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Field theory of pattern identification
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Based on the psychological experimental fact that images in mental space are transformed into
other images for pattern identification, a 6eld theory of pattern identification of geometrical pat-
terns is developed with the use of gauge Seld theory in Euclidean space. Here, the "image'* or state
function /[X] of the brain reacting to a geometrical pattern X is made to correspond to the
electron's wave function in Minkowski space. The pattern identi6cation of the pattern 7 with the
modified pattern X+bX is assumed to be such that their images t/i[I] and /[X+ b,X] in the brain are
transformable with each other through suitable transformation groups such as parallel transforma-

tion, dilatation, or rotation. The transformation group is called the "image potential" which corre-
sponds to the vector potential of the gauge 6eld. An "image 6eld" derived from the image potential
is found to be induced in the brain when the two images /[X] and /[X+ bI] are not transformable

through suitable transformation groups or gauge transformations. It is also shown that, when the
image field exists, the final state of the image ti[X] is expected to be different, depending on the

paths of modi5cations of the pattern 7 leading to a final pattern. The above fact is interpreted as a
version of the Aharonov aud Bohm effect of the electron's wave function [A. Aharouov and D.
Bohm, Phys. Rev. 115, 485 (1959)]. An excitation equation of the image field is also derived by pos-
tulating that patterns are identified maximally for the purpose of minimizing the number of memor-

ized standard patterns.

I. INTRODUCTIQN

Pattern identification is considered as one of the most
fundamental types of information processing in the brain
for recognizing the physical world. ' The objects to be
identified are not limited to geometrical patterns, but ex-
tend to more general physical objects, such as a classical
or quantum particle. For example, the wave function of
a moving electron at a point in Minkowski space is
identified with that at another point through an elec-
tromagnetic field (or group transformation). In the pro-
cess of the pattern identification of geometrical patterns„
the various features are extracted from the object, ana-
lyzed, and finally reorganized to give rise to its image in
the brain. The constructed image is compared with the
ones stored in memory through suitable transformation
groups such as rotation, parallel translation, dilatation,
or mirror inversion. The group property of the transfor-
mations is important from the point of view of "informa-
tion contraction. " In other words, many patterns are re-
duced to standard ones through the group trsnsforma-
tions. The mechanism of some basic group trsnsforma-
tions is considered to be inherently present in the brain.
Discovery of new group trsnsformations enables us to
find the identity between physical quantities which were
considered to be totally different. In order to make
pattern-recognition instruments similar to human visual
perception, much theoretical efFort has been made on
how to extract invariant features fmm geometrical pat-
terns under given transformation groups. Recently, a re-
markable psychological experiment has been done to
show that the time required to identify the same patterns
with difFerent spatial orientations increases linearly in

proportion to their angular differences. i This fact sug-
gests that the image produced in the brain is rotated for
identification with the original image.

In the present paper, based on the above-mentioned ex-
perimental facts, we introduce a postulate that geometri-
cal patterns are identified when their images constructed
in the brain can be transformed into each other under
suitable transformation groups. Recognizing the image
as a physical quantity with invariant features under given
group transformstions, snd using the mathematical struc-
ture of gauge field theory~ in Euclidean space, we develop
an identification theory of geometrical patterns. Here the
image /[X] of a geometrical pattern X is made to corre-
spond to the quantum wave function of an electron, the
pattern X to the Minkowski space coordinates, and the
"image potential" introduced through transformation
groups to the vector potential of the electromagnetic (or
gauge) field in Minkowski space. An "image field*' corre-
sponding to the electromagnetic field is also introduced
through the image potential. The mathematical relation
between the image potential and the image field is the
same as that between the connection coefficient and the
curvature tensor in difFerential geometry. If the
difFerence between two images cannot be canceled out by
suitable coordinate transformations in the image space,
the image field is induced in the brain and the two corre-
sponding patterns are interpreted as having difFerent in-
formation contents. In other words, the difFerence in in-
formation content is represented by the excitation of the
image field in the brain. The concept of the image field
will give a new method to explain optical illusions or the
hysteresis efFect in visual perception, which is a version of
the Aharonov and Bohm efFect of the electron's wave
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function. Postulating that patterns are identified maxi-
mally for the purpose of minimizing the number of
memorized standard patterns, we derive an excitation
equation of the image field.

II. FIEI.D THEORY OF PATTERN IDENTIFICATION

Let us consider first a stationary geometrical pattern in
three-dimensional space. A finite volume of three-
dimensional space within a 6eld of vision is supposed to
be digitized into n spatial elements v, , i =1,2, . . . , n of
equal shape. The spatial pattern is assumed to be
represented by the light intensity x, , i =1,2, . . . , n or
brightness of each spatial element. An n-dimensional
pattern space equipped with an orthogonal coordinate
system is introduced, and the light intensity of each spa-
tial element is scaled on each coordinate. Accordingly, a
point vector

X=(xi)xp). . . ) x„)
in the pattern space corresponds to a geometrical pattern
within our visual field. Similarly, let us introduce an M-
dimensional image space in the brain, in which the image
produced corresponding to pattern g is represented by a
point vector /[X]. The image it [X] is also interpreted as
the state vector representing the distribution of fired neu-
rons in the brain reacting to the stationary pattern g, so
that the image is regarded as a physical reality to be ob-
served in a theoretical sense.

For a temporally varying pattern, its image /[X] is
considered to be constructed in a way that depends not
only on its light-intensity distribution, but also on its
temporal change. For example, let us consider a round
trip of a temporal pattern modification such that a hor-
izontally elongated elliptic circle is gradually changed
into a vertically elongated one via a true circle, and vice
versa. Then the first turning point at which the true cir-
cle is recognized in the forward path is, in general, per-
ceived as different from the second one which is recog-
nized in its return path. The discrepancy in the turning
points shows an optical illusion and is interpreted in such
a way that the image corresponding to a temporally vary-
ing pattern depends not only upon its light-intensity dis-
tribution, but also upon its temporal change. Taking this
into account, we introduce a simple assumption that the
image corresponding to a temporally varying pattern is
constructed in a way that depends not only on its light-
intensity distribution (xi,xi, . . . , x„),but also on the ve-

locity (x„x2, . . . , x„) of its temporal change. In other
words, the pattern vector 7 for a temporally varying pat-
tern is assumed to represent a 2n-dimensional vector,
(

ex i,x2, . . . , X„)xi,x2). . . , x„).
Now, the image vector |t)[X] corresponding to a sta-

tionary or temporally varying pattern is assumed to be
expanded with the use of the basis vectors
a =1,2, . . . , M as

A[X]= g O'[XN. [X],

where 1(' is the component of g along the g, axis, and
hereafter, repeated indices are assumed to be summed, so

that Eq. (1) is simply written as

+[X]=0'[Xl(.[X]

Now we introduce transformation matrices R," of the
basis vectors,

g,'[X]=A~[X,a„a,, . . . , a ]gt, [X],
which is assumed to compose a continuous Lie group
with p parameters a, , ~z, . . . , o.~. Especially, for
infinitesimal transformation, we have

R [X;e',e', . . . , e']=1+@"[X]U„,

where c~ "[X],r =1,2, . . . , p are infinitesimal parameters
and U', r =1,2, . . . , p are constant square matrices of
rank M, independent of 7, which satisfy the group condi-
tion

[U„,U, ]=C„',U, .

Here C„'„r,s, t =1,2, . . . ,p are the structure constants
of the continuous group. The group property of the
transformation U" is essential to the "information con-
traction" in the sense that various modified images are re-
duced to standard ones.

Now let us examine the identification condition of the
infinitesimal variation bX=(5X', . . . , 5X") of pattern X.
We have, from Eq. (1),

/[X+ b X]=1('[X+b X]g, [X+AX] .

Now for the purpose of the identification of 1()[X+A,X]
with 1()[X], we introduce an assumption based on the ex-
perimental facts that the basis vectors g, [X+b X] are
transformed into the new ones g, [X] through the
infinitesimal transformation

g, [X+AX]=(1+a„"5X"U„),gi, [X] .

e" in Eq. (3) is chosen as e„"[X]5X",@=1,2, . . . , n, taking
account of the fact that the infinitesimal parameter e"[X]
should be proportional to the small variation 5X of the
pattern X. Substituting Eq. (6) into Eq. (5) and using Eq.
(1), we have

/[X+ b X]=/[X]+ (B„p'+s„"[X]U'i, 1(")5X"g,[X], (7)

where the second term on the right-hand side means the
deviation of the image 1()[X+XX]from /[X] left after the
coordinate transformation (6) for identification. In other
~ords, a new information quantity representing the
difFerence of /[X+M] from /[X] is included in the
second term. Further, a noteworthy point is that the pa-
rameters 8„"[X]of the transformation group depend, in
general, upon the pattern itself. This represents the
phenomenon of optical illusion, such that if two different
patterns are varied following the same geometrical trans-
formation rule, their corresponding images change, in
general, in a different manner. Figure 1, sketched with
the use of a well-known psychological phenomenon,
shows that the dilatation rate in image space is different,
depending on the pattern itself.

Introducing a covariant derivative of 4' through
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(8)

we have, from Eq. (7),

where B„means 8/Bg", and A„'b denotes e„,Ub' and is
regarded as the connection coeScient in differential
geometry of image space. The identification is assumed
to be possible when the norm of the difFerence vector
/[X+ bX] f[—X] is smaller than a critical distance d„

II@[X+~X]—0[X]ll & u, .

A sufficient condition in order for the inequality (10) to
be fulfilled is found, from Eq. (9), to be given by the con-
dition of the parallel displacement of the image vector
/[X] in the image space with the connection coefficien
A„'b,

The integrability condition of Eq. (11) is given with the
use of Eq. (8) as

where F„'„I,is the curvature tensor defined by

F„'„b——B„A'b —B„A„'i,+[A„,A„]b .

Hereafter, I'„'„b is referred to as the "image field" derived
from the "image potential" Az„. Here [ A„, A, ]
represents the commutation relation, A „A —A A „.
Especially if the transformation groups in the image
space are commutative [A„,A„]=0, the image field
reduces to the electromagnetic field in the n-dimensional
Euclidean space,

Fpvr, =~@~vs dv~ pI»

where p, v=1,2, . . . , n Th. e identification condition (12)
in the above case is satisfied when the potential A„b is
the grad&ent field.

In the gauge field theory of the electromagnetic field,
/[X], X, and A „'b correspond, respectively, to the com-
plex wave function of the electron, coordinates in four-
dimensional Minkowski space, and the vector potential of
the electromagnetic field. The group transformations in
image space correspond also to the rotation group in the
two-dimensional charge space of the complex wave func-
tion. Some of the transformations, such as parallel
translation or mirror inversion, are considered to be in-
herently present in the brain, whereas others are newly
acquired by external learning or creation in the brain it-
self. The creation is considered to be closely related to
the spontaneous generation of images due to the o6'-

equilibrium property of the brain. It is interesting to
study the creation of groups from the viewpoint of pat-
tern formation. If it is possible to find a new transforma-
tion group, we can identify the two patterns, which were
considered to be different, with each other. In other
words, if the integrability condition (11) is satisfied, the
pattern identification is established through the suitable
coordinate transformations forming the parameter-Lie
group, Conversely, if the difFerence between two images
cannot be cancelled out by the suitable transformation
groups that are present in the brain, then the image fields
are induced and their corresponding patterns are inter-
preted as having difFerent information contents. The
difFerence between two patterns is represented by the in-
duction of the image 6eld in the brain. The image field in
the image space is shown to satisfy the commutation rela-
tion of the covariant derivative (8),

FIG. 1. The above 6gure is an example of the optical illusion
that the dilatation rate in image space is„ in general, dilerent
from that in pattern space. Here two pairs of similar patterns
with the same size ratio 2:1 are shown. However, the size ratio
of the pair of the patterns on the right side is recognized as
smaller than that of the similar patterns on the left side. This
example shows that the size ratio of the images of two similar
patterns in the image space divers, in general, from that in the
pattern space. The above consideration suggests the fact that
the parameter 6„' of the coordinate transformations (6) per-
formed in image space for pattern identification depends, in gen-
eral, upon the pattern itself.

Let us suppose the situation that a pattern is
transformed into a final one via two difFerent routes of
geometrical transformations. Then, Eq. (15) shows that
the final images that are constructed after passing
through each route are, in general, difFerent from each
other. The optical illusion stated above is considered as a
version of the Aharonov and Bohm (AB) effect of the
quantum wave function in electromagnetic potentials,
and is expected to be observed in psychological experi-
ments of pattern identification. Here the two-
dimensional space of the complex wave function corre-
sponds to the M-dimensional image space that was intro-
duced in this section. Namely, the complex wave func-
tion of the material wave has the two components, real
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and imaginary parts, whereas the image vector itt[X] has
M components. The phase of the two-dimensional wave
function in the AB eff'ect corresponds to that of the M-
dimensional image space. The phase discrepancy be-
tween the two difterent routes of the pattern transforma-
tions results in the difference between two Anal images.
The optical illusion seems to have a close relation with
the hysteresis e8'ects that are observed in visual percep-
tion.

III. FIELD EQUATION OF IMAGE FIELD

First we note the Jacobi identity,

I [V,, [V„,V„]]+[V„,[V'„,V,]]+[V„,[V,, V„]]I
0'=0 .

X =Fp„bF„„=Tr(Fq,F„„), (19)

where Tr means taking the trace of. The Lagrangian (19)
has the covariant property under the coordinate transfor-
mation (2) in the image space. This is shown by noting
the expression of F„„in the new coordinate frame, g,',
a =1,2, . . . , M,

(20)

Using Eq. (20) and the cyclic property of the trace opera-
tor, we have the covariant property,

2'=Tr(F„'g„', )=Tr(F„F„,, )=L . (21)

Now let us introduce an important postulate, that the
image field is excited following the least-action principle,

Substituting Eq. (12) into Eq. (13), we have a field identity
equation,

~t,F;.b+ ~„F',i.b+ ~Pi.„b =o

where the covariant derivative of I'„„is given by

~) F„'.b =d~F„'.b+[~~. F;.b] .

Following the analogy with the electromagnetic field,
we consider the excitation of the image field. First, the
Lagrangian X of the field is defined as

the terminology of "information contraction" is used in
the sense that various modified patterns are reduced to
memorized standard patterns. Using Eqs. (13) and (16)
and the variational principle (22), we have the field equa-
tion,

~Pi.,+[~.F~., l.'=ji..P'] . (24)

Taking into account the fact that the image field is excit-
ed when the images of two diff'erent patterns are not
transformable through suitable group transformations,
we can define the relative information quantity between
the two patterns with the use of the Lagrangian X. Here
we note that the definition of the relative information
quantity has the covariant property (21).

IV. CONCLUSIONS

Based on the psychological experimental fact that im-
ages in mental space are transformed into each other for
pattern identification, a field theory of images was
developed with the use of the methods of gauge theory.
It was shown that the image field is excited in the brain
when the two images /[X] and P[X+bX] corresponding,
respectively, to the geometrical patterns I and X+A,I,
are not transformable through suitable group transforma-
tions. The image field is expected to be observed physio-
logically as an excited state of the neuronal network in
the brain. It is also a forthcoming important problem to
find how the group transformations are realized in the
neurobiological network. On introducing the postulate
that the pattern is identified maximally for information
contraction, we derived the excitation equation of the im-
age field, and the covariant expression of relative infor-
mation quantity between two patterns was defined as ex-
cited Aeld energy.
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