positive real function, analytic in the
upper half-plane and with Re[p{to+i0+ )] a positive distribution on the real axis. This form is then
derived for the independent-oscillator model of a heat bath. It is shown that the most general quan-
tum Langevin equation can be realized by this simple model. A critical comparison is made with a
number of other models that have appeared in the literature.

I. INTRODUCTION

The problem of a quantum particle coupled to a
quantum-mechanical heat bath is fundamental to many
fields of physics: statistical mechanics, condensed matter,
quantum optics, atomic physics, ctc. For such a system
the description in terms of the quantum l.angevin equa-
tion has a broad and general application. Herc we for-
mulate this description for the general case of a particle
in an external potential and coupled to an arbitrary pas-
sive heat bath. Our purpose is to show that this is a com-
plete macroscopic quantum description that can be
characterized in a precise and general way.

In Sec. II we describe the quantum I.angevin equation.
The key point there is that this is a macroscopic equation
corresponding to a reduced description of the system.
Central to this description is the requirement that the
bath be passive. A passive system is one for which there
is a unique thermal equilibrium state. In the present case
this physical requirement of passivity is expressed explic-
itly in the mathematical requirement that the Fourier
transform of the memory function be a positive real func-
tion. Positive real functions are analytic in the upper
half-plane and have real part, called the spectral distribu-
tion, positive on the real axis. %'e show that this proper-
ty of thc HlcIDory function ls a conscqucncc of causahty
and, in Sec. III, of the second law of thermodynamics.
The result is that the coupling to the bath is character-
1zcd by 8 slnglc posltlvc real dlstrlbutlon, thc spectral dis-
tribution, and that the most general passive bath corre-
sponds to a spectral distribution satisfying simple require-
ments.

In Sec. IV we discuss the independent-oscillator (IO)
model of the heat bath. There our 6rst purpose is to

show that this is a simple and convenient model with
which to calculate. For this the key result is that the
most general quantum Langevin equation can be realized
with an IO model. Our second purpose is to facilitate a
critical discussion of the various heat-bath models which
have appeared in the literature. This we do in Sec. V
where we show in some detail the relation of the IO mod-
el to a number of other models which have appeared.

Knowing readers will recognize that some of the things
we have to say are well known in other contexts. Thus,
the general characterization in terms of positive real
functions is straight out of the mathematical and electri-
cal engineering literature. Yet the application of these
notions to a quantum-mechanical system is new and the
general description we give in Sec. II appears explicitly
nowhere in the literature. On the other hand, a famous
remark by Kubo' makes clear that at least something of
the general idea has long been known to many physicists.
%e have attempted by an eclectic choice of references to
give credit to earlier authors and to indicate where our
ideas have grown out of theirs. At the same time, we
have suppressed references to more recent authors who
have, perhaps independently, only rediscovered what has
for a long time been in the literature.

II. THE QUANTUM I.ANGEVIN EQUATION

In this section we describe the quantum Langevin
equation, which can be taken as the basis of the macro-
scopic description of a quantum particle linearly coupled
to a passive heat bath. Our aim is to give the general
form of this equation consistent with fundamental physi-
cal requirements, in particular causality and the second
law of thermodynamics.
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NRe P N+lo N
0

)& coth(iilco/2k T)cos[~(r —t ')],
and the nonequal-time commutator of F ( r ) is

[F(t),F(t')]= . f dc0Re[p(co+i0+ )]
2

(2.2)

We consider, therefore, a quantum particle of mass m

moving in a one-dimensional potential V(x) and linearly
coupled to a passive heat bath at temperature T. The
macroscopic equation describing the time development of
the particle motion is the quantum Langevin equation

mx+ f dc'p(t c—')x(t')+ V'(x)=F(r),

where the dot and prime denote, respectively, the deriva-
tive with respect to t and x. This is the Heisenberg equa-
tion of motion for the coordinate operator x. The cou-
pling with the heat bath is described by two terms: an
operator-valued random force F(t) with mean zero, and a
mean force characterized by a memory function p,(t).
The (symmetric) autocorrelation of F(t) is

—,
' (F(&)F( &')+F(t')F (&) )

functions of a cofnplex variable, analytic in the upper
half-plane and with the real part a positive, even distribu-
tion on the real axis, are termed positive real functions.
They form a very restricted class of functions of a com-
plex variable. Among their properties are the follow-
1ng.

(i) The most general positive real function has the rep-
resentation in the upper half-plane (the Stieltjes inversion
theorem): '

2iz
d Re[p(co+i 0+ ) ]

p z = —icz+ dc'
0 Z —N

(2.7)

f Re[P(co+iD+)]
GIN

0 I+N
(2.8)

(ii) The real part of a positive real function is positive
in the upper half-plane:

where c is a positive constant. Thus the real positive dis-
tribution Re[P(cu+iO+}] characterizes the function, ex-

cept for the constant e, which in our case can be absorbed
into the particle mass (beware, this is not mass renormal-
ization). We call Re[p(cu+iO+)] the spectral distribu-
tion of the memory function. From the representation
(2.7) we have the following general requirement on the
spectral distribution:

Xiiicosin[co(r —t )] . (2.3) Re[P,(z}]& 0, Imz & 0 . (2.9}

P(~+iO+) =P( co+iO+ )*, — (2.6)

which follows from the fact that x is a Hermitian opera-
tor. Thus Re[P(co+iO+ )] is an even function of cu. Such

In these expressions

p(z)= f dt e"'p(r), Imz )0 (2.4)
0

is the Fourier transform of the memory function p(r)
(By convention, the memory function vanishes for nega-
tive times. ) Finally, F(r } has the Gaussian property:
correlations of an odd number of factors of I' vanish;
those of an even number of factors are equal to the sum
of products of pair correlations (autocorrelations), the
sum being over all pairings with the order of the factors
preserved within each pair.

It is clear from the above description that, as in the
classical case, the coupling to the heat bath is character-
ized by the function p(z). Now this function has three
important mathematical properties which follow in turn
from three corresponding general physical principles.
The first of these, as we see from (2.4), is that P(z) is ana-
lytic in the upper half-plane ImzpO. This is a conse-
quence of causality; the mean force exerted by the heat
bath on the particle depends only upon the past motion
of the particle. The second property is that the boundary
value of P(z) on the real axis has everywhere a positive
real part:

Re[p(co+iO+)] &0, —ao &co & Qc

This, as we show in Sec. III, is a consequence of the
second law of thermodynamics. The third property is the
rea11ty condltlon

Thus there are neither poles nor zeros in the upper half-
plane.

(iii) The reciprocal of a positive real function is a posi-
tive real function.

(iv) The sum of two positive real functions is a positive
real function.

(v) On the real axis, a positive real function can have
only simple zeros, each with negative imaginary
coeScient, and simple poles, each with positive imagi-
nary residue.

Before we conclude this section, we make a number of
general remarks about this description of a quantum sto-
chastic process by the generalized Langevin equation.
The quantum Langevin equation (2.1) is a macroscopic
equation. What we mean by this is that it is a contracted
description of the system; the dynamical variables of the
heat bath appear, only in the random force F(t). It is also
a phenomenological equation. By this we mean that the
interaction with the heat bath is uniquely characterized
by the spectral distribution Re[p(~+iO+}], which, in
principle, could be determined experimentally, although
in most applications it is derived on the basis of some mi-
croscopic model of the bath. As with all macroscopic
descriptions, this one has the subtle diSculty that, al-
though we believe that it is appropriate to the description
of a wide variety of systems (e.g. , a Brownian particle in a
dense Quid, or the electrons in a metal, or a Josephson
junction), we can only derive it for simple microscopic
models (e.g., systems of coupled oscillators). ' In this re-
gard perhaps it is worth quoting the remark of Benguria
and Kac, "It follows that either the Langevin equation
here is a fluke of the special FKM model which led to it
or that there is no general valid quantum Langevin equa-



mX+gx+ V'(x)=F(t) . (2.10)

This corresponds to the original, classical form of the
Langevin equation. In this case, since the past motion
does not appear, one says there is no memory. On the
other hand, the autocorrelation (2.2) of the quantum-
1Tlechanlcal random force becomes

=~f dro Ace coth(fico/2kT)cos[ro(t —t')]
'll 0

tion. " (FKM is Ford, Kac, and Mazur. )

If this is a general macroscopic phenomenological
description, then some general constraints are set by our
physical intuition about the systems to which it applies.
One of these is that the mean force exerted by the heat
bath (sometimes called the radiation reaction force) be
linear in the particle motion. Another is that this force is
the result of a given motion of the particle and is in-
dependent of how that motion arose. This last implies
that the memory function @{t) should be independent of
the potential V(x) and the particle mass m and should
depend only upon the parameters describing the coupling
to the heat bath.

Although we have used the language of particle motion
in our formulation of this description, it should be clear
that the description is more general than the language.
Thus, the operator x in the quantum Langevin equation
(2.1) can be a generalized displacement operator. By this
we mean an operator x such that a term V(x, t)

xf (r),—with c number f (t), added to the microscopic
Hamiltonian of the system, results in an added term f (t)
on the right-hand side of (2.1). One can therefore apply
this description to an equation which is formally similar
to the Langevin equation but in which the physical rnean-

ing of x is difI'erent. One must, however, be cautious to
check the above generalized displacement property.

The case of constant friction is of special interest.
There the spectral distribution is independent of co:

Re[P(ro+i0+ )]=g, where g is the friction constant. The
equation (2.1) then takes the form:

term in (2.1) is i = —00. This is a clear indication that
time-reversal invariance is broken, since the distant past
is singled out over the distant future. On the other hand,
the equation is invariant under time translations:
i~i+to, which means that the solutions x(t) corre-
spond to a stationary quantum stochastic process.

III. THE POSITIVITY CGNDITIQN

& = f (t)(U(t)), (3.1)

where u =x is the particle velocity operator. The net
work done on the system in the cycle is, therefore,

W= t t ut (3.2)

The mean or expectation value of the velocity appears in
these expressions because the second law addresses mean
values; fiuctuations are another matter. The work (3.2) is
therefore the thermodynamic work and must be positive.

If we introduce Fourier transforms, the Parseval for-
mula allows us to write

Here we show that the positivity condition (2.5) is a
consequence of the second law of thermodynamics, which
in the Kelvin-Planck form states "It is impossible to con-
struct an engine which wi11 work in a complete cycle, and
produce no cScct excepting the raising of a weight and
the cooling of a heat reservoir. "' In our case we choose
the heat reservoir to be the system of a quantum particle
coupled to the heat bath. %'e then consider the efkct of
an applied c-number force f (t) that acts on the particle.
We suppose that this applied force vanishes in the distant
future and past, but is otherwise arbitrary. Its CSect,
therefore, is to carry the reservoir (particle coupled to the
heat bath) from a state of equilibrium, through a (con-
tinuous) sequence of intermediate states, and back to a
state of equilibrium. Thus, the external force works in a
complete cycle on an otherwise isolated reservoir. The
second law requires that the net work done by this force
be positive.

In this cycle the instantaneous power supplied by the
force f (t) is

=kT( coth[~kT(& ——i')/&],
t

(2.11) f des f(co)(V( —co)) )0,
2K

(3 3)

which is not proportional to a 5 function in time (or,
more generally, not proportional to an exponential).
Thus we have the situation that, although there is no

memory, the quantum-mechanical process is not Marko-
vian in the customary sense of the term. In the classical
mechanical limit, taking fi +0, we see from (2.3—) that the
commutator vanishes and the autocorrelation (2.11) of
the random force becomes

where, as in {2.4), we denote the Fourier transforin by a
t1ldC, C.g.,

8'(co)= f dt e' 'U(i) . (3.4)

Now, since the memory function is independent of the
external potential, it is sumcient to consider the case of a
free particle, for which the Langevin equation (2.1) takes
the form

(2.12) mu+ dtpt —t u t =I t+ t (3.5)

which is the familiar form of the (Markovian) classical
theory. Note that this limit is not uniform. The time
scale is A/kT, independent of the friction constant g, and
becomes longer as the temperature decreases.

As a final remark, we draw attentiog. to the fact that
the lower limit on the time integration in the memory

[ i corii +P—(~+0+ ) ]( U (~) ) =f(~), (3.6)

where we have used the fact that F(t) has mean zero.
Putting this in (3.3), we find

Forming the mean and taking the Fourier transform, we

get
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eke p, ~+iO+ U ~ (3.g)

The second law requires that this be positive for any f (t)
which vanishes at t =+~. Since j'(co) and, through
(3.6), (8'(to) ) are therefore arbitrary, the integrand in this
expression must be positive for sll m. %'e thus obtain the
positivity condition (2.5).

%e conclude this section with a pair of remarks about
this deceptively simple proof. Clearly, it is important
that the operator x be a generalized displacement opera-
tor, so that f (t)(U(t) ) is the instantaneous power sup-
plied by f. Recall that a generalized displacement opera-
tor x is one such that a term V(x, t) = xf (t) add—ed to
the Hamiltonisn of the system of particle plus heat bath
results in a term f (t) added to the right-hand side of
(2.1).

In the proof we have assumed that when f (t) =0, the
system will in the course of time relax to s unique
thermal equilibrium state. This is the passivity condition.
This requires that the memory function must vanish for
long times,

p(t) ~ 0. (3.9}

In practice this requires that the number of degrees of
freedom in the heat bath be infinite and that the spectral
distribution Re[p(co+iO+ )] be a function (no 5-function
singularities). Indeed, when these conditions are not met
there is in our opinion no macroscopic description of the
form (2.1).

IV. THE INDEPENDENT-OSCILLATGR MQDEL

The macroscopic description given in Sec. II can be
realized by an oscillator model of the heat bath. That is
the main result of this section.

The IO model is the very simple model in which the
quantum particle is surrounded by a large (eventually
infinite) number of heat-bath particles, each attached to it

by a spring. The Hamiltonian of the system is then

2 2

H = + V(x)+ g + m, co~(qj —x) .—(4.1)
2&i 2' 2

%e, of course, have the usual commutation rules:

[x,p ]= I A, [q~ ,pk ]= I A5JI, . (4.2)

and all other commutators vanish. This model is not
original with us, yet it appears rarely in the litera-
ture. " ' Much more frequently appearing is the
superficially similar linear coupling model in which the
bath particles are attached to a fixed origin [i.e., in the

(3.7)

Replacing in the integration ~~ —m and using the reali-

ty condition (2.6), we see that within the square bracket
only Re[P(co+iO+)] contributes to the integral. If we
then use the reality condition on the velocity,
U( —co) = [V(co)]', we obtain the following expression for
the net work done by the force f (t):

sum in (4.1) x is set equal to zero] and the coupling is
represented by adding a term of the form: x g A, .q .
%e shall have more to say about such models in Sec. V.
Here we only stress that for any potential V(x} for which
the uncoupled particle Hamiltonisn,

Ho —— + V(x),2' (4.3)

has a spectrum with a lower bound, i.e., hss a ground
state, the same will be true of the Hamiltonian (4.1). It
will not be true in general for these other models.

The derivation of the generalized Langevin equation
from the IO model takes but a few steps. The Heisenberg
equations of motion from (4.1) are

x =[x,H]/ih=p/m,

p = [p,H]/i'= —V'(x)+ g m/re~(q~ —x),
J

q = [q, ,H]/i A=p, /m, ,

PJ = [pl, H ]/i A = —m Icoj~( q~
—x ) .

(4.4)

Eliminating the momentum variables, we can ~rite these
in the form

mx+ V'(x)= g m&co (Jqj
—x),

J
(4.5)

(4.6)

sin(co t}
q,"(t)=q, cos(co, t)+p,

7?2)Q3~

(4.8)

where q and p are time-independent operators satisfying
the same commutation rules (4.2).

The seemingly straightforward step leading to (4.7) is,
in fact, profound, since in choosing the retarded solution
of the inhomogeneous equation we have broken the
time-reversal invariance of the original equations. The
picture we have is that in the distant past the quantum
particle is held fixed at x=0, say, by fastening it to a
large mass. The oscillators are then allowed to come to
equilibrium at temperature T, ssy, by s weak coupling
with still another bath. Then, still in the distant past, the
system is released snd the subsequent motion is governed
by the Hamiltonian (4.1). This is typical of the way
time-reversal invariance is broken in macroscopic equa-
tions: they describe only the time development of a class
of solutions of the microscopic equations.

The remaining steps are indeed straightforward. %e
substitute (4.7) in (4.5) to get the Langevin equation (2.1)
with

p(t) = g ma), co(as) t)e(t),
J

(4.9)

Equations (4.6) are inhomogeneous difFerential equations
for the q, , whose general solution is

qi(t) =q~"(t)+x (t)—f dt'cos[n&J(t —t')]x(t'), (4.7)

where q "(t) is the general solution of the homogeneous
equation (x =—0). This is given by
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where e(t) is the Heaviside step function, and with

F(t)= g m. co.q. (t) . (4.10)

2 I 2 21
Hti = g pj + i m Jcoj q&

j J
(4.11)

corresponding to fixing x=0 in (4.1). This means that

(q q„):Tr[—q q„exp( Haik—T)]/Trfexp( —Hti IkT)]

coth(fico, l2kT)5,„,
2t72j 0)j
'RPl) 6))

&p,p &= ' 'coth(f, /2kT)5, „, (4.12)

To find expressions for the autocorrelation and com-
mutator of F(t), we recall the expression (4.8) for qj"(t)
and that in the distant past the oscillators are in equilibri-
um at temperature T and with respect to the Hamiltoni-
an:

spectral distribution. This in turn means that, with the
Stieltjes inversion theorem (2.7), one can represent the
most general positive real function, and through it the
most general quantum Langevin equation. Vfe stress that
this does not mean that in every physical situation in
which this equation arises the actual bath is an IO bath,
but rather that from a study of the equation and its solu-
tions (i.e., from the macroscopic description) one cannot
tell the difterence. It is remarkable that such a naive and
simple model has such generality.

V. OTHER MODELS

In this section we discuss a number of other heat-bath
models within the framework of the general macroscopic
description of the quantum I.angevin equation. For this
purpose we And the IO model to be convenient since
these other models can generally be related to an IO
model.

&q,pk &= &p»q~ &—=-,'i&5ja

With these, using (4.8) and (4.10), we find

—,'(F(t)F(t')+F(t')F(t) )

= —,
' g f'tm co coth(fico~ /2kT)cos[coj(t —t')] .

J

{4.13)

A. Velocity-coupling model

This model is a version of the IO model in which the
coupling is through the particle momentum. %'ith
suScient generality it corresponds to the Hamiltonian

1
Hvc —— p+ X mjcojq~ + V(x

2&l

In a similar way, using the commutation relations (4.2),
we And

2
PJ 1+ g + m&co&qj-

i
(5.1)

[F(t),F(t')]= i g firn—co sin[co, (t —t')] .
J

The final step is to form

P(z)= I dt e"'g m co cos(co, t)
J

(4.14) This model has a number of attractive features, e.g., the
translation invariance for the free particle ( V=O) is im-
mediately obvious. It is, however, identical with the IO
model, as the following argument shows. We first make a
unitary transformation corresponding to the operator:

i 2 1 1+ +J J
(4.15)

Using the well-known result, 1/(x +i 0+ )

=P(1/x) —i tt5(x), we see that the spectral distribution
is given by

l
U =exp ——x pm co q,

J
(5.2)

p ~U pU =p —g m. co q, x ~x
J

It is a simple matter to show that under this transforma-
tion

Re[P(co+ iO+ )]=—g m co [5(co i.)c+o.5( +—co)c]o.

(4.16)

pJ ~pJ —PljCOjX, Q'j ~Q'J.

Hvc UtHvc U = + V(x)
2&1

(5.3)

With this it is clear that (4.13) is equivalent to {2.2) and
that (4.14) is equivalent to (2.3). (Note that this is a posi-
tive, even distribution. ) Finally, we have the Gaussian
property of F(t), which follows from the same property
of the q. and p . %'e will not discuss the Gaussian prop-
erty further here since it is adequately treated in the
literature. '

It is clear that, by suitably choosing the distribution of
the frequencies and force constants for the independent
oscillators, one can, with (4.16) represent the most gen-
eral real, positive, even distribution, i.e., the most general

2A . 2m a)
(5.4)

Again, it is straightforward to show that

j ™j
Next, we make a second unitary transformation of the
bath variables alone, corresponding to the unitary opera-
tor
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Hvc~ U]Hvc U,
(5.5)

three components of k contribute to the coupling in each
spatial direction. This gives a factor of —„so that for the
blackbody radiation heat bath the expression (4.16) for
the spectral distribution takes the form

2 2

+ V(x)+ g +—,'m co (qi —x)
j . j

But this is exactly the Hamiltonian (4.1) of the IO model.
Therefore, the velocity coupling model is equivalent to
the IO model, and leads to the identical form (4.16) for
the spectral distribution Re[P(co+iO")] characterizing
the quantum Langevin equation. %'e should perhaps
stress the fact that in making this conclusion it is impor-
tant that the unitary transformations (5.2) and (5.4) do
not change the coordinate operator x.

8. The blackbody radiation Beld

Re[p(co, +iO+ )]= —g m»co„[5(co—co». )+5(co+cok )]
k

4m. e g f» [&(~—~» )+&(~+» }1 .

(5.11)

Although with this expression we have shown the
equivalence of the blackbody Geld to an IO heat bath and
have in principle completely characterized the quantum
Langevin equation for the blackbody field, it is perhaps
useful to exhibit some more explicit formulas. Thus, the
(three-dimensional) random force is

A one-electron atom interacting with the radiation
field in the dipole approximation corresponds to the
Hamiltonian

e BA
c Bt

(5.12)

1 e
HqaD = p+ —& + V(r)+ g &ct)» (a„z.a„,+-,' ),

k, s

(5.6)
dk

(2~)'
(5.13)

In the limit of large volume for the blackbody cavity, we
can use the familiar prescription

where the vector potential is given by
1/22'A= X y f»ex, .(&k, '+a~, .} .

~kV
(5.7)

to write the spectral distribution in the form

2 2 2

Re[P(co+iO+)]= Jdk f&5(co cu»)—= f& .
6m 3c

(5.14)
Here the symbols have their usual meanings. ' The
quantity fk is the electron form factor (Fourier transform
of the electron charge distribution). Without loss of gen-
erality, we have taken the form factor as well as the po-
larization vector ck, to be real, The form factor, which
is sometimes caBed a cuto8'factor, must have the proper-
ty that it is unity up to some large cutoF frequency 0
after which it falls to zero.

The electrodynamic Hamiltonian (5.6} is a three-
dimensional version of the velocity coupling Hamiltonian
(5.1). To see this more precisely, we introduce

0f»= +0 (5.15)

Using this in (5.14), the Stieltjes inversion formula (2.7)
gives

The physically significant results for this model should
not depend upon details of the electron form factor, sub-
ject, of course, to the condition that it be unity up to
some large frequency 0 and falls to zero thereafter. A
convenient form which satisfies this condition is

4~e f»
mI, ——

CO2, V

2e'0 z
3e3 z+i A

(5.16}

and write

~&~I Vk, s+ V'k, s
~ks=

+2m» Act)»

The Hamiltonian (5.6) then can be written

1
HqED = p+ g m»~»9k sea s + V(r}

k, s

2

2+ g 2 pt, .+ 2
m»~»9v, s

2fPV I
' 2

This form is clearly equivalent to the velocity-coupling
model (5.1), excepting only the trivial difference that, be-
cause of the transversality condition, only two of the

This is the form obtained by direct calculation in an ear-
lier publication. ' Note, incidentally, that we see here a
manifestation of the general feature that the memory
function is independent of the external potential and the
particle mass.

C. I.inear-couyHng models

The linear-coupling model appears frequently in the
literature and in many guises. It is sometimes called the
Ullersma model, ' although it was discussed by several
authors before Ullersrna. ' ' '" Another equivalent ver-
sion is the Schwabl- Thirring model. These are all
oscillator-bath models in which the coupling to the parti-
cle is through a term linear in the particle displacement.
The Hamiltonian is therefore of the form
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2 2

+V(x)+ g + —M co q, +x gkq, .
2@i

(5.17)

However, this Hamiltonian has a grave defect: for a free
particle, V(x) =0„ there is no lower bound on the energy.
This means that there is no thermal equilibrium state; the
bath is not passive. A separate defect is that, again for
the free particle, the Hamiltonian is not invariant under
spatial translations. Now, in the papers we have cited,
the authors have, at least implicitly, recognized this and
repaired the linear coupling Hamiltonian by adding at a
later stage a term

'7T JJ(co)=—g [5(co—coi) —5(co+coi)] .2, M e)J
(5.24)

Their relation with the spectral distribution (5.21) of the
repaired model is

y(—co)/co =J(co)/co=Re[P(m+iO+ ) j .
2

(5.25)

Ullersma's paper M, =1):"
A.

y(co) = g [5(co—roj )+5(co+co, ) j . (5.23)
M

The second has been called the spectral density, ' and is
given by

2
2X

2MJ' Q)J
(5.18)

D. The rotating-wave approximation

With this addition the linear couphng Hamiltontan (5.17)
becomes

HLc —— + V(x)p
2P7l

2 '2

+g +—MJ~, q+ xPJ 1

J. 2MJ. 2 J J J
MJ. &l2 V(x) = —,'mmox (5.26)

This is a version of the linear-coupling model. It ap-
pears frequently in works an quantum optics, where it is
generally applied to the case of the oscillator. %'e do so
here and consider the Hamiltonian (5.17) for the linear-
coupling model with external potential of the form

(5 19) If one then introduces the familiar oscillator operators

But this is just the IO model. To see this explicitly, make
the canonical transformation: q, ~—(A,J /MJ co )qj,
p, ~—(M coi~/A, , )p . Then the Hamiltonian (5.19) be-
comes the IO Hamiltonian (4.1) with

fPl coox +1P M~coJqJ + lPJ.a= J J J

(2m' )' (2M i)'iso )'

this linear-coupling Hamiltonian becomes

(5.27)

m~ =A, . /M co . . (5.20)

For this repaired model, the spectral distribution (4.16) is

HLc Ac@0(aa——+ ,
' )+ g A—coj(b/b~ + —,')

J

Thos, when properly repaired, the linear-coupling
model is equivalent with an Io model. Unfortunately, it
is not always realized that such a repair is necessary to
make a physically consistent model, and this has led to
errors in the subsequent literature. Moreover, the repair
is not unique. For example, an added term of the form

1
—,'Kx + — QA, q,

. J
(5.22)

~here K is a positive constant, will also repair the Hamil-
tonian. But the result is a difFerent model. In the well-
known work of Ullersma it was just such a confusion
which led to an incorrect form for the Langevin equation
for a charged oscillator interacting with the radiation
field (Ref. 17, Sec. 6), a form which misses the important
high-temperature T dependence of the oscillator ener-
gy.

It would perhaps be useful to give here the relation
with a pair of functions which have appeared in the
literature in connectio~ with the linear-coupling model.
The 6rst of these is Ullersma's strength function (in

AlJRe[P(co+iO+)]= —g 2
[5(co—coj)+5(co+coi)j .'J JJ

(5.21)

(ab +ab, +a b~+a b/) .
2(mMJcooco; )'

(5.28)

The rotating-wave approximation consists in discarding
the terms ab. and a b in the second sum to get

HRwA=i)'iaido(a a+ )')+ QAco (b bj+ —,')'
+g, (ab +a bj) . (5.29)

, 2(mM, ~O~, )'"
This is the rotating-wave-approximation Hamiltonian.

If we return ta the original operators, using the expres-
sions (5.27) for the oscillator operators, the rotating-
wave-approximation Hamiltonian takes the form

2

HawA= + &mcoox + g + M el&
l 2 2 Z

2l?2 2m, - 2

2m coo . MJ aa

Here we see that the rotating-wave approximation is ob-
tained by replacing in the linear-coupling model half of
the coordinate"coordinate interaction term with a corre-
sponding momentum-momentum interaction term. Like
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8M a) amer
(5.31)

which results in the Hamiltonian
2

1 ~ 1
+RwA

2
P+ g 2M Pj +

2m 2MJa) uo J 2

2

+ g + M&Ci7& qj+ 2
XPJ1 2'

2m, ~,'

(5.32)

This repaired Hamiltonian is equivalent to an IO Hamil-
tonian. To see this we first make a unitary transforma-
tion with the operator

U2 ——exp ix g—
2A

(5.33)

Under this transformation,

the linear-coupling Hamiltonian this one is defective in
that the bath is not passive. [In the language of quantum
optics and the form (5.29) of the Hamiltonian, for coo

suSciently small the lowest normal mode frequency of
the system is imaginary. There will then be an associated
continuous spectrum of energy eigenvalues stretching
down to —~.] The Hamiltonian must therefore be
repaired and, again as with the linear-coupling Hamil-
tonian, this repair is not unique. One obvious possibility
is to add the terms (in the language of quantum optics
these would be called self-interaction terms)

repaired one gets an IO model. It would be much simpler
to start from the beginning with the IO model, which is
exactly solvable, with no need for any approximation. It
is surprising that this does not seem to have been recog-
nized in the many papers in which this approximation
has been applied. Lest we be misunderstood, we hasten
to say that this remark does not apply to the use of the
rotating-wave approximation in discussing spin motion as
in the nuclear magnetic resonance problem.

Before we leave these linear-coupling models we want
to stress again that they all correspond to a bath which is
not passive. This means that they must be repaired and
the repair is not unique. %e have just seen how, starting
from the same linear-couplrng model, one is led by what
seems only a trivial change of formalism to make
diFerent repairs which seem "natural" but which give
quite diFerent forms for the Langevin equation.

E. The FKM model

The FKM (Ford, Kac, and Mazur) model is of interest
chieAy because the paper in which it appeared was the
first in which the correct formulation of the quantum
Langevin equation was indicated. ' The model corre-
sponds to a system of (2%+1) identical coupled oscilla-
tors, with the one with index 0 singled out and placed in
an external potential V. The Hamiltonian is of the form

N
1

N

H= g p;+ —m g q A;I, qz+V(qo),
i= —N i, k= —.7

(5.38)
kJp~U2pU, =p —g p, , x~x

2MJ 63J.coo

PJ ~PJ, Q'J ~g'J + x
2MJ Q)J Q)o

and the Hamiltonian (5.32) takes the form

+RWA U2+R%A U2

2

+—m NOX
2m 2

p& 1 k&(CiP& +CAPO)+—M, co,
'

q, +
2M ~ coo

Finally a canonical scale transformation,

A&(co& +coo) 2' QPJ coo

(5.34)

(5.35)

where the interaction matrix A is a symmetric cyclic ma-
trix whose elements can be written in the form

AJ&
—— g aP&exp[i2rrk(j —I)/(2%+I)] .+ k= —X

(5.39)

The eigenvalueS Of the matrix A are cok
——~

k =1,2, . . . , X, and cuo2 ——0. These are therefore the nor-
mal mode frequencies of the coupled system in the ab-
sence of the external potential V. The system is therefore
guaranteed to be passive. The eigenvalue zero corre-
sponds to the uniform translation mode. Thus it is possi-
ble to write the Hamiltonian in the form

H= g p,2m

puts this Hamiltonian in the IO form (4. 1) with

A.j~ ( coo +cia~).
4mJQ) QPo

(5.37)

Thus, the result of all these manipulations is again an IO
model. This means that the rotating-wave approximation
serves no purpose. That is, it is only a variant of the seri-
ously Sawed linear-coupling model, and %'hen the Raw is

+ —,'~ g (q; —qo) A;I,. (ql, —qo)+ V(qo) . (5.40)
i, k = —A'

From this form it is clear that by a canonical coordinate
transformation this Hamiltonian can be brought into the
IO Hamiltonian. However, the transformation is rather
complicated and uninstructive, so we will forego giving
its explicit form. %e can, however, express the relation
with the IO model simply in terms of the positive real
function:
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G (z) = —iz ()( A —z )
~ a2k —z' '

(5.41)

x(t)=u(O, t) .

The pa1t1cle equat10Ils of motion are

mx + V'(x) =f (t),

(5.46)

(5.47)

P(z }=m /G (z) + imz . (5.42)

[Note that for large z, G(z) i/-z ].
If one introduces the normalized spectrum of eigenfre-

quencies

where )( ()Oo indicates the 00 element of the matrix
within the double bars. The function p of the corre-
sponding IO model 1s g1veIl by

where f (t) is the constraint force exerted by the string on
the particle. The field equations of motion for the string
become the inhomogeneous wave equation

B'u zB u f(t)& (5.48)
Bt By

where c =(~/cr)' is the wave velocity. The retarded
solution of this equation is

N

g(co}= g [5(co—a)k }+5(co+tot,)],+ k= —N

(5.43) u(y, t)=u "(y, t) — I dt'f (t'),
2O Q —oo

(5.49)

then one can write

G(z) = iz —dao
z

g(~)
0 ~ —Z

(5.44)

Here one sees that, by appropriately choosing the spec-
trum of eigenfrequencies, one can represent the most gen-
eral positive real function through Eqs. (5.42) —(5.44).
Thus, the model described by the Hamiltonian (5.38} is
completely equivalent to the general IO model. This gen-
erality was, however, not made explicit in the original
FKM paper, where the interest was in deriving a model
with a constant friction constant. Therefore at an early
stage the transition to the limit of a continuous distribu-
tion of eigenfrequencies was made. The spectrum was
then chosen to be g (to) =(2f /m )(co +f ) ', which leads
to the Langevin equation (2.10) with P(co+iO+)=g=mf.
This s the FKM model.

F. The Lamb model

(5.45)

where u (y) is the string displacement. The mass per unit
length of the string is o and the tension is v. Note that
the string is stretched along the y axis and the particle
displacement is alolig the x axis, perpendicular to the
string. Note also that there is no interaction term in the
Lagrangian', instead one imposes the constraint

The Lamb model is the simple, physically intuitive
model in which the particle is attached to the center of an
infinite stretched string. It was introduced by Lamb in a
paper written in 1900„2 with the purpose of understand-
ing the then new notion of radiation reaction in electro-
dynamics. Since there exists in the literature a proof of
the equivalence of the Lamb model with the FKM model
and, hence, with an IO model, we do not discuss the
equivalence here. Rather, we think it will be more in-
structive to present the derivation of the Langevin equa-
tion in the field theoretic language appropriate to ihe
description of the model.

The Lagrangian for the Lamb model is
'2

I. = —,'mx —V(x)+ dyI
o Bu 7 Bu

0 2 Bt 2 i)y

where u "(y, t) is the general solution of the homogeneous
equation. Setting y=O and di8'erentiating with respect to
t, we can solve for f (t) to find

f(t)=2oc [u "(O, t) —u(O, t)] . (5.50)

Substituting this into (5.47) and using the constraint
(5.46), we get the classical Langevin equation (2.10) with
friction constant

(=2oc =2&or

and with random force

F(t)=2&oru "(O, t) .

(5.51)

(5.52)

VI. CGNCLUDING REMARKS

Problems involving quantum dissipation occur in such
diverse areas of physics as statistical mechanics, con-
densed rnatter, quantum optics, and even atomic physics.
The quantum Langevin equation aff'ords a powerful and
physically appealing approach to such problems. %'e
would not, however, want to appear to claim that this is
the only possible approach, nor always the best approach.
Such formulations as that in terms of path integrals, ' or
that in terms of the quantum Fokker-Planck equation,
can o6'er particular advantages. %e ~ould rather stress
the generality and precision of the formulation in terms
of the quantum Langevin equation.

Our point of view in this work has been that the quan-
turn Langevin equation corresponds to a macroscopic
description of a quantum system interacting with a
quantum-mechanical heat bath. Our main motive has
been to show that this description can be precisely formu-
lated, using such general physical principles as causality
and the second law of thermodynamics, and such
mathematical notions as the theory of positive real func-
tions. %e have stressed that this is a model-independent

This is the Lamb model. It is clear that the quantum
generalization is straightforward; one need only quantize
the string field.

The phenomenon of dissipation and the corresponding
breaking of time-reversal invariance is made especially
clear in the Lamb model. Dissipation occurs because the
particle radiates waves which, due to the infinite length of
the string, never return.
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formulation.
The fact that the description is macroscopic does not

mean that the particle is necessarily macroscopic; the
description applies to a single atom, ' or to a Josephson
junction. Rather, it is the bath which must be macro-
scopic, with an in5nite number of degrees of freedom.
This requirement is not superficially obvious from the
general description we give in Sec. II, nor in the deriva-
tion of this description from the IO model we give in Sec.
IV. Indeed, that derivation formally applies for a bath
consisting of a single particle. Rather, it appears in more
subtle ways, in particular, in the requirement that there
be a unique equilibrium state.

The IO model has played a prominent role in our dis-
cussion. 4'e stress that this is largely for reasons of con-
venience. The model is simple, physically sound, and can
easily be solved exactly. Yet the most general heat bath
can be represented by an IO model, It is therefore very
handy for calculations. But the macroscopic description
is model-independent.

An additional advantage of the IO model is that it can
incorporate many other models that have appeared in the
literature. This allo~ed us in Sec. V to discuss in a
unified way such diverse models as the velocity-coupling
model, the blackbody radiation heat bath, the FKM
model, and the Lamb model.

In Sec. V we discussed the linear-coupling models and
pointed out that these models correspond to a heat bath
that is not passive. This is a serious Aaw; such a heat

bath violates the second law of thermodynamics. This is
not to say that all the works written using this popular
model are wrong. Most authors have, at least implicitly,
recognized this Raw and repaired it, for example, by add-
ing at a later stage a "counter term, " ' or by imposing a
"positivity condition" on the external potential. Other
authors, however, do not appear to have appreciated this
subtlety and the use of linear-coupling models has led to
persistent errors in the literature. For example, in Ref.
17, which has been the basis of many discussions in the
field of quantum optics, the discussion of an elastically
bound electron in the electromagnetic field is marred by
an error stemming from the nonuniqueness of the repair
of linear-coupling models. Our conclusion is that, since
they must be repaired to make them physical and the
repair is not unique, linear-coupling models (including
the variant called the rotating-wave approximation) are
dangerous to use. Moreover, any repaired linear-
coupling model is equivalent to an IO model. It would
seem to us that if one wishes to employ an oscillator mod-
el, the physically sensible IO model is to be preferred.
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